

Electrified Printmaking

Using Conductive Ink to Create Active Images

Erik Brunvand

Saltgrass Printmakers & University of Utah

Motivation

- * Printing involves transfer of ink to a substrate
 - * Visual properties depend on the physical properties of the ink
- * What about physical properties of the printed images?
 - * What if the ink were conductive?
 - * What are the possibilities of an active electronic print?
 - * Extend the vocabulary of print towards digital media?

Electronics

- * Related to charge moving in a conductor
- * Electrons moving under influence of an electronic field
 - * Force is Voltage (volts)
 - * Amount of charge moving is Current (amps)
 - * "Friction" for current is Resistance (ohms)

Electronics: Water Analogy

- * Current is like water flowing through a pipe
- * Voltage is like water pressure
- * Resistance is related to the diameter of the pipe
 - * Water pushed through a pipe can do work (like a water wheel)
 - * Electrons pushed through a wire can do work (like light a bulb)

Ohm's Law

* Fundamental relationship of voltage, current, resistance

$$V = IR$$
 $R = V/I$ $I = V/R$

- * Helps put resistance / conductance in context
- * Important when you start using these printed "wires"
- * Important when you wire up a component like an LED

Measuring Resistance

- * Resistance is a function of: ρ(L/A)
 - ★ ρ is the native resistivity of the material
 - * L/A are the Length and cross-sectional Area of the material

- * What if the "wire" is flat and wide like a ribbon?
 - * This results in a measurement of "ohms per square"
 - * The resistance of one square unit of the material doesn't depend on how big/small the unit is!
 - * OK it does also depend on the thickness of the ribbon

Conductive Paint Testing

- * "Metallic" paints don't work!
- * Adding metal flakes to screenprint ink doesn't work
- * Adding graphite to screenprint ink does work
 - * Resistance is fairly high though...

Copper-Based Paint

- * CuPro Cote from LessEMF.com
- * Copper-based conductive paint
 - * Water-based paint easy-ish cleanup (dries fast)
 - * Low resistance: < 1Ω/sq
 - * A little loose straight out of the can
 - * Can be thickened a little with a little bit of screenprint medium

Conductive Ink-Jet Ink

- * Microsoft Research, Cambridge
- * \$100/100ml silver-based ink

Nickel-based paint

- * MG Chemicals Super Shield
 - * Nickel based coating
 - * Low resistance: 0.6Ω/sq
 - * Designed to be a shielding coating for electronics
 - * Medium grey color
 - * NOT water soluble! Pretty stinky stuff... Gums up screens instantly... Better used for painting than for printing...

Michael Shorter - DJCAD

- * Printed electronics
 - * Makes a "Theramin-like" musical instrument
- * Workshop at Impact 8!
 - * Saturday, 11:30, DJCAD
 - Conductive InkWorkshop: MakingPaper Work

Conclusions

- * Fascinating possibilities!
- * Don't be intimidated!
 - * Ink/Paint is a little expensive, but not terrible
 - * Electronics can be very simple and effective
 - * Electronic components (LEDs, resistors) are cheap
- * Add some bling to your prints!

Erik Brunvand, elb@cs.utah.edu, www.cs.utah.edu/~elb

Materials Summary (\$)

- * Copper-based paint: CuCote
 - * <1Ω/sq, copper metallic, \$30/4oz(118ml), \$160/qt(946ml) \$0.25/ml in small can, \$0.17/ml in qts
- * Carbon-based paint: Bare Conductive
 - * 50Ω/sq, black, **\$30/50ml, or 10ml pen for \$10** \$0.72/ml in jar, \$2/ml in pen
- * Silver-Based Pen: CircuitWriter
 - * 0.017Ω/sq, silver colored, \$20/5g roughly \$4/ml
- * Nickel-based paint: SuperShield
 - * 0.6Ω/sq, silver metallic, \$94/900ml \$0.10/ml

Materials Summary (£)

- * Copper-based paint: CuCote
 - * <1Ω/sq, copper metalic, £20/4oz(118ml), £105/qt(946ml) £0.16/ml in small can, £0.11/ml in qts
- * Carbon-based paint: Bare Conductive
 - * 50Ω/sq, black, £18/50ml, or 10ml pen for £6 £0.47/ml in jar, £1.29/ml in pen
- * Silver-Based Pen: CircuitWriter
 - * 0.017Ω/sq, silver colored, £13/5g roughly £2.6/ml
- * Nickel-based paint: SuperShield
 - * 0.6Ω/sq, silver metalic, £61/900ml £0.06/ml

Information Sources

low-tech circuit DIY...

- * Erik Brunvand, University of Utah and Saltgrass Printmakers
 - * elb@cs.utah.edu, www.cs.utah.edu/~elb
- * Kinetic Art and Embedded Systems class at Utah
 - * www.eng.utah.edu/~cs5789/
- *** MIT Media Lab**
 - * High Low Tech: hlt.media.mit.edu/
 - * Kit of No Parts: web.media.mit.edu/~plusea/
- * ITP program at NYU Tutorials
 - * itp.nyu.edu/physcomp/Tutorials/Tutorials

Information Sources

Electronic Components..

- * Erik Brunvand, University of Utah and Saltgrass Printmakers
 - * elb@cs.utah.edu, www.cs.utah.edu/~elb
- * Sparkfun Electronics
 - * www.sparkfun.com
- * Adafruit Industries
 - * www.adafruit.com
- * Oomlout
 - * oomlout.co.uk

Information Sources

Conductive Ink...

- * Erik Brunvand, University of Utah and Saltgrass Printmakers
 - * elb@cs.utah.edu, www.cs.utah.edu/~elb
- * CuPro Cote copper-based paint
 - * www.lessemf.com/paint.html
- * Bare Conductive carbon-based paint
 - * www.bareconductive.com
- * Super Shield nickel-based paint
 - * www.mgchemicals.com
- * CircuitWriter silver-based pen
 - * store.caig.com/s.nl/sc.2/category.174/.f