
Value-Based Notification Conditions in Large-Scale
Publish/Subscribe Systems∗

Badrish Chandramouli Jeff M. Phillips Jun Yang
Department of Computer Science, Duke University, Durham, NC 27708, USA

{badrish,jeffp,junyang}@cs.duke.edu

ABSTRACT
We address the problem of providing scalable support for subscrip-
tions with personalized value-based notification conditions in wide-
area publish/subscribe systems. Notification conditions can be fine-
tuned by subscribers, allowing precise and flexible control of when
events are delivered to the subscribers. For example, a user may
specify that she should be notified if and only if the price of a
particular stock moves outside a “radius” around her last notified
value. Naive techniques for handling notification conditions are not
scalable. It is challenging to share subscription processing and no-
tification dissemination of subscriptions with personalized value-
based notification conditions, because two subscriptions may see
two completely different sequences of notifications even if they
specify the same radius. We develop and experimentally evalu-
ate scalable processing and dissemination techniques for these sub-
scriptions. Our approach uses standard network substrates for no-
tification dissemination, and avoids pushing complex application
processing into the network. Compared with other alternatives, our
approach generates orders of magnitude lower network traffic, and
incurs lower server processing cost.

1 Introduction
Today, we are faced with a huge increase in demand for person-
alized data. Millions of users request data like stock prices to be
delivered to their cell phones, desktop clients, or email inboxes.
The data needs are potentially different across subscribers. Pub-
lish/subscribe systems are a suitable middleware for matching user
needs (expressed as subscriptions) to incoming events generated
by data sources (called publishers). Traditional topic-based and
content-based publish/subscribe systems support stateless subscrip-
tions, i.e., those that can be processed by only examining the in-
coming event itself. Personalized data needs, however, often trans-
late to stateful subscriptions. One approach to supporting such sub-
scriptions in traditional systems is to add post-processing logic and
state maintenance at subscribers, but this approach is not scalable,
as we will show in this paper.

Consider, for example, an application that delivers stock price
∗This work is supported by an NSF CAREER award (IIS-
0238386).

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

updates to a large number of subscriptions. While many subscribers
may be interested in the same stock, each subscriber may have a
unique data need in the form of a notification condition, which
precisely specifies when the subscriber wishes to receive a price
update. In this paper, we focus on value-based notification con-
ditions, where each subscriber is notified of the new price if and
only if it differs from the price value last received by the sub-
scriber by no less than a threshold (called radius and specified
as part of the subscription definition). This problem setting corre-
sponds closely to the well-known problem of bounded approximate
caching [15]. However, we have the stricter requirement that the
subscriber (cache) should not be updated without a radius (bound)
violation, and we also address the challenge of scaling to a large
number of subscriptions.

Value-based notification conditions offer flexible, personalized
control of when value updates are disseminated to subscribers. Be-
sides stock price monitoring, value-based notification conditions
are also useful in scenarios such as monitoring auctions and online
sales prices, tracking sports scores and vote counts in elections, etc.
Subscriptions with these notification conditions can also be used as
building blocks for implementing wide-area approximate caching.
Challenges Support for value-based notification conditions in a
publish/subscribe system involves the standard challenge of scal-
able subscription processing and notification dissemination, in the
presence of millions of subscriptions. Naive solutions do not scale:
1) Given an incoming event, if we let a server check all subscrip-
tions in turn and notify each affected one with unicast, processing
and dissemination costs can easily overwhelm the server. 2) If we
disseminate all events to subscribers and rely on post-processing
at each subscriber to enforce notification conditions, there will be
excessive network traffic, most of which is unnecessary.

To develop more efficient group processing and dissemination
techniques, we are faced with several unique challenges raised by
value-based notification conditions. First, each such subscription
has a potentially unique per-subscription state that may need to be
separately maintained—the last value that was sent to that particu-
lar subscription. This state can be different for different subscrip-
tions, even for those with identical radius. Second, there is no sim-
ple subsumption relationship among subscriptions based on their
radii. In other words, an update that needs to be sent to a subscrip-
tion with a larger radius should not necessarily be sent to a subscrip-
tion with a smaller radius (or vice versa). Even subscriptions with
the same radius may receive completely different sequences of up-
dates, depending upon when these subscriptions were created. We
will explain these subtleties further using examples in Section 2.
Contributions We develop and evaluate a set of techniques for
supporting scalable processing and dissemination for a large num-
ber of subscriptions with value-based notification conditions. Com-

pared with less sophisticated alternatives, our techniques show a
huge performance improvement in server processing, and an order
of magnitude lower network cost for disseminating notifications.

We advocate a clean interface between the server and the net-
work in a publish/subscribe system. All our techniques leverage
standard or readily available network substrates, e.g.: IP unicast,
content-based networks [3], distributed hash tables such as [19],
etc. Accordingly, our solutions can be deployed easily and quickly,
without worrying about pushing complex application processing
logic inside the network.

We support notification conditions with arbitrary and different
radii. Subscriptions can be added and removed dynamically, and
we handle the case where subscriptions with identical radius may
need to notified differently because their different creation times
can lead to different per-subscription states. We adhere to a strict
interpretation of notification conditions; i.e., a subscriber is notified
if and only if the incoming event causes a radius violation.

We also propose two extensions, including 1) a more flexible
form of notification condition specifying when a subscription must
be notified, when it must not be notified, and when it may be option-
ally notified; 2) relative notification conditions, where notification
is needed when the difference between the current and the last-
notified values, measured in relative terms such as percent change,
exceeds the prescribed threshold.
Outline The rest of this paper is organized as follows. In Sec-
tion 2, we describe our problem setting and semantics of value-
based notification conditions precisely; we also warm up to our
main discussion by presenting a series of less sophisticated solu-
tions. Sections 3–6 present our solutions in a step-by-step manner.
In Section 3, we tackle the first subproblem of handling subscrip-
tions with different radii, assuming that no two subscriptions have
the same radius. In fact, this solution works without the assump-
tion, if we slightly relax the semantics of subscription creation to
ensure that subscriptions with the same radius see an identical se-
quence of notifications. Without relaxing the subscription creation
semantics, however, we need the solution to the second subprob-
lem, described in Section 4, which handles subscriptions with same
radius but different views of the data. Next, Section 5 describes
how to combine the solutions to the subproblems in a single system,
which provides full support for value-based notification conditions.
Finally, Section 6 presents extensions of our techniques for flexible
may-notify and must-notify conditions, and for relative notification
conditions. In Section 7, we present a thorough experimental eval-
uation of our techniques. We discuss related work in Section 8 and
conclude in Section 9.

2 Preliminaries
2.1 Semantics of Value-Based Notification
Consider a total of N subscriptions interested in tracking the value
of the same data item over time. We denote the value of the data
item at time t by d(t). When a subscription is created, it is notified
with the data value at the time of creation. Each subscription Si

specifies a radius, denoted by ri. We notify the subscription with
the current value of the data item if and only it has drifted by no
less than ri from the value last received by Si.

Formally, at time t, the center of a subscription Si, or its last-
notified value, denoted ci(t), is the last value received by Si at or
prior to t. We call (ci(t)− ri, ci(t) + ri) the subscription interval
of Si at t. The system maintains the invariant d(t) ∈ (ci(t) −
ri, ci(t) + ri) for any i and t (since the creation of Si). If an
update event causes d(t) to fall outside Si’s subscription interval,
we notify Si, thereby recentering its subscription interval at d(t).

Figure 1: Example subscriptions.
The following two examples illustrate some of the intricacies that

arise in supporting valued-based notification conditions.

Example 1 (Subscriptions with different radii). Suppose there
are three subscriptions interested in tracking the price of a stock,
with radii 2, 4, and 6 respectively. Figure 1 (left) plots these sub-
scriptions as intervals (ci(t) − ri, ci(t) + ri), with their centers
indicated by crosses. The only obvious constraint on these inter-
vals is that all of them must be stabbed by d(t). In the figure, for
instance, a stock price change from 100 to 102 will affect the sub-
scription with radius 4 but not the subscriptions with radius 2 or 6.
Hence, there is no simple subsumption relationship implied by the
lengths of subscription radii.

Example 2 (Subscriptions with same radius). Consider three
subscriptions with the same radius, say 4. The subscriptions were
created when the stock price was 101, 103, and 100 respectively,
as depicted in Figure 1 (right). If the current stock price is 100
and it changes to 98, we would notify S2 but not S1 or S3. In fact,
it is not difficult to devise a sequence of update events such that
the sequences of notifications received by these three subscriptions
are completely disjoint from each other. For example, each update
event can always drop the value just below the largest (but above
the second largest) left endpoint of the current subscription inter-
vals; this sequence will cause the subscriptions to be notified in a
round-robin fashion, one at a time.

2.2 Notification Dissemination
For each incoming event, the publish/subscribe system identifies
the subset of subscriptions that need to be notified, and uses a net-
work substrate to deliver notification messages to the subscribers
over a wide-area network. We employ a network of brokers, each of
which is responsible for a subset of the subscriptions. A broker for-
wards notifications to relevant subscriptions under its responsibility
using whatever end-user delivery mechanism is suitable (e.g., IP,
emails, instant messages). In this paper, we primarily concern our-
selves with the network substrate spanning all brokers, and ignore
the “last-hop” delivery because it mainly depends on subscribers’
needs and is orthogonal to the design of the rest of the system. The
most basic network substrate we can employ is the Internet, which
supports IP unicast from a central subscription server to any indi-
vidual broker.

We also consider a class of networks which we call content-
driven networks (CN).1 Messages in CN do not specify any physi-
cal destination address; instead, they contain a list of attribute-value
pairs. Destinations declare their interests with the CN as boolean

1Terms such as content-based routing, content-based networking,
and semantic multicast capture similar concepts. We choose not
to use these terms because they are often associated with specific
projects and systems, e.g., [3, 2, 18]; we want to capture a broader
class of systems with different designs and varying degrees of ex-
pressiveness.

predicates over contents of individual messages. The CN automat-
ically routes messages based on their contents to destinations in-
terested in them. Many networks can be classified as CN. In the
following, we give a number of examples, with varying degrees of
expressiveness in the predicates they support.
• A multicast network supporting multiple multicast groups can

be seen a CN whose messages carry a group id attribute; des-
tination interests, implied by group memberships, can be re-
garded as message predicates that select particular group ids.

• In a d-dimensional content-addressable network (CAN) [19],
messages contain d numeric attributes, and CAN nodes cor-
respond to orthogonal range predicates in the d-dimensional
space. CAN automatically routes each message to the CAN
node whose predicate is satisfied by the message content.

• A prefix hash tree (PHT) [6] is an overlay network that supports
one-dimensional range searches in the domain of binary strings.
Each PHT node corresponds to a binary string. PHT automati-
cally routes each range search message to all nodes within the
range. To see why PHT is a CN, we can regard a PHT node cor-
responding to string s as interested in all range search messages
satisfying the predicate (SL ≤ s) ∧ (s ≤ SR), where SL and
SR are the two message attributes corresponding to the left and
right endpoints of the search range.

• Content-based network [3], perhaps the most general incarna-
tion of CN, supports messages with arbitrary attributes and des-
tinations with interests expressed as arbitrary boolean predicates
involving message attributes.

CN can directly support notification dissemination for stateless
subscriptions (as long as the predicates defining the subscriptions
are supported by the particular network used). We can simply in-
ject each event into the CN, and it will deliver the event to all
destinations interested in this event in an efficient manner.2 Com-
pared with unicast-based notification dissemination, CN offers bet-
ter scalability, and incurs much less network traffic when lots of
subscribers need to be notified.

However, CN does not directly support stateful subscriptions
such as those with value-based notification conditions. The rea-
son is that for stateful subscriptions, we cannot determine, just
by examining the content of an incoming event message and a
subscription definition, whether the subscription is affected by the
event (i.e., whether the subscription needs to be notified because of
the event). For subscriptions with value-based notification condi-
tions, the missing information needed to make this determination
is the current center of the subscription. Despite this difficulty, we
want to develop techniques for handling stateful subscriptions us-
ing CN for notification dissemination, in order to leverage CN’s
scalability and in-network predicate matching capabilities. Our
previous work [4] considered other types of stateful subscriptions
(e.g., range-min) without notification conditions; this paper focuses
on subscriptions with personalized notification conditions.

Besides unicast and CN, another possibility is to push appli-
cation state and processing logic into the network substrate, so
that it supports stateful subscriptions directly. Systems such as
SMILE [12] take this approach. We, on the other hand, consciously
take the simpler approach of relying on standard network substrates
that do not need to support application state, thereby preserving a
2Note that in CAN and PHT, overlay nodes cannot specify their
own interests; their predicates are chosen by the network. In these
cases, to support subscriptions with arbitrary interests, we need to
map subscriptions to appropriate overlay nodes, which serve as bro-
kers responsible for forwarding events to them. We will see an ex-
ample in Section 2.3.

Figure 2: Value-based notification conditions over CAN.
clean, untangled interface between application and network. We
believe this approach makes our system easier to deploy and main-
tain on a very large scale.

2.3 Alternative Approaches
Before describing our approach in detail, we warm up by present-
ing two alternatives that are more obvious and less sophisticated,
followed by a discussion of some existing solutions [21, 20].
B-tree(lr)+Unicast: Server-Based Processing with Unicast Dis-
semination In a subscription server, we can store all subscrip-
tions for the same data item in a standard B-tree by indexing the
left and right endpoints of each current subscription interval (hence
the name B-tree(lr)). In other words, at the current time t, the B-
tree stores the points ci(t)− ri and ci(t)+ ri for each subscription
Si. Suppose an update event d(t′) → d(t) arrives, where t′ is the
time of the last update and d(t′) denotes the value before the cur-
rent update. We look up d(t) in the B-tree, and traverse leaf nodes
towards d(t′). The subscriptions whose endpoints we encounter
when traversing the leaf nodes are precisely those needing notifica-
tion. To see why, note that if d(t) > d(t′), then these subscriptions
are precisely those with ci(t

′) + ri ≤ d(t); if d(t) < d(t′), then
these subscriptions are precisely those with d(t) ≤ ci(t

′) − ri; in
either case the new value has fallen out of the subscription interval.

Once identified, each affected subscription Si is notified using
unicast from the server. Since the notification recenters the sub-
scription to ci(t) = d(t), to maintain the B-tree, we need to re-
move the old endpoints of Si and insert the new ones d(t)− ri and
d(t) + ri. Recall that N denotes the total number of subscriptions.
Let k denote the number of subscription affected by the incoming
event. The cost of B-tree lookup and maintenance for the incoming
event is O(k logB N) I/Os, where B is the block size.

There are two problems with this approach. First, besides lookup,
every incoming event requires deleting and reinserting each af-
fected entry, which can have a high overhead if there are many
affected subscriptions. Second, this approach enumerates the list
of affected subscriptions and unicasts to each of them in turn. Be-
cause the server needs to send out these messages, it will experience
heavy node stress and cause long notification delays for subscrip-
tions that appear late in that list. The resulting network traffic will
also be high. The server can batch all unicast messages destined to
the same broker into one to save some overhead, but that one mes-
sage still needs to enumerate all affected subscriptions hosted by
the broker, so batching cannot avoid this problem fundamentally.
CN(lr): Serverless Processing and Dissemination by CN Al-
though a value-based notification condition is stateful, we can make
it stateless by instantiating the condition using the current subscrip-
tion center. Specifically, each subscription Si is defined by the
predicate (D ≤ ci(t)− ri)∨ (ci(t) + ri ≤ D), where D is the at-

tribute in the update event message that stores the new value of the
data item. This technique allows us to use a content-driven network
to automatically deliver an update event to affected subscriptions,
without using any server. We call this approach CN(lr) because it
is based on CN and it instantiates each subscription as a predicate
involving the left and right endpoints of the current subscription
interval.

As a concrete example, we show how to implement this ap-
proach using a specific CN: a two-dimensional CAN [19]. Each
point (x, y) in this two-dimensional coordinate space represents
an interval [x, y]. Each subscription Si is mapped to the point
(ci(t) − ri, ci(t) + ri), as shown in Figure 2. Note that if a point
p1 is located to the northwest of another point p2, then p1’s interval
contains p2’s interval. Hence, all subscriptions in Figure 2 (left)
are to the northwest of point (100, 100), where 100 is the current
data value. Suppose that an update event changes the value to 105.
The affected subscriptions are those not containing the new value,
shown in the shaded region.

CAN can be easily extended to support routing of messages to
any designated hyperrectangle in its coordinate space, as is done
in Meghdoot [11]. Specifically, we partition the two-dimensional
space into zones based on load-balancing criteria, and assign each
zone to a CAN node. Each CAN node has knowledge of only its
neighbors and can route messages only to them. We use CAN
nodes as brokers, each of which is responsible for all subscrip-
tions that fall within its assigned zone. When an update event
100 → 105 arrives, we first send it to (100, 100) using standard
CAN routing, and then forward it north and west through brokers
until the shaded region is completely covered.

The problem here, however, is that each affected subscription
Si will be recentered and therefore must change it coordinate to
(d(t) − ri, d(t) + ri). This movement of subscription points is
illustrated in Figure 2 (right). Unfortunately, this operation is ex-
pensive, because these subscriptions will change brokers and po-
tentially trigger load rebalancing.

Although there are other alternatives to CAN as the CN sub-
strate (e.g., PHT and content-based network), the efficiency prob-
lem caused by subscription recentering is universal. Even for CN
substrates that do not require subscriptions to switch brokers (e.g.,
content-based network), changes of subscription intervals must be
propagated through the network to update routing tables, which is
also expensive. The fundamental problem is that while we have re-
formulated a stateful subscription to use a stateless definition, this
definition depends on a dynamic property of the subscription (cur-
rent center, in this case). Whenever this property changes, we may
incur a significant overhead.
Existing Solutions Shah et al. [21, 20] have investigated the prob-
lem of disseminating dynamic data in a network with the goal of
meeting coherency constraints. The goal is to maximize fidelity,
which is the percentage of time that the coherency constraints are
met. Translated to the publish/subscribe setting, the only semantic
requirement is that the value ci(t) at the subscriber Si should lie
within (d(t)− ri, d(t) + ri). However, a subscription may receive
an update even if the updated value does not fall outside the current
interval. Furthermore, a subscription may even receive a value that
never existed, as long as the resulting interval (recentered at this
value) still contains the true value of the data item.

Their solution uses a customized dissemination tree with smaller
radii serving larger ones. An event is disseminated starting at the
root, using one of the following techniques:
• At the server, determine the largest radius affected (rmax) and

send the event to all Si such that ri ≤ rmax [21].

• Distributed dissemination, where a parent Si sends an event to
its child Sj if |cj(t) − ci(t)| > rj−ri [21]. Both this technique
and the first one may result in unnecessary notifications which
is forbidden by our stricter notification semantics.

• Enforce dependent ordering by sending pseudo-values [20]. In
this case, subscriptions may receive values that have never been
published, which violates our publish/subscribe semantics.

Our precise notification semantics in Section 2.1 require that Si

should not receive any updates that do not fall outside the current
subscription intervals. Furthermore, a subscription should only re-
ceive “true” values, i.e., values that have been produced by the
publisher. In this paper, we show that we can handle the precise
semantics efficiently. We also discuss, in Section 6, how to relax
the semantics to allow additional may-notify (loose) conditions in
subscriptions. Another notable difference is that we use only stan-
dard network substrates, instead of using a customized dissemina-
tion tree that introduces complexity by adding application-specific
logic inside the network,

3 Subscriptions with Different Radii
As the first step towards a complete solution, we assume in this
section that all subscriptions with the same radius have identical
centers. Under this assumption, by assigning subscriptions with
the same radius to the same broker, we can effectively treat them as
a single subscription, so all subscriptions now have unique radii.

This assumption is actually not as restrictive as it may appear at
first glance. We can ensure that this assumption holds by enforcing
the simple rule that a new subscription created at time t of the same
radius ri as some existing subscription Si is sent an initial data
value of ci(t) instead of d(t). This alternative semantics of sub-
scription creation may be acceptable for some applications because
1) ci(t) was a true value of the data item at some point in the past,
and 2) the distance between the true value d(t) and the value ci(t)
now seen by the new subscription is guaranteed to be less than ri.
Nevertheless, for applications that require more precise semantics,
we will tackle the general case of multiple subscriptions with the
same radius having different current centers in Sections 4 and 5.

3.1 Scan(r)+CN(r): Towards Radii Indexing
The approaches introduced in Section 2 have a glaring problem
with indexing subscriptions using properties that are dynamic (for
both server processing and network dissemination). The solution
that comes to mind is to index subscriptions by their radii, as the
radii do not change. However, it is unclear how to process an in-
coming event efficiently using such an index, because whether an
event affects a subscription depends not only on its radius but also
its current center, which is no longer indexed.

As a first step towards indexing by radii, we propose a sim-
ple technique called Scan(r), which can produce not only a list
of affected subscriptions (intended for unicast), but also a seman-
tic description of affected subscriptions (intended for CN). Scan(r)
maintains all subscription in a sorted order of increasing radii. Upon
receiving an event, Scan(r) makes a linear scan and identify the
subscriptions affected by the event. As it proceeds, Scan(r) can
easily produce as its output a list of m affected radius ranges of the
form [R LOW, R HIGH], which indicates that all subscriptions with
radius in this range is affected by the event. In Example 1, for in-
stance, event 100 → 102 produces a single affected radius range
[4, 4]. Scan(r) takes O(N/B) I/Os, and does not need expensive
updates to recenter subscriptions, as radii remain unchanged.

On the network side, we can “index” subscriptions by radii as
well. Each subscription Si is identified by its radius ri, or more

precisely, by predicate R LOW ≤ ri ≤ R HIGH. We use a content-
driven network to manage these subscriptions, and call this ap-
proach CN(r). Because radius is a static subscription property,
CN(r) does not have CN(lr)’s problem of huge reorganization costs
during subscription recentering. The list of m affected radius ranges,
computed by Scan(r), works perfectly with CN(r). We inject each
affected radius range as a message with attributes R LOW and R HIGH

(in addition to the new data value) into CN(r), and CN(r) will au-
tomatically route it all subscriptions with predicates matching this
message. Any incarnation of CN that supports range lookups (e.g.,
PHT or content-based network) can be plugged in.

This trick is an example of reformulation [4], the idea of refor-
mulating events as messages concisely describing subsets of af-
fected subscriptions so that stateful subscriptions can be handled
by network substrates that only directly support stateless subscrip-
tions. In our case, Scan(r) uses the subscription state it maintains
to reformulate an incoming event into messages that can be directly
handled by CN(r). Note that for CN(r) to outperform unicast, we
need m, the number of affected radius ranges, to be much less
than k, the number of affected subscriptions. In our experiments
(Section 7), we have found m to be at least an order of magnitude
smaller than k. The intuition behind this observation is that sub-
scriptions with similar radii tend to be affected in batches. Even if
two adjacent radii are separated by an update that cuts across them,
there is a high likelihood that a future update will bring their centers
very close together.

3.2 BA-tree(r): Augmented B-Tree on Radii
We now present a data structure called BA-tree(r) capable of com-
puting affected radius ranges much more efficiently than Scan(r).
Each incoming event d(t′) → d(t) is processed by BA-tree(r) as
a delta ∆i = d(t) − d(t′). We start with a B-tree that indexes all
subscriptions by radii. The tree topology is static in the absence
of subscription insertions and deletions. We augment the B-tree
with additional fields that allow us to track the subscriptions cen-
ters. To maintain this information efficiently, we update a subtree
only when some, but not all, subscriptions in the subtree need to
move. If all or no subscriptions in the subtree are affected, the en-
tire subtree can be marked as updated simply by updating the root
of the subtree. To support this nontrivial bookkeeping, we augment
each index entry i with 8 following fields. An example BA-tree(r)
is shown in Figure 3.
• rmin[i] and rmax[i] track the smallest/largest subscription ra-

dius in the subtree rooted at i. A leaf node entry has rmin[i] =
rmax[i] = r, where r is the radius of the subscription indexed
by this entry.

• Lmin[i] and Rmin[i] track the smallest (in absolute value) nega-
tive/positive delta that will affect at least one subscription in the
subtree rooted at i. Their values are accurate as of the last delta
that affects at least one (but not all) subscription in the subtree
rooted at i’s parent.

• Lmax[i] and Rmax[i] track the smallest (in absolute value) nega-
tive/positive delta that will affect every subscription in the sub-
tree rooted at i. Their values are accurate as of the last delta
that affects at least one (but not all) subscription in the subtree
rooted at i’s parent. For a leaf node entry, Lmin[i] = Lmax[i]
and Rmin[i] = Rmax[i]. For all nodes, initially Lmin[i] =
Rmin[i] = rmin[i] and Lmax[i] = Rmax[i] = rmax[i].

• γ[i] is the drift factor, initially set to 0. It accumulates a se-
quence of consecutive deltas that have reached this index entry
but not yet been propagated down (because no subscription in
the subtree is affected by any delta in the sequence).

Figure 3: Example BA-tree(r).
• ρ[i] is the reset bit. When set to 1, it indicates that all subscrip-

tions in this subtree were affected by the last delta that affected
at least one subscription in this subtree.

Let anc(i) be the set of ancestor index entries of i in the tree. There
are two cases for how the reset bit is used to implicitly keep track
of subscriptions in subtrees which are not directly updated.
• Case 1: For all j ∈ anc(i), ρ[j] = 0. In this case, let d =

P

k∈anc(i)γ[k]. Then, the current values of Lmin[i], Rmin[i],
Lmax[i], and Rmax[i] should be Lmin[i] + d, Rmin[i] − d,
Lmax[i] + d, and Rmax[i] − d, respectively.

• Case 2: There exists j ∈ anc(i) such that ρ[j] = 1 and ρ[k] = 0
for all k ∈ anc(j). Here, let d = γ[j] +

P

k∈anc(j)γ[k]. Then,
the current values of Lmin[i], Rmin[i], Lmax[i], and Rmax[i] are
effectively rmin[i]+d, rmin[i]−d, rmax[i]+d, and rmax[i]−d,
respectively.

Lookup (and Bookkeeping) On an incoming event ∆, we look
up the BA-tree(r) for the set of affected radius ranges by invoking
LOOKUP(T , ∆, 0), where T denotes the tree root. Algorithm 1
shows this procedure. Note that this “lookup” also updates the tree
by performing necessary bookkeeping to track subscription move-
ments; however, the structure of the tree remains unchanged.

During lookup, we consider three cases at each index entry of the
node being visited. If the entire subtree is unaffected (Lines 7–12),
we basically update the drift factor and do not recurse down. If the
subtree is partially affected (Lines 13–15), we have to recurse down
the subtree. If a previous lookup has set the reset bit for this entry, it
implies that the child node has stale information. Hence, we invoke
LOOKUP recursively with reset flag set to true. This flag indicates
to the child index entries that they need to reset their information. If
there is an accumulated drift factor, we need to add it to ∆ before
the recursive lookup. After the recursion returns, we can change
the reset bit and drift factor to 0 for this index entry. Finally, if
the subtree is completely affected (Lines 16–19), we set the reset
bit for that index entry, change the drift factor to 0, and generate
the affected radius range, and continue without recursing down.
Resets propagated down by parents are processed in Lines 4–6. We
incrementally compute the information to be returned to the parent
in Lines 20–23.

It is not difficult to see that the I/O cost of lookup is
O(min(m logB N, N/B)), where m is the number of affected ra-
dius ranges it outputs. Lookup avoids visiting an entire subtree if
the subtree is completely unaffected or entirely affected. Hence, to
compute each affected radius range, lookup does not need to exam-
ine any nodes other than those on the paths from the root to the two
endpoints of the range. Bookkeeping piggybacks on lookup and in-
curs no additional I/Os. With minor modifications, lookup can also
produce the complete list of k affected subscriptions (for unicast)
in O(min(m logB N + k/B, N/B)) I/Os.
Producing Maximal Radius Ranges To ensure that m, the num-
ber of affected radius ranges, is as small as possible, we can mod-

Algorithm 1: Lookup algorithm for BA-tree(r).
LOOKUP(node n, float ∆, bool ρ) begin1
〈Lret

min
, Rret

min
, Lret

max
, Rret

max
〉 ← 〈∞,∞, 0, 0〉;2

foreach index entry i of n do3
if ρ = 1 then4
〈Lmin[i], Rmin[i], Lmax[i], Rmax[i]〉 ←5
〈rmin[i], rmin[i], rmax[i], rmax[i]〉;
ρ[i]← 1; γ[i]← 0;6

if−Lmin[i] < ∆ < Rmin[i] then7
// entire subtree unaffected

Lmin[i]← Lmin[i] + ∆;8
Rmin[i]← Rmin[i]−∆;9
Lmax[i]← Lmax[i] + ∆;10
Rmax[i]← Rmax[i]−∆;11
γ[i]← γ[i] + ∆;12

else if−Lmax[i] < ∆ < Rmax[i] then13
// subtree partially affected
〈Lmin[i], Rmin[i], Lmax[i], Rmax[i]〉 ←14
LOOKUP(child[i], γ[i] + ∆, ρ[i]);
ρ[i]← 0; γ[i]← 0;15

else16
// entire subtree affected
〈Lmin[i], Rmin[i], Lmax[i], Rmax[i]〉 ←17
〈rmin[i], rmin[i], rmax[i], rmax[i]〉;
ρ[i]← 1; γ[i]← 0;18
output 〈rmin[i], rmax[i]〉;19

Lret

min
← min(Lret

min
, Lmin[i]);20

Rret

min
← min(Rret

min
, Rmin[i]);21

Lret

max
← max(Lret

max
, Lmax[i]);22

Rret

max
← max(Rret

max
, Rmax[i]);23

return 〈Lret

min
, Rret

min
, Lret

max
, Rret

max
〉;24

end25

ify Algorithm 1 to merge adjacent radius ranges with no unaffected
subscriptions in between. Merging can be implemented in a stream-
ing fashion because LOOKUP produces the ranges in order. The
idea is to delay the output of affected ranges and instead keep a
running range that can be extended until we encounter an unaf-
fected leaf/subtree (or the end of processing); at this point, we can
output the running range. This extension produces maximal radius
ranges as output and incurs no additional cost.
Inserting and Deleting Subscriptions Subscriptions can be in-
serted and deleted using the standard B-tree procedures, with minor
modifications to maintain the augmented fields. The I/O cost for
these operations remains bounded by O(logB N).

3.3 Notification Dissemination
Like Scan(r), BA-tree(r) works with both unicast and CN(r) for
notification dissemination. For unicast, BA-tree(r) produces a list
of k affected subscriptions; for CN(r), it produces a list of m max-
imal affected radius ranges, which are reformulated as messages
that can be routed by a vanilla CN implementation that supports
range searches. Since usually m � N , BA-tree(r) should perform
much better than Scan(r).

4 Subscriptions with Same Radius
We now come to the second subproblem as outlined in Section 1.
Consider a set of Nr subscriptions with the same radius r. When a
new subscription is created, it is centered at the current data value.
Thus, subscriptions with the same radius may have different centers
and receive different notification sequences. In this section, we
present our solution, starting with two strawman solutions.

4.1 B-tree(c)+Unicast and CN(c):
Strawman Solutions

B-tree(c)+Unicast While B-tree(lr)+unicast from Section 2.3
can be applied here, we can improve it by exploiting the fact that

all subscriptions have the same radius for this subproblem. Instead
of indexing two endpoints, we index just the current center of each
subscription in a standard B-tree (hence the name B-tree(c)). On
an increasing update event d(t′) → d(t) where d(t) > d(t′), we
can compute the list of affected subscriptions for unicast simply by
looking up subscriptions centered within (d(t′) − r, d(t) − r] (the
case for decreasing updates is symmetric). Then, we delete these
subscriptions and reinsert them into the tree at d(t), because they
are now recentered at this value. Deleting and reinserting them
one at a time would result in O(kr logB Nr) I/Os, where kr is
the number of affected subscriptions. Instead, noting that affected
subscriptions are to be deleted from a contiguous range of the B-
tree and reinserted into another contiguous one, we can perform
the deletions and insertions in batches, giving an overall I/O cost of
O(logB Nr + kr/B) per event including both output computation
and tree maintenance.
CN(c) An alternative, analogous to CN(lr) from Section 2.3, is
to use a content-driven network to manage subscriptions identified
by their centers (hence the name CN(c)). On each increasing up-
date d(t′) → d(t), we simply inject a message with attributes
D′ = d(t′) − r and D = d(t) − r into the CN, which auto-
matically route it to affected subscriptions, whose centers satisfy
D′ < ci(t) ≤ D (the case for decreasing updates is analogous).
This approach does not require a server.

The main problem of CN(c), similar to CN(lr) and indeed com-
mon to all approaches that “index” dynamic subscription proper-
ties, is that recentering of affected subscriptions causes expensive
maintenance overhead. In the case of CN(c), moving subscription
centers lead to constant relocation of subscription and/or updates to
routing information within the network. In Section 3, we were able
to avoid this problem by indexing static radii. However, for sub-
scriptions with the same radius, what static property can we use?
The remainder of this section presents a solution.

4.2 Static Circular Ordering
On an incoming event, some subscriptions may be affected and
need to be notified and recentered. Surprisingly, it turns out that
while the subscription centers can move around, the relative order-
ing of these centers, when mapped onto a circle (we call this the
circular ordering), remains static. Moreover, a newly created sub-
scription does not break the circular ordering of existing subscrip-
tions, but simply adds a new entry at some position in the ordering
(similarly for removal of a subscription).

To explain the static nature of circular ordering, we start by prov-
ing an interesting property of subscription centers. It is clear that
since all centers lie within a distance of r from d(t), the distance
between any two centers must be less than 2r. We proceed to prove
a stronger result.

Lemma 1. The distance between any two subscription centers at
any given time is less than the radius r; that is, |ci(t) − cj(t)| < r
for any i and j.

Proof. Consider two subscriptions Si and Sj , inserted at times ti

and tj respectively. If ti = tj , then ci(t) = cj(t) for all t and we
are done. Let tj > ti. At time tj , we have cj(tj) = d(tj) and
|ci(tj) − d(tj)| < r. Hence, |ci(tj) − cj(tj)| < r.

Now, consider an incoming event at some later time tk > tj .
If this event affects both Si and Sj , we have ci(tk) = cj(tk) =
d(tk), so |ci(tk) − cj(tk)| = 0 < r. If this event affects neither
of the two subscriptions, their centers remain unchanged, and so is
the distance between them. Finally, if the event affects just one of
them, say Si, we have ci(tk) = d(tk) and |cj(tk) − d(tk)| < r.
Hence, |ci(tk) − cj(tk)| < r.

Figure 4: Static circular ordering of subscriptions.
Theorem 1. Suppose that at time t, all subscriptions are arranged
in increasing order of their centers. No future event or subscrip-
tion insertion/deletion can change the circular ordering of these
subscriptions.

Proof. Case I (effect of events): An event that affects no subscrip-
tions does not change any centers and cannot break their ordering.
Consider an increasing update event d(t1) → d(t2) that affects at
least one subscription. Such an event affects a set of kr subscrip-
tions with centers in the range (d(t1) − r, d(t2) − r]. However,
note that there exists no subscription with a center of d(t1) − r or
less; therefore, this event affects subscriptions with the kr small-
est centers. The new center for these subscriptions is d(t2). This
center is at a distance of no less than r to the right of the smallest
subscription center, because the right endpoint of that subscription,
denoted S0, was violated. However, from Lemma 1 we know that
all other subscriptions are centered at a distance of less than r to the
right of S0’s center. Hence, all affected subscriptions, which were
those with smallest centers, now effectively become the subscrip-
tions with largest center, and the circular ordering is not violated.
Similarly, on a decreasing event, a set of subscriptions with largest
centers effectively become those with the smallest center, preserv-
ing the circular ordering.

Case II (effect of subscription insertion/deletion): A subscription
insertion or deletion at time t does not modify the current center of
any existing subscription. Therefore, existing subscriptions retain
their circular ordering. Insertion or deletion only changes the im-
mediate neighbor for each of the two subscriptions whose centers
are the closest to and on either side of point d(t) in the circular
ordering.

To illustrate the static nature of circular ordering, Figure 4 shows
six subscriptions of radius 11, arranged in increasing order of their
centers, clockwise in the circle. If an update event of 19 → 24
arrives, the two subscriptions with the smallest centers (S1 and S2)
are affected and are assigned the new center of 24. The circular
ordering of subscriptions is unbroken, with S3 now being the sub-
scription with the smallest center (14).

4.3 BW-tree(lid): Circular Augmented
Weight-Balanced B-Tree on Labels

To index a set of subscriptions with the same radius, we assign an
increasing, unique number to each subscription in the order of its
current center. We call this number the label of the subscription.
By Theorem 1, the circular ordering of labels does not change with
data update events, even though centers can move. Also, as we
have seen in the previous section, the set of affected subscriptions
can always be expressed as a single range in the circular subscrip-
tion space. Since the numeric label space is linear, a range in the
circular space may be either a single interval (e.g., [lid1, lid2)) or
the union of two intervals (e.g., (−∞, lid2) ∪ [lid1, +∞)) on nu-

Figure 5: Example BW-tree(lid).
meric labels; in either case, two labels are needed to encode the
range. Our goal is develop a data structure that is easy to main-
tain and can help us efficiently compute the two labels encoding
the affected subscription range.

Our data structure is called BW-tree(lid), for circular augmented
weight-balanced B-tree on labels. We first describe the basic data
structure, and then discuss the modifications needed to maintain the
labels in the face of subscription insertions and deletions. We start
with a B-tree that indexes subscriptions by their labels. Every index
entry i is augmented with the following:
• cmin[i] is the smallest subscription center in i’s subtree.
• cmax[i] is the largest subscription center in i’s subtree.
• ρ[i] is a reset bit indicating that all subscriptions in i’s subtree

were affected by a single update and therefore have identical
centers.

Over time, as the data item of interest is updated, any subscription
can have the smallest center. We keep track of the subscription cur-
rently with the smallest center by remembering its label, called the
boundary label. The index entries lying on the path from the root
to the boundary label are called boundary entries. For an internal-
node boundary entry, we maintain two sets of cmin and cmax, for
the two subranges separated by the boundary label. Figure 5 shows
an example BW-tree(lid). Subscriptions are stored in leaves in the
increasing order of their centers, starting with the boundary label
and wrapping around at the end.

To ensure efficient lookup and maintenance, we use an idea sim-
ilar to BA-tree(r) in Section 3: If subscriptions in a subtree are
either all affected or all unaffected, we do not enter the subtree,
but instead record the effect in the augmented fields of the sub-
tree root. Recall from Section 4.2 that an increasing update event
d(t′) → d(t) affects all centers no greater than d(t) − r (starting
with the current boundary label) and relocates them to d(t), which
will become the largest centers located immediately before the new
boundary label. To this end, we only need to take two paths down
the BW-tree(lid): P1, towards the current boundary label, and P2,
towards the smallest center greater than d(t) − r. In this process,
for each node on P1 (and P2), we simply go through each index
entry j located to the right (and left, respectively) of the entry lead-
ing to the next node on the path, and set ρ[j] and update cmin[j]
and cmax[j] to d(t). This method avoids updating subtrees that
are completely affected. Maintenance of the boundary label and
boundary entries also can be done during this process; we omit the
details. Decreasing update events are handled similarly. Note that
the entire process involves no changes to the tree structure.

Lookup on BW-tree(lid) returns two subscription labels encod-
ing the range of affected subscriptions in the circular subscription
space. The overall I/O cost, including any maintenance overhead,
is O(logB Nr) per event.
Inserting/Deleting Subscriptions A new subscription may be
added between two adjacent existing subscriptions in the circular

ordering. If there is a gap in the label space, a new label can di-
rectly be assigned to the new subscription. Otherwise, we need
to relabel some existing subscriptions to make space for the new
subscription.

A simple scheme such as relabeling all elements equally spaced
over the label domain suffers from the problem of frequent relabel-
ing, especially for skewed insertion patterns where new subscrip-
tions are inserted repeatedly into the smallest gap. This order main-
tenance problem has been studied extensively in algorithms and
database literature. We adopt the I/O-efficient relabeling scheme
used in W-BOX [22], which was inspired by Dietz [9]. The rela-
beling scheme is easily accommodated in BW-tree(lid) by using a
weight-balanced B-tree [1] instead of a standard B-tree. The in-
sertion cost (including relabeling) is O(logB Nr) I/Os, amortized.
Further improvements may be possible using alternative relabeling
schemes such as [10], which bounds the number of relabelings per
insertion by a constant.

4.4 Notification Dissemination
We use a content-driven network that manages subscriptions identi-
fied by their labels; we call this approach CN(lid). For each incom-
ing event, we use BW-tree(lid) to compute the two labels encoding
the range of subscriptions to be notified, and inject into CN(lid) a
single message containing these two labels as attributes. As before,
any incarnation of CN supporting range queries is able to efficiently
route this message to relevant subscriptions.

As discussed in the previous section, although events do not
change subscriptions labels, we may need to occasionally relabel
subscriptions in case we run out of labels when adding new sub-
scriptions. For CN(lid), details and costs of relabeling depend on
the particular CN used. Our implementation of CN(lid) in experi-
ments, for example, uses a distributed B-tree. A relabeling opera-
tion, based on the W-BOX relabeling scheme we use (Section 4.3),
can be concisely represented as a range of labels to be relabeled
and the magnitude of shift, which is easily supported by our dis-
tributed B-tree. Relabeling does not alter routing paths because the
circular ordering of subscriptions remains unchanged during rela-
beling. Only routing information covering relabeled ranges need to
be updated. We investigate the overhead of relabeling in CN(lid)
experimentally in Section 7.2.2, and show that it is low even at high
subscription creation rates.

Alternatively, we can use unicast for notification dissemination
in conjunction with BW-tree(lid). The lookup procedure of BW-
tree(lid) can be modified to generate the list of affected subscrip-
tions instead of a label range, which would take O(logB Nr +
kr/B) I/Os, where kr is the number of affected subscriptions.

5 Putting the Pieces Together
We now discuss how to support the most general case where sub-
scriptions have arbitrary radii, and subscriptions with the same ra-
dius can have different centers. Consider the set of all subscriptions
with the same radius. An event can affect (subscriptions with) this
radius in three ways: 1) The radius can be completely affected, i.e.,
the event affects all subscriptions with this radius; 2) the radius can
be completely unaffected; or 3) the radius can be partially affected.

The basic idea is to use a two-layer system. A primary server
generates ranges of radii that are either completely or partially af-
fected. A set of secondary servers are responsible for individual
radii. Conceptually, these servers are organized as a CN(r) as in
Section 3, where secondary servers are indexed by their designated
radii. For each radius, its designated secondary server forms a
CN(lid) with other brokers in the system, where each subscrip-
tion is identified by its label, as in Section 4. We call this two-

level network substrate CN(r,lid). Although we have described
CN(r,lid) conceptually as consisting of many content-driven net-
works, in practice they can be implemented by one network, with
additional attributes encoding message types and additional predi-
cates that distinguish them.

With CN(r), the primary server can send an update event to all
affected secondary servers using messages containing the affected
radius ranges. In order to compute these radius ranges, the pri-
mary server uses a two-level B-tree called the B2-tree(r,lid), com-
posed of one upper-level BA-tree(r) and a BW-tree(lid) for each
radius at the leaves. The processing cost for the primary server is
O(q logB N ′+s logB N) per event, where q is the number of com-
pletely affected radius ranges, N ′ is the number of unique radii, s
is the number of partially affected radii, and N is the total num-
ber of subscriptions. It may appear that the primary server needs to
only maintain the BA-tree(r). However, when a radius r is partially
affected, the BA-tree(r) would not be able to adjust Lmin , Lmax,
Rmin, and Rmax fields for r because their values depend on the
new smallest and largest centers among subscriptions with radius
r, and this information is only available in the BW-tree(lid) for r.

Each secondary server maintains a BW-tree(lid) for each radius
r it is responsible for. Upon receiving from the primary server an
event affecting r, the secondary server uses the BW-tree(lid) for r
to compute a label range identifying the set of affected subscrip-
tions with radius r. This label range is injected into CN(lid) and
routed to affected subscriptions.

6 Extensions
6.1 Generalizing Notification Semantics
We can extend our subscription language and semantics to allow for
a range of radii [r−, r+] specifying the acceptable range of devia-
tion from the last-notified value. For a subscription Si, the radius
range [r−i , r+

i] replaces the rigid ri threshold. We refer to r−

i as
the may-notify radius, and r+

i as the must-notify radius. Si must be
notified if |ci(t) − d(t)| ≥ r+

i . In addition, Si may be notified if
|ci(t) − d(t)| ≥ r−

i . Finally, Si should definitely not be notified
if |ci(t) − d(t)| < r−

i . The additional flexibility provided by this
type of notification conditions opens up optimization possibilities.

For subscriptions with unique, different radii (as considered in
Section 3), we seek to reduce the number of affected radius ranges.
If two or more radius ranges are separated only by subscriptions
that may be notified, we can concatenate these ranges into a single
radius range. Disseminating a lesser number of larger radius ranges
means that we pay the network overhead of reaching a radius range,
less often. This reduces the overall network traffic. To this end, we
change the BA-tree(r) to sort all subscriptions by their may-notify
radii, and set rmin = r−i and rmax = r+

i for Si’s leaf node entry
(as opposed to setting both to ri in Section 3). Generation of radius
ranges works the same way as in Algorithm 1. However, we do not
output any isolated radius range consisting entirely of subscriptions
that may, but do not have to, be notified.

For subscriptions with the same may-notify radii and the same
must-notify radii (as considered in Section 4), we seek to notify all
subscriptions that may be notified, as long as at least one subscrip-
tion must be notified. The underlying intuition is that a notifica-
tion will cause all notified subscriptions to have the same center,
which means that they will behave identically from now onwards
and therefore can be effectively treated as a single subscription,
thereby reducing the number of unique subscriptions in the system.
We omit the details of modifying BW-tree(lid) to implement this
heuristic. Note that with this heuristic, Theorem 1 still holds be-
cause notifications are only made with respect to radius r− ≤ r+,

and notifications are performed only when some r+ is violated.

6.2 Relative Notification Conditions
We now consider another extension of our subscription language to
support relative notification conditions, where the radius is speci-
fied not in absolute terms but relative to the last-notified value. We
discuss two types of such notifications.

The first type uses an additive-relative radius, which forms the
subscription interval by subtracting from and adding to the sub-
scription center. For instance, users may be interested in receiving
a stock price update if the current price has deviated from the last
received price by at least 10%. Formally, the subscription interval
is given by (ci(t) − ci(t) · pi, ci(t) + ci(t) · pi), where pi > 0
is the additive-relative radius parameter. The subscription needs to
be updated if |d(t) − ci(t)| ≥ pi · ci(t). In the case of subscrip-
tions with unique, different pi’s, BA-tree(r) from Section 3 works
similarly, using pi instead of ri. The main change is that if an entire
subtree rooted at index entry j is affected, we have to set Lmin[j]
and Rmin[j] values to pmin[j] · d(t) instead of rmin[j] (likewise
for Lmax[j] and Rmax[j]). In the case of subscriptions with the
same p, however, we cannot directly use BW-tree(lid). The reason
is that Theorem 1 no longer holds due to the fact that the radius is
dependent on the current center. Nevertheless, we can still use the
BA-tree(r)-based solution if we relax the subscription creation se-
mantics to ensure that subscriptions with the same radius have the
same center, as discussed in the beginning of Section 3.

The second type of relative notification conditions uses a multi-
plicative radius, which forms the subscription interval by dividing
and multiplying the subscription center. Formally, the subscrip-
tion interval is given by (ci(t)/fi, ci(t) · fi), where fi > 1 is
the multiplicative radius parameter, and we assume that the data
value of interest is always positive. This type of relative notifica-
tion conditions can be handled by transforming the values by tak-
ing their logarithms. In the logarithmic domain, the subscription
interval becomes (log ci(t) − log fi, log ci(t) + log fi), which is
just a standard, non-relative value-based notification condition with
radius log fi. Therefore, we can directly apply the techniques de-
veloped in the previous sections in the logarithmic domain.

7 Evaluation
7.1 Metrics, Workload, and Setup
For the all-rad case, where subscriptions can have arbitrary radii,
and subscriptions with the same radius can have different views
of the data, we we have implemented the following techniques for
server-side processing:
• B-tree(lr): A simple B-tree constructed on left and right end-

points of current subscription intervals (Section 2.3).
• B2-tree(r,lid): Our two-level data structure indexing subscrip-

tions first by radius, and then by labels (Section 5).
For the diff-rad case (Section 3), where subscriptions with the same
radius have identical view of the data, i.e., unique subscriptions all
have different radii, we have implemented the following techniques
(in addition to B-tree(lr), which is also applicable in this case):
• Scan(r): Storing subscriptions sorted by radii, and performing

a linear scan to output radii or radius ranges (Section 3.1).
• BA-tree(r): Our augmented B-tree constructed on subscription

radii (Section 3.2).
Finally, for the same-rad case (Section 4), where subscriptions
have the same radius but different views of the data, we have imple-
mented the following techniques (in addition to B-tree(lr), which
is also applicable in this case):

• B-tree(c): A simple B-tree constructed on subscription centers
for subscriptions with the same radius (Section 4.1).

• BW-tree(lid): Our augmented weight-balanced B-tree on the
subscription labels (Section 4.3).

Although our data structures have been designed to be I/O-efficient,
our current implementation uses main memory. The server pro-
cessing time we measure in experiments mostly reflect CPU and
memory access costs.

For the network substrate, we have implemented a simulator
for large-scale networks. The first phase of network simulation
generates application-level routing traces, which are further ana-
lyzed by a second phase to produce detailed costs. The second
phase performs a link-level simulation using a topology produced
by INET [5], a generator of Internet-like network topologies. We
consider both unicast and content-driven network (CN) for notifica-
tion dissemination. The CN we have implemented is structured as
a distributed B-tree with support for load balancing. The root of the
B-tree is hosted by a server, and the nodes are hosted by brokers.
We experiment with the following dissemination methods:
• Unicast from the central server. This method can be used in con-

junction with B-tree(lr), B2-tree(r,lid) (for all-rad), Scan(r)
(for diff-rad), BA-tree(r) (for diff-rad), B-tree(c) (for same-
rad), and BW-tree(lid) (for same-rad).

• CN(lr), serverless content-driven network where subscriptions
are identified by the left and right endpoints of their intervals
(Section 2.3). This method works in all three cases.

• CN(c), serverless content-driven network where subscriptions
are identified by their current centers (Section 4.1). This method
works for same-rad.

• CN(r), content-driven network where subscriptions are identi-
fied by their radii (Section 3.3). This method works in conjunc-
tion with Scan(r) and BA-tree(r) for diff-rad.

• CN(lid), content-driven network where subscriptions are iden-
tified by their labels (Section 4.4). This method works in con-
junction with BW-tree(lid) for same-rad.

• CN(r,lid), two-level content-driven network (Section 5). This
method works in conjunction with B2-tree(r,lid) for all-rad.

Evaluation Metrics We use both server- and network-side met-
rics for evaluation. On the server side, we track processing time,
which is measured as the duration between the time at which an
update arrives at the server and the time at which the server com-
pletes generation of all outgoing messages for dissemination. On
the network side, we track, for each event: 1) Number of overlay
message hops, which measures the total number of messages sent
between overlay nodes (for CN), or between the server and brokers
hosting subscriptions (for unicast). 2) Number of IP message hops,
which measures the number of hops over IP-level links. An overlay
hop may involve traversing a number of IP-level links on its path.
3) Network traffic, which measures the total number of bytes trans-
ferred between overlay nodes (for CN) or between the server and
brokers (for unicast). 4) Maximum node stress, which measures the
number of messages originating from a node. The maximum node
stress for an event is the highest node stress among all nodes while
processing that event. Besides subscription processing and notifi-
cation dissemination, these metrics also account for the overhead of
recentering notified subscriptions, inserting/deleting subscriptions,
and load balancing (for CN).
Workload We generate synthetic subscription radii using a trun-
cated normal distribution to model skewed interests. The radii lie in
the range [1, 200k]. In case of same-rad, we choose the initial cen-
ters of subscriptions with the same radius from a truncated normal

parameter value
number of events 100000

diff-rad
number of subscriptions 10k–100k

subscription radii N (25000, 50000)
distribution of events AR1(400, 1, 1000)

same-rad
number of subscriptions 5k–50k

subscription radius 51000
distribution of events AR1(500, 1, 800)

all-rad
subscriptions See Sec. 7.2.3

distribution of events AR1(500, 1, 800)

Table 1: Summary of parameters.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 10 20 30 40 50 60 70 80 90 100

Pr
oc

es
sin

g
tim

e-
10

0k
 e

ve
nt

s
(s

ec
s)

Number of subscriptions (x1000)

B-tree(lr) for Unicast
Scan(r) for Unicast

BA-tree(r) for Unicast
Scan(r) for CN(r)

BA-tree(r) for CN(r)

Figure 6: Processing time; increasing num-
ber of subscriptions (diff-rad).

 100

 1000

 10000

 100000

 1e+06

 10 20 30 40 50 60 70 80 90 100

Av
g.

 n
et

wo
rk

 tr
af

fic
 p

er
 o

pe
ra

tio
n

(b
yt

es
)

Number of subscriptions (x1000)

CN(lr) (serverless)
Unicast w/ B-tree(lr), Scan(r), or BA-tree(r)

CN(r) w/ Scan(r) or BA-tree(r)

Figure 7: Network traffic; increasing num-
ber of subscriptions (diff-rad).

subs. 20k 40k 60k 80k 100k

CN(r) 30 33 34 35 36

Unicast 499 982 1426 1850 2201

Table 2: Average number of outgoing mes-
sages from server (diff-rad).

subs. 10k 20k 30k 40k 50k

CN(lid) 0.04 0.04 0.04 0.04 0.04

Unicast 97 193 290 386 483

Table 3: Average number of outgoing mes-
sages from server (same-rad).

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 5 10 15 20 25 30 35 40 45 50

Pr
oc

es
sin

g
tim

e-
10

0k
 e

ve
nt

s
(s

ec
s)

Number of subscriptions (x1000)

B-tree(lr) for Unicast
B-tree(c) for Unicast

BW-tree(lid) for Unicast
BW-tree(lid) for CN(lid)

Figure 8: Processing time; increasing num-
ber of subscriptions (same-rad).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 5 10 15 20 25 30 35 40 45 50

Av
g.

 n
et

wo
rk

 tr
af

fic
 p

er
 o

pe
ra

tio
n

(b
yt

es
)

Number of subscriptions (x1000)

CN(lr) (serverless)
CN(c) (serverless)

Unicast w/ B-tree(lr/c), or BW-tree(lid)
CN(lid) w/ BW-tree(lid)

Figure 9: Network traffic; increasing num-
ber of subscriptions (same-rad).

distribution.
We experiment with both synthetic and real event data. Syn-

thetic event data is derived using an order-1 autoregressive model,
AR1(c, φ, σ). The new value set by the i-th update is derived as:
Ui = c + φUi−1 + N(0, σ), where N(0, σ) represents a normally
distributed error with mean 0 and standard deviation σ. In this pa-
per, we present results for φ = 1, which represents a drifting ran-
dom walk. In addition, we experiment with historical stock prices
collected from Yahoo! Finance [24]. Details of the real workload
are described later.

Table 1 summarizes the main experimental parameters.
Experimental Setup We perform link-level simulation of an
INET topology with 20000 nodes. Of these, 1000 nodes are chosen
as brokers participating in the publish/subscribe system. All sub-
scriptions are hosted by brokers. We do not model the last-hop cost
for brokers to notify subscribers, because such costs are uniform
across all approaches being compared, and heavily depend on the
end-user delivery mechanisms such as emails and instant messages.
Also, we do not model message hops from publishers to the server.
Accordingly, to ensure fair comparison, we disregard the hop from
the publisher to the network entry point for serverless approaches
such as CN(lr) and CN(c).

In experiments, we have found results on IP-level costs (e.g.,
the number of IP message hops) to follow similar trends as those
on node-level costs (e.g., the number of overlay message hops).
Therefore, we only show results on node-level metrics.

7.2 Experiments and Results
7.2.1 Subscriptions with Different Radii (diff-rad)
We experiment with 100k synthetic events and from 10k to 100k
subscriptions generated using the parameters shown in Table 1.
Subscriptions with the same radius are constrained to have the same
center in this subsection.
Processing Time We increase the number of subscriptions and
measure the server-side processing time for the various approaches

that we implemented for diff-rad. From Figure 6, we see that B-
tree(lr) really suffers because it indexes dynamic endpoints and
incurs substantial overhead of recentering subscriptions. Although
CN(r) is the ideal match for BA-tree(r), BA-tree(r) still outper-
forms B-tree(lr) and Scan(r) significantly even for unicast.

Other factors being equal, server-side processing techniques in-
tended for unicast are generally slower than techniques intended for
a content-driven network, because the latter techniques only need to
generate a concise description of affected subscriptions instead of a
long list. Table 2 shows the average number of outgoing messages
from the server, for unicast and CN(r). We see that the semantic
descriptions generated for CN(r) (radius ranges) are much more
concise than lists of affected subscriptions, even after 100k events.

Back to Figure 6, we see that to produce radius ranges for CN(r),
BA-tree(r) performs much better than the naive Scan(r). BA-tree(r)
takes negligible time to process even 100k subscriptions.
Network Traffic We next compare the average network traffic
generated per event in bytes for different notification dissemination
methods, as we increase the total number of subscriptions. Figure 7
shows the results. Note that the y-axis uses a logarithmic scale.
There is an order of magnitude reduction in network traffic when
using CN(r), as compared with unicast. CN(lr) does even worse
than unicast because of the overhead of recentering subscriptions as
well as the added cost of load balancing necessitated by movements
of subscriptions. Results on the number of overlay message hops
reveal a similar trend, and are omitted.
Maximum Node Stress The maximum node stresses over all
events (for 10000 subscriptions) are 3969, 1984, and 282 for CN(lr),
unicast, and CN(r), respectively. CN(lr) is the worst because of the
high reorganization cost caused by subscription recentering. Uni-
cast bottlenecks the server with a large number of outgoing mes-
sages. CN(r) is the lowest because of the smaller number of ra-
dius ranges and the static content-driven network organization. For
CN(r), 93% of events have maximum node stress less than 100.

To summarize, the combination of BA-tree(r)+CN(r) offers the
best solution to diff-rad. The serverless approach CN(lr) is too

 1

 10

 100

 1000

 10000

 100000

 0 0.5 1 1.5 2

Av
g.

 n
et

wo
rk

 tr
af

fic
 p

er
 o

pe
ra

tio
n

(b
yt

es
)

Relative subscription arrival rate

CN(lr) (serverless)
CN(c) (serverless)

Unicast w/ B-tree(lr/c), or BW-tree(lid)
CN(lid) w/ BW-tree(lid)

Figure 10: Increasing relative subscription
arrival rate (same-rad).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 5 10 15 20 25 30 35 40 45 50

Av
g.

 n
et

wo
rk

 tr
af

fic
 p

er
 o

pe
ra

tio
n

(b
yt

es
)

Number of subscriptions (x1000)

CN(lr) (serverless)
Unicast w/ B-tree(lr) or B2-tree(r,lid)

CN(r,lid) w/ B2-tree(r,lid)

Figure 11: Average network traffic per op-
eration (all-rad).

Figure 12: Average network traffic per op-
eration, real workload (all-rad).

expensive in terms of network costs, while the other approaches
are inferior to BA-tree(r)+CN(r) by all performance metrics we
have experimented with.
7.2.2 Subscriptions with Same Radius (same-rad)
We next experiment with a large number of subscriptions having
the same radius; experimental parameters are shown in Table 1.
We interleave arrivals of new subscriptions with events, so sub-
scriptions can have different centers. During the bootstrap phase,
we insert subscriptions that have initial centers normally distributed
around the first event.
Processing Time We vary the total number of subscriptions from
5k to 50k, and measure processing time for 100000 events. The
results are shown in Figure 8. We see that BW-tree(lid) is very
efficient at generating label ranges, taking negligible time regard-
less of the number of subscriptions. BW-tree(lid) also does very
well at generating subscription lists for unicast, much better than
B-tree(lr) and B-tree(c), which suffer because they index dynamic
properties of subscriptions. Table 3 shows the average number of
outgoing messages generated by the server, for unicast and CN(lid).
We see that the semantic descriptions generated for CN(lid) (label
ranges) are extremely concise compared to lists of affected sub-
scriptions. This factor also contributes to the lower server process-
ing cost of BW-tree(lid)+CN(lid).
Network Traffic In Figure 9, we show the average network traf-
fic per event while increasing the total number of subscriptions for
same-rad. Again, the y-axis uses logarithmic scale. Dissemination
using CN(lr) is quite inefficient due to subscription movement and
load balancing. CN(c) is slightly better as it indexes only the cen-
ters. Unicast, despite its simplicity, turns out to be better than both
these alternatives. However, CN(lid) does orders of magnitude bet-
ter, taking less than 100 bytes of traffic per event on average. The
reason is that CN(lid) only needs to disseminate at most only two
label ranges per event. Again, results on the number of overlay
message hops reveal a similar trend, and are omitted.
Maximum Node Stress The maximum node stress over all events
(for 10000 subscriptions) are 18051, 9026, 9025, and 2 for CN(lr),
CN(r), unicast, and CN(lid), respectively. CN(lr) and CN(c) per-
form poorly due to reinsertion of all affected subscriptions. Unicast
requires the server to send out a large number of messages. CN(lid)
has the lowest node stress because it sends very concise semantic
descriptions of affected subscriptions.
Performance of Insertion When subscriptions come and go over
time, BW-tree(lid)+CN(lid) may need to perform subscription re-
labeling. Here, we test how relabeling costs degrade the perfor-
mance of this combination. We allow subscriptions to be contin-
uously inserted during the experiment, and vary the relative sub-
scription arrival rate (RSAR). RSAR of 2 means that two new sub-
scriptions are inserted for every event arrival. We see from Fig-

ure 10 that the average network traffic per operation (subscription
insertion or event dissemination) increases for CN(lid) with in-
creasing RSAR. For the other approaches, subscription insertion
is less expensive than event dissemination, which explains why
the average cost of an operation decreases slightly with increas-
ing RSAR for these approaches. Regardless, CN(lid) is orders of
magnitude better than them, even for an unusually high RSAR of
2. In practice, we would expect the event arrival rate to be higher
than the subscription insertion rate.

To summarize, the combination of BW-tree(lid)+CN(lid) offers
the best solution to same-rad. Although serverless approaches in-
cur no server-side processing cost, their high network costs make
them infeasible. Other approaches are outperformed by
BW-tree(lid)+CN(lid) in terms of both server- and network-side
performance metrics.
7.2.3 Subscriptions with All Radii (all-rad)
Finally, we experiment with a large number of subscriptions with
arbitrary radii and full personalization of event views. In this set
of experiments, we generate subscriptions on stock prices as fol-
lows. To generate s subscriptions, we first have a baseline uni-
form random distribution of 0.1s subscriptions over radii (defined
at cent boundaries) ranging from $0 to $100. To model the obser-
vation that subscriptions with radii at whole dollar amounts may
be more popular (because they are simpler and more natural for
users to specify), we overlay the remaining subscriptions as a trun-
cated normal distribution N(20, 20) constrained at dollar bound-
aries over the baseline set of subscriptions. We show performance
only in terms of network traffic; the server processing cost of using
B2-tree(r,lid) for content-driven dissemination was found to be at
least an order of magnitude lower than using B-tree(lr) for unicast.
Network Traffic We use the event distribution shown in Table 1.
We first vary the total number of subscriptions from 5k to 50k, and
plot the average network traffic per operation (new subscription or
event) in Figure 11. The y-axis uses a logarithmic scale. We see
that CN(r,lid) performs an order of magnitude better than unicast.
As expected, the serverless CN(lr) does not do well because of
subscription movements, performing even worse than unicast.
Results of Real Workload We use a real event workload in this
experiment. Traces of historical daily stock prices were obtained
from Yahoo! Finance [24], for 5 leading stocks from various indus-
tries. Each trace has between 600 and 11000 events. We replay the
stock price variations in these traces multiple times, to get a dataset
with 50k events per stock. We randomly interleave new subscrip-
tions with incoming events.

Figure 12 shows the performance in terms of average network
traffic per operation for this real workload. The y-axis uses a log-
arithmic scale. Again, the serverless CN(lr) does worse than the
other approaches. Unicast does better, but our techniques show an

order of magnitude reduction in traffic while adhering to the strict
semantics of personalized notifications.

8 Related Work
Dynamic Data Dissemination As discussed in Section 2.3, Shah
et al. [21, 20] address the problem of disseminating dynamic data
over a network of repositories. However, they target weaker sub-
scription semantics and build a customized dissemination structure.
We support stricter notification semantics efficiently, and leverage
standard dissemination substrates.
Bounded Approximate Caching Bounded approximate cache
maintenance [15] has been studied extensively in database litera-
ture. Olston et al. [17] use bounded approximate caching to main-
tain caches on a best-effort basis, which does not adhere to precise
subscription semantics. In [16], the focus is on how to set these
bounds adaptively based on query workloads. However, in our set-
ting, notification conditions are specified by the subscriber and can-
not be changed by the system. Also, related work in this area does
not consider scalable indexing or update dissemination for bounded
approximate caches.
Continuous Query Systems Continuous query systems [13, 7,
23] can be regarded as a form of publish/subscribe system where
continuous queries over streams correspond to our subscriptions.
These systems provide automatic notification whenever a continu-
ous query result changes. OpenCQ [13] supports notification con-
ditions that refer to current and previous database states, and Nia-
garaCQ [7] supports timer-based notification conditions. In other
words, NiagaraCQ allows control over the staleness of subscrip-
tions, but not over their accuracy, in terms of user-defined metrics.
All these systems use simpler processing techniques for notification
conditions and do not optimize notification dissemination. On the
other hand, we propose efficient processing techniques and address
dissemination issues as well.
Other Related Work A number of publish/subscribe systems
built by the database community have made the subscription lan-
guage more powerful [14, 8]. Many of them have added language
support for notification conditions. For instance, Xyleme [14] sup-
ports monitoring queries, which are analogous to notification con-
ditions. SMILE [12] supports SQL queries over the event history.
However, none of them address the efficiency issues in processing
notification conditions. Our techniques can be employed by such
systems to support notification conditions in a scalable manner.

9 Conclusion
We address the problem of adding scalable support for subscrip-
tions with personalized value-based notification conditions in a large-
scale wide-area publish/subscribe system. Our first step was to
efficiently process and disseminate events for subscriptions with
varying radii, where subscriptions with the same radius share the
same view of the data. We next showed how to efficiently support
subscriptions with the same radius but different views of the data.
Finally, we showed how to put the two pieces together to build
a publish/subscribe infrastructure capable of handling the precise
notification semantics in a scalable manner. We also discussed a
number of extensions such as support for may-notify and must-
notify conditions, and relative notification conditions.

We maintain a clean interface between the server and the net-
work, and leverage established dissemination components. This
design allows us to quickly build and deploy a robust wide-area
publish/subscribe system. Our techniques were shown to be much
more efficient than less sophisticated solutions, with an order of
magnitude reduction in network traffic and server processing cost.

References
[1] L. Arge and J. S. Vitter. Optimal dynamic interval manage-

ment in external memory. In IEEE Symp. on Foundations of
Computer Science, 1996.

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service. ACM
Trans. on Computer Systems, 2001.

[3] A. Carzaniga and A. L. Wolf. Content-based networking: A
new communication infrastructure. In NSF Workshop on an
Infrastructure for Mobile and Wireless Systems, 2001.

[4] B. Chandramouli, J. Xie, and J. Yang. On the
database/network interface in large-scale publish/subscribe
systems. In SIGMOD, 2006.

[5] H. Chang, R. Govindan, S. Jamin, S. Shenker, and W. Will-
inger. Towards Capturing Representative AS-Level Internet
Topologies. In SIGMETRICS, 2002.

[6] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca,
S. Shenker, and J. Hellerstein. A case study in building lay-
ered DHT applications. In SIGCOMM, 2005.

[7] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A
scalable continuous query system for internet databases. In
SIGMOD, 2000.

[8] Y. Diao, S. Rizvi, and M. J. Franklin. Towards an internet-
scale XML dissemination service. In VLDB, 2004.

[9] P. F. Dietz. Maintaining order in a linked list. In ACM Symp.
on Theory of Computing, 1982.

[10] P. F. Dietz and D. Sleator. Two algorithms for maintaining
order in a list. In ACM Symp. on Theory of Computing, 1987.

[11] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi. Megh-
doot: Content-based publish/subscribe over P2P networks. In
Middleware, 2004.

[12] Y. Jin and R. Strom. Relational subscription middleware for
internet-scale publish-subscribe. In DEBS, 2003.

[13] L. Liu, C. Pu, and W. Tang. Continual queries for internet
scale event-driven information delivery. IEEE Transactions
on Knowledge and Data Engineering, 1999.

[14] B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda. Monitor-
ing XML data on the Web. SIGMOD Record, 2001.

[15] C. Olston. Approximate Replication. PhD thesis, Stanford
University, 2003.

[16] C. Olston, B. T. Loo, and J. Widom. Adaptive precision set-
ting for cached approximate values. In SIGMOD, 2001.

[17] C. Olston and J. Widom. Best-effort cache synchronization
with source cooperation. In SIGMOD, 2002.

[18] O. Papaemmanouil and U. Cetintemel. SemCast: Seman-
tic multicast for content-based data dissemination. In ICDE,
2005.

[19] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network. In SIG-
COMM, 2001.

[20] S. Shah, S. Dharmarajan, and K. Ramamritham. An efficient
and resilient approach to filtering and disseminating stream-
ing data. In VLDB, 2003.

[21] S. Shah, K. Ramamritham, and P. J. Shenoy. Maintaining
coherency of dynamic data in cooperating repositories. In
VLDB, 2002.

[22] A. Silberstein, H. He, K. Yi, and J. Yang. BOXes: Efficient
maintenance of order-based labeling for dynamic XML data.
In ICDE, 2005.

[23] D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous
queries over append-only databases. In SIGMOD, 1992.

[24] Yahoo! Finance. http://finance.yahoo.com.

