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Abstract

Starting with a similarity function between objects, it is possible to define a distance metric on pairs of

objects, and more generally on probability distributions over them. These distance metrics have a deep basis

in functional analysis, measure theory and geometric measure theory, and have a rich structure that includes

an isometric embedding into a (possibly infinite dimensional) Hilbert space. They have recently been applied

to numerous problems in machine learning and shape analysis.

In this paper, we provide the first algorithmic analysis of these distance metrics. Our main contributions

are as follows: (i) We present fast approximation algorithms for computing the kernel distance between two

point sets P and Q that runs in near-linear time in the size of P∪Q (note that an explicit calculation would

take quadratic time). (ii) We present polynomial-time algorithms for approximately minimizing the kernel

distance under rigid transformation; they run in time O(n+poly(1/ǫ, log n)). (iii) We provide several general

techniques for reducing complex objects to convenient sparse representations (specifically to point sets or

sets of points sets) which approximately preserve the kernel distance. In particular, this allows us to reduce

problems of computing the kernel distance between various types of objects such as curves, surfaces, and

distributions to computing the kernel distance between point sets. These take advantage of the reproducing

kernel Hilbert space and a new relation linking binary range spaces to continuous range spaces with bounded

fat-shattering dimension.
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1 Introduction

Let K : Rd ×Rd → R be a kernel function, such as a Gaussian kernel; K(p,q) describes how similar two points

p,q ∈ Rd are. For point sets P,Q we can define a similarity function κ(P,Q) =
∑

p∈P
∑

q∈Q K(p,q). Then the

kernel distance is defined as

DK(P,Q) =
p

κ(P,P) + κ(Q,Q)− 2κ(P,Q). (1.1)

By altering the kernel K , and the weighting of elements in κ, the kernel distance can capture distance between

distributions, curves, surfaces, and even more general objects.

Motivation. The earthmover distance (EMD) takes a metric space and two probability distributions over the

space, and computes the amount of work needed to "transport" mass from one distribution to another. It has

become a metric of choice in computer vision, where images are represented as intensity distributions over a

Euclidean grid of pixels. It has also been applied to shape comparison [8], where shapes are represented by

point clouds (discrete distributions) in space.

While the EMD is a popular way of comparing distributions over a metric space, it is also an expensive one.

Computing the EMD requires solving an optimal transportation problem via the Hungarian algorithm, and

while approximations exist for restricted cases like the Euclidean plane, they are still expensive, requiring either

quadratic time in the size of the input or achieving at best a constant factor approximation when taking linear

time [38, 2]. Further, it is hard to index structures using the EMD for performing near-neighbor, clustering

and other data analysis operations. Indeed, there are lower bounds on our ability to embed the EMD into

well-behaved normed spaces [4].

The kernel distance has thus become an effective alternative to comparing distributions on a metric space.

In machine learning, the kernel distance has been used to build metrics on distributions [42, 23, 41, 39, 32]

and to learn hidden Markov models [40]. In the realm of shape analysis [45, 18, 19, 17], the kernel distance

(referred to there as the current distance) has been used to compare shapes, whether they be point sets, curves,

or surfaces.

All of these methods utilize key structural features of the kernel distance. When constructed using a positive

definite1 similarity function K , the kernel distance can be interpreted through a lifting map φ : Rd → H to a

reproducing kernel Hilbert space (RKHS), H. This lifting map φ is isometric; the kernel distance is precisely

the distance induced by the Hilbert space (DK({p}, {q}) = ‖φ(p)−φ(p)‖H). Furthermore, a point set P has

an isometric lifted representation Φ(P) =
∑

p∈Pφ(p) as a single vector in H so DK(P,Q) = ‖Φ(P)− Φ(Q)‖H.

Moreover, by choosing an appropriately scaled basis, this becomes a simple ℓ2 distance, so all algorithmic tools

developed for comparing points and point sets under ℓ2 can now be applied to distributions and shapes.

Dealing with uncertain data provides another reason to study the kernel distance. Rather than thinking

of K(·, ·) as a similarity function, we can think of it as a way of capturing spatial uncertainty; K(p,q) is the

likelihood that the object claimed to be at p is actually at q. For example, setting K(p,q) = exp(−‖p −
q‖2/σ)/(

p
2πσ) gives us a Gaussian blur function. In such settings, the kernel distance D2

K(P,Q) computes the

symmetric difference |P△Q| between shapes with uncertainty described by K .

Our work. We present the first algorithmic analysis of the kernel distance. Our main contributions are as

follows:

(i) We present fast approximation algorithms for computing the kernel distance between two point sets P

and Q that runs in near-linear time in the size of P∪Q (note that an explicit calculation would take quadratic

time). (ii) We present polynomial-time algorithms for approximately minimizing the kernel distance under

rigid transformation; they run in time O(n+ poly(1/ǫ, log n)). (iii) We provide several general techniques for

reducing complex objects to convenient sparse representations (specifically to point sets or sets of points sets)

which approximately preserve the kernel distance. In particular, this allows us to reduce problems of computing

1A positive definite function generalizes the idea of a positive definite matrix; see Section 2.
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the kernel distance between various types of objects such as curves, surfaces, and distributions to computing

the kernel distance between point sets.

We build these results from two core technical tools. The first is a lifting map that maps objects into a finite-

dimensional Euclidean space while approximately preserving the kernel distance. We believe that the analysis

of lifting maps is of independent interest; indeed, these methods are popular in machine learning [41, 39, 40]

but (in the realm of kernels) have received less attention in algorithms. Our second technical tool is an theorem

relating ǫ-samples of range spaces defined with kernels to standard ǫ-samples of range spaces on {0,1}-valued

functions. This gives a simpler algorithm than prior methods in learning theory that make use of the γ-fat

shattering dimension, and yields smaller ǫ-samples.

2 Preliminaries

Definitions. For the most general case of the kernel distance (that we will consider in this paper) we associate

a unit vector U(p) and a weighting µ(p) with every p ∈ P. Similarly we associate a unit vector V (p) and

weighting ν(q) with every q ∈ Q. Then we write

κ(P,Q) =

∫

p∈P

∫

q∈Q
K(p,q)



U(p), V (q)
�

dµ(p)dν(q), (2.1)

where 〈·, ·〉 is the Euclidean inner product. This becomes a distance DK , defined through (1.1).

When P is a curve in Rd we let U(p) be the tangent vector at p and µ(p) = 1. When P is a surface in R3 we

let U(p) be the normal vector at p and µ(p) = 1. This can be generalized to higher order surfaces through the

machinery of k-forms and k-vectors [45, 35].

When P is an arbitrary probability measure2 in Rd , then all U(p) are identical unit vectors and µ(p) is the

probability of p. For discrete probability measures, described by a point set, we replace the integral with a sum

and µ(p) can be used as a weight κ(P,Q) =
∑

p∈P
∑

q∈Q K(p,q)µ(p)ν(q).

From distances to metrics. When K is a symmetric similarity function (i.e. K(p, p) = maxq∈Rd K(p,q),

K(p,q) = K(q, p), and K(p,q) decreases as p and q become “less similar”) then DK (defined through (2.1)

and (1.1)) is a distance function, but may not be a metric. However, when K is positive definite, then this is

sufficient for DK to not only be a metric3, but also for D2
K to be of negative type [16].

We say that a symmetric function K : Rd ×Rd → R is a symmetric positive definite kernel if for any nonzero

L2 function f it satisfies
∫

p∈P

∫

q∈Q f (q)K(p,q) f (p) dpdq > 0. The proof of DK being a metric follows by con-

sidering the reproducing kernel Hilbert space H associated with such a K [5]. Moreover, DK can be expressed

very compactly in this space. The lifting map φ : Rd → H associated with K has the “reproducing property”

K(p,q) = 〈φ(p),φ(q)〉H . So by linearity of the inner product, Φ(P) =
∫

p∈Pφ(p) dµ(p) can be used to re-

trieve DK(P,Q) = ‖Φ(P) − Φ(Q)‖H using the induced norm ‖ · ‖H of H. Observe that this defines a norm

‖Φ(P)‖H =
p

κ(P,P) for a shape.

Examples. If K is the “trivial” kernel, where K(p, p) = 1 and K(p,q) = 0 for p 6= q, then the distance between

any two sets (without multiplicity) P,Q is D2
K(P,Q) = |P∆Q|, where P∆Q = P ∪ Q \ (P ∩ Q) is the symmetric

difference. In general for arbitrary probability measures, DK(P,Q) = ‖µ−ν‖2. If K(p,q) = 〈p,q〉, the Euclidean

dot product, then the resulting lifting map φ is the identity function, and the distance between two measures

is the Euclidean distance between their means, which is a pseudometric but not a metric.

2We avoid the use of the term ’probability distribution’ as this conflicts with the notion of a (Schwarz) distribution that itself plays

an important role in the underlying theory.
3Technically this is not completely correct; there are a few special cases, as we will see, where it is a pseudometric [41].
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Gaussian properties. To simplify much of the presentation of this paper we focus on the case where the

kernel K is the Gaussian kernel; that is K(p,q) = e−||p−q||2/h. Our techniques carry over to more general

kernels, although the specific bounds will depend on the kernel being used. We now encapsulate some useful

properties of Gaussian kernels in the following lemmata. When approximating K(p,q), the first allows us to

ignore pairs of points further that
p

h ln(1/γ) apart, the second allows us to approximate the kernel on a grid.

Lemma 2.1 (Bounded Tails). If ||p− q||>
p

h ln(1/γ) then K(p,q) < γ.

Lemma 2.2 (Lipschitz). For δ ∈ Rd where ‖δ‖< ǫ, for points p,q ∈ Rd we have |K(p,q)−K(p,q+δ)| ≤ ǫ/
p

h.

Proof. The slope for ψ(x) = e−x2/h is the function ψ′(x) = −(2/h)xe−x2/h. ψ′(x) is maximized when x =
p

h/2, which yields ψ′(
p

h/2) = −
p

2/he < 1/
p

h. Thus |ψ(x)−ψ(x + ǫ)| < ǫ/
p

h. And since translating by

δ changes ‖p− q‖ by at most ǫ, the lemma holds.

2.1 Problem Transformations

In prior research employing the kernel distance, ad hoc discretizations are used to convert the input objects

(whether they be distributions, point clouds, curves or surfaces) to weighted discrete point sets. This process

introduces error in the distance computations that usually go unaccounted for. In this subsection, we provide

algorithms and analysis for rigorously discretizing input objects with guarantees on the resulting error. These

algorithms, as a side benefit, provide a formal error-preserving reduction from kernel distance computation on

curves and surfaces to the corresponding computations on discrete point sets.

After this section, we will assume that all data sets considered P,Q are discrete point sets of size n with

weight functions µ : P → R and ν : Q → R. The weights need not sum to 1 (i.e. need not be probability

measures), nor be the same for P and Q; we will set W = max(
∑

p∈Pµ(p),
∑

q∈Q ν(q)) to denote the total

measure. This implies (since K(p, p) = 1) that κ(P,P) ≤ W 2. All our algorithms will provide approximations

of κ(P,Q) within additive error ǫW 2. Since without loss of generality we can always normalize so that W = 1,

our algorithms all provide an additive error of ǫ. We also set ∆ = (1/h)maxu,v∈P∪Q ‖u − v‖ to capture the

normalized diameter of the data.

Reducing orientation to weights. The kernel distance between two oriented curves or surfaces can be

reduced to a set of distance computations on appropriately weighted point sets. We illustrate this in the case of

surfaces in R3. The same construction will also work for curves in Rd .

For each point p ∈ P we can decompose U(p)¬ (U1(p), U2(p), U3(p)) into three fixed orthogonal components

such as the coordinate axes {e1, e2, e3}. Now

κ(P,Q) =

∫

p∈P

∫

q∈Q
K(p,q)



U(p), V (q)
�

dµ(p)dν(q) =

∫

p∈P

∫

q∈Q
K(p,q)

3
∑

i=1

(Ui(p)Vi(q)) dµ(p)dν(q)

=

3
∑

i=1

∫

p∈P

∫

q∈Q
K(p,q)(Ui(p)Vi(q)) dµ(p)dν(q) =

3
∑

i=1

κ(Pi,Qi),

where each p ∈ Pi has measure µi(p) = µ(p)‖Ui(p)‖. When the problem specifies U as a unit vector in Rd , this

approach reduces to d independent problems without unit vectors.

Reducing continuous to discrete. We now present two simple techniques (gridding and sampling) to

reduce a continuous P to a discrete point set, incurring at most ǫW 2 error.
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We construct a grid Gǫ (of size O((∆/ǫ)d)) on a smooth shape P, so no point4 p ∈ P is further than ǫ
p

h

from a point g ∈ Gǫ. Let Pg be all points in P closer to g than any other point in Gǫ. Each point g is assigned a

weight µ(g) =
∫

p∈Pg
1 dµ(p). The correctness of this technique follows by Lemma 2.2.

Alternatively, we can sample n = O((1/ǫ2)(d + log(1/δ)) points at random from P. If we have not yet

reduced the orientation information to weights, we can generate d points each with weight Ui(p). This works

with probability at least 1− δ by invoking a coreset technique summarized in Theorem 5.2.

For the remainder of the paper, we assume our input dataset P is a weighted point set in Rd of size n.

3 Computing the Kernel Distance I: WSPDs

The well-separated pair decomposition (WSPD) [9, 21] is a standard data structure to approximately compute

pairwise sums of distances in near-linear time. A consequence of Lemma 2.2 is that we can upper bound the

error of estimating K(p,q) by a nearby pair K(p̃, q̃). Putting these observations together yields (with some

work) an approximation for the kernel distance. Since D2
K(P,Q) = κ(P,P) + κ(Q,Q)− 2κ(P,Q), the problem

reduces to computing κ(P,Q) efficiently and with an error of at most (ǫ/4)W 2.

Two sets A and B are said to be α-separated [9] if max{diam(A),diam(B)} ≤ αmina∈A,b∈B ||a − b||. Let

A⊗B = {{x , y} | x ∈ A, y ∈ B} denote the set of all unordered pairs of elements formed by A and B. An α-WSPD

of a point set P is a set of pairs W=
�

{A1, B1}, . . . , {As, Bs}
	

such that

(i) Ai, Bi ⊂ P for all i,

(ii) Ai ∩ Bi = ; for all i,

(iii) disjointly
⋃s

i=1 Ai ⊗ Bi = P ⊗ P, and

(iv) Ai and Bi are α-separated for all i.

For a point set P ⊂ Rd of size n, we can construct an α-WSPD of size O(n/αd) in time O(n log n+n/αd) [21, 14].

We can use the WSPD construction to compute D2
K(P,Q) as follows. We first create an α-WSPD of P ∪ Q

in O(n log n + n/αd) time. Then for each pair {Ai, Bi} we also store four sets Ai,P = P ∩ Ai, Ai,Q = Q ∩ Ai,

Bi,P = P ∩ Bi , and Bi,Q = Q ∩ Bi . Let ai ∈ Ai and bi ∈ Bi be arbitrary elements, and let Di = ‖ai − bi‖. By

construction, Di approximates the distance between any pair of elements in Ai × Bi with error at most 2αDi.

In each pair {Ai, Bi}, we can compute the weight of the edges from P to Q:

Wi =

�

∑

p∈Ai,P

µ(p)

��

∑

q∈Bi,Q

ν(q)

�

+

�

∑

q∈Ai,Q

ν(q)

��

∑

p∈Bi,P

µ(p)

�

.

We estimate the contribution of the edges in pair (Ai, Bi) to κ(P,Q) as
∑

(a,b)∈Ai,P×Bi,Q

µ(a)ν(b)e−D2
i
/h+
∑

(a,b)∈Ai,Q×Bi,P

µ(b)ν(a)e−D2
i
/h =Wie

−D2
i
/h.

Since Di has error at most 2αDi for each pair of points, Lemma 2.2 bounds the error as at most Wi(2αDi/
p

h).

In order to bound the total error to (ǫ/4)W 2, we bound the error for each pair by (ǫ/4)Wi since
∑

i Wi =
∑

p∈P

∑

q∈Q µ(p)ν(q) = W 2. By Lemma 2.1, if Di >
p

h ln(1/γ), then e−D2
i
/h < γ. So for any pair with

Di > 2
p

h ln(4/ǫ), (for α < 1/2) we can ignore, because they cannot have an effect on κ(P,Q) of more than

(1/4)ǫWi, and thus cannot have error more than (1/4)ǫWi.

Since we can ignore pairs with Di > 2
p

h ln(4/ǫ), each pair will have error at most Wi(2α(2
p

h ln(4/ǫ)/
p

h)

= Wi(4α
p

ln(4/ǫ)). We can set this equal to (ǫ/4)Wi and solve for α < (1/4)ǫ/
p

ln(4/ǫ). This ensures that

each pair with Di ≤ 2
p

h ln(4/ǫ) will have error less than (ǫ/4)Wi, as desired.

4For distributions with decaying but infinite tails, we can truncate to ignore tails such that the integral of the ignored area is at most

(1− ǫ/2)W 2 and proceed with this approach using ǫ/2 instead of ǫ.

4



Theorem 3.1. By building and using an ((ǫ/4)/
p

ln(4/ǫ))-WSPD, we can compute a value U in time O(n log n+

(n/ǫd) logd/2(1/ǫ)), such that
�

�U − D2
K(P,Q)
�

� ≤ ǫW 2.

4 Computing the Kernel Distance II: Approximate Feature Maps

In this section, we describe (approximate) feature representations Φ(P) =
∑

p∈Pφ(p)µ(p) for shapes and

distributions that reduce the kernel distance computation to an ℓ2 distance calculation ‖Φ(P) − Φ(Q)‖H in

an RKHS, H. This mapping immediately yields algorithms for a host of analysis problems on shapes and

distributions, by simply applying Euclidean space algorithms to the resulting feature vectors.

The feature map φ allows us to translate the kernel distance (and norm) computations into operations in a

RKHS that take time O(nρ) if H has dimension ρ, rather than the brute force time O(n2). Unfortunately, H is in

general infinite dimensional, including the case of the Gaussian kernel. Thus, we use dimensionality reduction

to find an approximate mapping φ̃ : Rd → Rρ (where Φ̃(P) =
∑

p∈P φ̃(p)) that approximates κ(P,Q):

�

�

�

�

∑

p∈P

∑

q∈Q
K(p,q)µ(p)ν(q)−

∑

p∈P

∑

q∈Q

¬

φ̃(p), φ̃(q)
¶

�

�

�

�

≤ ǫW 2.

The analysis in the existing literature on approximating feature space does not directly bound the dimension

ρ required for a specific error bound5. We derive bounds from two known techniques: random projections [36]

(for shift-invariant kernels, includes Gaussians) and the Fast Gauss Transform [48, 20] (for Gaussian kernel).

We produce three different features maps, with different bounds on the number of dimensions ρ depending on

log n (n is the number of points), ǫ (the error), δ (the probability of failure), ∆ (the normalized diameter of

the points), and/or d (the ambient dimension of the data before the map).

4.1 Random Projections Feature Space

Rahimi and Recht [36] proposed a feature mapping that essentially applies an implicit Johnson-Lindenstrauss

projection from H → Rρ. The approach works for any shift invariant kernel (i.e one that can be written as

K(p,q) = k(p − q)). For the Gaussian kernel, k(z) = e−‖z‖
2/2, where z ∈ Rd . Let the Fourier transform of

k : Rd → R+ is g(ω) = (2π)−d/2e−‖ω‖
2/2. A basic result in harmonic analysis [37] is that k is a kernel if and

only if g is a measure (and after scaling, is a probability distribution). Let ω be drawn randomly from the

distribution defined by g:

k(x − y) =

∫

ω∈Rd

g(ω)eι〈ω,x−y〉 dω= Eω[



ψω(x),ψω(y)
�

],

where ψω(z) = (cos(〈ω, z〉), sin(〈ω, z〉)) are the real and imaginary components of eι〈ω,z〉. This implies that



ψω(x),ψω(y)
�

is an unbiased estimator of k(x − y).

We now consider a ρ-dimensional feature vector φΥ : P → Rρ where the (2i − 1)th and (2i)th coordi-

nates are described by µ(p)ψωi
(p)/(ρ/2) = (2µ(p) cos(




ωi , z
�

)/ρ, 2µ(p) sin(



ωi, z
�

)/ρ) for some ωi ∈ Υ =
{ω1, . . . ,ωρ/2} drawn randomly from g. Next we prove a bound on ρ using this construction.

Lemma 4.1. For φΥ : P∪Q→ Rρ with ρ = O((1/ǫ2) log(n/δ)), with probability ≥ 1−δ
�

�

�

�

∑

p∈P

∑

q∈Q
K(p,q)µ(p)ν(q)−

∑

p∈P

∑

q∈Q




φΥ(p),φΥ(q)
�

�

�

�

�

≤ ǫW 2.

5Explicit matrix versions of the Johnson-Lindenstraus lemma [24] cannot be directly applied because the source space is itself

infinite dimensional, rather than Rd .
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Proof. We make use of the following Chernoff-Hoeffding bound. Given a set {X1, . . . , Xn} of independent ran-

dom variables, such that |X i − E[X i]| ≤ Λ, then for M =
∑n

i=1 X i we can bound Pr[|M − E[M]| ≥ α] ≤
2e−2α2/(nΛ2). We can now bound the error of using φΥ for any pair (p,q) ∈ P×Q as follows:

Pr
��

�




φΥ(p),φΥ(q)
�

−µ(p)ν(q)k(p− q)
�

�≥ ǫµ(p)ν(q)
�

= Pr
��

�




φΥ(p),φΥ(q)
�

− EΥ
�


φΥ(p),φΥ(q)
��
�

� ≥ ǫµ(p)ν(q)
�

≤ Pr





�

�

�

�

�

∑

i

2

ρ
µ(p)ν(q)
¬

ψωi
(p),ψωi

(q)
¶

− EΥ





∑

i

2

ρ
µ(p)ν(q)
¬

ψωi
(p),ψωi

(q)
¶





�

�

�

�

�

≥ ǫµ(p)ν(q)




≤ 2e−2(ǫµ(p)ν(q))2/(ρΛ2/2) ≤ 2e−ρǫ
2/64,

where the last inequality follows by Λ ≤ 2 maxp,q(2/ρ)µ(p)ν(q)



ψω(p),ψω(q)
�

≤ 8(2/ρ)µ(p)ν(q) since for

each pair of coordinates ‖ψω(p)‖ ≤ 2 for all p ∈ P (or q ∈ Q). By the union bound, the probability that this

holds for all pairs of points (p,q) ∈ P×Q is given by

Pr
�

∀(p,q)∈P×Q
�

�




φΥ(p),φΥ(q)
�

−µ(p)ν(q)k(p− q)
�

�≥ ǫµ(p)ν(q)
�

≤ (n2)2e−ρǫ
2/64.

Setting δ ≥ n22e−ρǫ
2/64 and solving for ρ yields that for ρ = O((1/ǫ2) log(n/δ)), with probability at least

1− δ, for all (p,q) ∈ P×Q we have |µ(p)ν(q)k(p− q)−



φΥ(x),φΥ(y)
�

| ≤ ǫµ(p)ν(q). It follows that with

probability at least 1− δ
�

�

�

�

∑

p∈P

∑

q∈Q
µ(p)ν(q)K(p,q)−

∑

p∈P

∑

q∈Q




φΥ(p),φΥ(q)
�

�

�

�

�

≤ ǫ
∑

p∈P

∑

q∈Q
µ(p)ν(q)≤ ǫW 2.

Note that the analysis of Rahimi and Recht [36] is done for unweighted point sets (i.e. µ(p) = 1) and actually

goes further, in that it yields a guarantee for any pair of points taken from a manifold M having diameter ∆.

They do this by building an ǫ-net over the domain and applying the above tail bounds to the ǫ-net. We can

adapt this trick to replace the (log n) term in ρ by a (d log(∆/ǫ)) term, recalling∆= (1/h)maxp,p′∈P∪Q ‖p−p′‖.
This leads to the same guarantees as above with a dimension of ρ = O((d/ǫ2) log(∆/ǫδ)).

4.2 Fast Gauss Transform Feature Space

The above approach works by constructing features in the frequency domain. In what follows, we present an

alternative approach that operates in the spatial domain directly. We base our analysis on the Improved Fast

Gauss Transform (IFGT) [48], an improvement on the Fast Gauss Transform. We start with a brief review of

the IFGT (see the original work [48] for full details).

IFGT feature space construction. The goal of the IFGT is to approximate κ(P,Q). First we rewrite κ(P,Q)

as the summation
∑

q∈Q G(q) where G(q) = ν(q)
∑

p∈P e−‖p−q‖2/h2

µ(p). Next, we approximate G(q) in two

steps. First we rewrite

G(q) = ν(q)
∑

p∈P

µ(p)e
− ‖q−x∗‖2

h2 e
− ‖p−x∗‖2

h2 e
2‖q−x∗‖·‖p−x∗‖

h2 ,

where the quantity x∗ is a fixed vector that is usually the centroid of P. The first two exponential terms can

be computed for each p and q once. Second, we approximate the remaining exponential term by its Taylor

expansion ev =
∑

i≥0
vi

i!
. After a series of algebraic manipulations, the following expression emerges:

G(q) = ν(q)e
− ‖q−x∗‖2

h2

∑

α≥0

Cα

�q− x∗
h

�α

6



where Cα is given by

Cα =
2|α|

α!

∑

p∈P

µ(p)e
− ‖p−x∗‖2

h2

� p− x∗
h

�α

.

The parameter α is a multiindex, and is actually a vector α = (α1,α2, . . . ,αd) of dimension d . The expression

zα, for z ∈ Rd , denotes the monomial z
α1

1 z
α2

2 . . . z
αd

d
, the quantity |α| is the total degree

∑

αi , and the quantity

α! = Πi(αi!). The multiindices are sorted in graded lexicographic order, which means that α comes before α′ if

|α| < |α′|, and two multiindices of the same degree are ordered lexicographically.

The above expression for G(q) is an exact infinite sum, and is approximated by truncating the summation at

multiindices of total degree τ− 1. Note that there are at most ρ =
�τ+d−1

d

�

= O(τd) such multiindices. We

now construct a mapping φ̃ : Rd → Rρ. Let φ̃(p)α =

q

2|α|

α!
µ(p)e

− ‖p−x∗‖2
h2

�

p−x∗
h

�α
. Then

G(q) =
∑

α

φ̃(q)α

∑

p∈P

φ̃(p)α

and S =
∑

q∈Q G(q) is then given by

S =
∑

p∈P

∑

q∈Q

∑

α

φ̃(q)αφ̃(p)α =
∑

p∈P

∑

q∈Q
〈φ̃(q), φ̃(p)〉.

IFGT error analysis. The error incurred by truncating the sum at degree τ− 1 is given by

Err(τ) =
�

�

∑

p∈P

∑

q∈Q
K(p,q)µ(p)ν(q)−

∑

p∈P

∑

q∈Q

¬

φ̃(p), φ̃(q)
¶�

� ≤
∑

p∈P

∑

q∈Q
µ(p)ν(q)

2τ

τ!
∆2τ =W 2

2τ

τ!
∆2τ.

Set ǫW 2 = Err(τ). Applying Stirling’s approximation, we solve for τ in log(1/ǫ)≥ τ log(τ/4∆2). This yields

the bounds τ = O(∆2) and τ = O(log(1/ǫ)). Thus our error bound holds for τ = O(∆2 + log(1/ǫ)). Using

ρ = O(τd), we obtain the following result.

Lemma 4.2. There exists a mapping φ̃ : P∪Q→ Rρ with ρ = O(∆2d + logd(1/ǫ)) so

�

�

�

�

∑

p∈P

∑

q∈Q
K(p,q)µ(p)ν(q)−

∑

p∈P

∑

q∈Q

¬

φ̃(p), φ̃(q)
¶

�

�

�

�

≤ ǫW 2.

4.3 Summary of Feature Maps

We have developed three different bounds on the dimension required for feature maps that approximate κ(P,Q)

to within ǫW 2.

IFGT: ρ = O(∆2d + logd(1/ǫ)). Lemma 4.2. Advantages: deterministic, independent of n, logarithmic depen-

dence on 1/ǫ. Disadvantages: polynomial dependence on ∆, exponential dependence on d .

Random-points: ρ = O((1/ǫ2) log(n/δ)). Lemma 4.1. Advantages: independent of ∆ and d . Disadvantages:

randomized, dependent on n, polynomial dependence on 1/ǫ.

Random-domain: ρ = O((d/ǫ2) log(∆/ǫδ)). (above) Advantages: independent of n, logarithmic dependence

on ∆, polynomial dependence on d . Disadvantages: randomized, dependence on ∆ and d , polynomial

dependence on 1/ǫ.

For simplicity, we (mainly) use the Random-points based result from Lemma 4.1 in what follows. If appro-

priate in a particular application, the other bounds may be employed.
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Feature-based computation of DK . As before, we can decompose D2
K(P,Q) = κ(P,P)+κ(Q,Q)−2κ(P,Q)

and use Lemma 4.1 to approximate each of κ(P,P),κ(Q,Q), and κ(P,Q) with error ǫW 2/4.

Theorem 4.1. We can compute a value U in time O((n/ǫ2) log(n/δ)) such that |U − D2
K(P,Q)| ≤ ǫW 2, with

probability at least 1− δ.

A nearest-neighbor algorithm. The feature map does more than yield efficient algorithms for the kernel

distance. As a representation for shapes and distributions, it allows us to solve other data analysis problems on

shape spaces using off-the-shelf methods that apply to points in Euclidean space. As a simple example of this,

we can combine the Random-points feature map with known results on approximate nearest-neighbor search

in Euclidean space [3] to obtain the following result.

Lemma 4.3. Given a collection of m point sets C = {P1,P2, . . . ,Pm}, and a query surface Q, we can compute

the c-approximate nearest neighbor to Q in C under the kernel distance in time O(ρm1/c2+o(1)) query time using

O(ρm1+1/c2+o(1)) space and preprocessing.

5 Coresets for the Kernel Distance

The kernel norm (and distance) can be approximated in near-linear time; however, this may be excessive for

large data sets. Rather, we extract a small subset (a coreset) S from the input P such that the kernel distance

between S and P is small. By triangle inequality, S can be used as a proxy for P. Specifically, we extend the

notion of ǫ-samples for range spaces to handle non-binary range spaces defined by kernels.

Background on range spaces. Let ξ(P) denote the total weight of a set of points P, or cardinality if no

weights are assigned. Let P ⊂ Rd be a set of points and let A be a family of subsets of P. For examples of

A, let B denote the set of all subsets defined by containment in a ball and let E denote the set of all subsets

defined by containment in ellipses. We say (P,A) is a range space. Let ξ̄P(A) = ξ(A)/ξ(P). An ǫ-sample (or

ǫ-approximation) of (P,A) is a subset Q ⊂ P such that

max
A∈A

�

�ξ̄Q(Q ∩A)− ξ̄P(P ∩ A)
�

�≤ ǫ.

To create a coreset for the kernel norm, we want to generalize these notions of ǫ-samples to non-binary

((0,1)-valued instead of {0,1}-valued) functions, specifically to kernels. For two point sets P,Q, define κ̄(P,Q) =

(1/ξ(P))(1/ξ(Q))
∑

p∈P

∑

q∈Q K(p,q), and when we have a singleton set Q = {q} and a subset P ′ ⊆ P then we

write κ̄P(P
′,q) = (1/ξ(P))

∑

p∈P ′ K(p,q). Let K+ = maxp,q∈P K(p,q) be the maximum value a kernel can take

on a dataset P, which can be normalized to K+ = 1. We say a subset of S ⊂ P is an ǫ-sample of (P, K) if

max
q

�

�κ̄P(P,q)− κ̄S(S,q)
�

�≤ ǫK+.

The standard notion of VC-dimenion [47] (and related notion of shattering dimension) is fundamentally

tied to the binary ({0,1}-valued) nature of ranges, and as such, it does not directly apply to ǫ-samples of

(P, K). Other researchers have defined different combinatorial dimensions that can be applied to kernels [15,

25, 1, 46]. The best result is based on γ-fat shattering dimension Fγ [25], defined for a family of (0,1)-valued

functions F and a ground set P. A set Y ⊂ P is γ-fat shattered by F if there exists a function α : Y → [0,1]

such that for all subsets Z ⊆ Y there exists some FZ ∈ F such that for every x ∈ Z FZ (x) ≥ α(x) + γ and

for every x ∈ Y \ Z FZ (x) ≤ α(x) − γ. Then Fγ = ξ(Y ) for the largest cardinality set Y ⊂ P that can be

γ-fat shattered. Bartlett et al. [7] show that a random sample of O((1/ǫ2)(Fγ log2(Fγ/ǫ) + log(1/δ)) elements

creates an ǫ-sample (with probability at least 1 − δ) with respect to (P,F) for γ = Ω(ǫ). Note that the γ-

fat shattering dimension of Gaussian and other symmetric kernels in Rd is d + 1 (by setting α(x) = .5 for
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all x), the same as balls B in Rd , so this gives a random-sample construction for ǫ-samples of (P, K) of size

O((d/ǫ2)(log2(1/ǫ)+ log(1/δ)).

In this paper, we improve this result in two ways by directly relating a kernel range space (P, K) to a similar

(binary) range space (P,A). First, this improves the random-sample bound because it uses sample-complexity

results for binary range spaces that have been heavily optimized. Second, this allows for all deterministic

ǫ-sample constructions (which have no probability of failure) and can have much smaller size.

Constructions for ǫ-samples. Vapnik and Chervonenkis [47] showed that the complexity of ǫ-samples is

tied to the VC-dimension of the range space. That is, given a range space (X ,A) a subset Y ⊂ X is said to

be shattered by A if all subsets of Z ⊂ Y can be realized as Z = Y ∩ R for R ∈ A. Then the VC-dimension of

a range space (X ,A) is the cardinality of the largest subset Y ⊂ X that can be shattered by A. Vapnik and

Chervonenkis [47] showed that if the VC-dimension of a range space (X ,A) is ν , then a random sample Y of

O((1/ǫ2)(ν log(1/ǫ) + log(1/δ)) points from X is an ǫ-sample with probability at least 1− δ. This bound was

improved to O((1/ǫ2)(ν + log 1/δ)) by Talagrand [44, 26].

Alternatively, Matousek [28] showed that ǫ-samples of size O((ν/ǫ2) log(ν/ǫ)) could be constructed de-

terministically, that is there is no probability of failure. A simpler algorithm with more thorough runtime

analysis is presented in Chazelle and Matousek [12], which runs in O(d)3d|X |(1/ǫ)2ν logν(1/ǫ) time. Smaller

ǫ-samples exist; in particular Matousek, Welzl, and Wernisch [31] and improved by Matousek [29] show

that ǫ-samples exist of size O((1/ǫ)2−2/(ν+1)), based on a discrepancy result that says there exists a labeling

χ : X → {−1,+1} such that maxR∈A
∑

x∈R∩X χ(x) ≤ O(|X |1/2−1/2ν log1/2 |X |). It is alluded by Chazelle [11]

that if an efficient construction for such a labeling existed, then an algorithm for creating ǫ-samples of size

O((1/ǫ)2−2/(ν+1) log(ν/ǫ)2−1/d+1) would follow, see also Phillips [34]. Recently, Bansal [6] provided a ran-

domized polynomial algorithm for the entropy method, which is central in proving these existential coloring

bounds. This leads to an algorithm that runs in time O(|X | · poly(1/ǫ)), as claimed by Charikar et al. [10, 33].

An alternate approach is through the VC-dimension of the dual range space (A, Ā), of (primal) range space

(X ,A), where Ā is the set of subsets of ranges A defined by containing the same element of X . In our context,

for range spaces defined by balls (Rd ,B) and ellipses of fixed orientation (Rd ,E) their dual range spaces have

VC-dimension ν̄ = d . Matousek [30] shows that a technique of matching with low-crossing number [13] along

with Haussler’s packing lemma [22] can be used to construct a low discrepancy coloring for range spaces where

ν̄ , the VC-dimension of the dual range space is bounded. This technique can be made deterministic and runs

in poly(|X |) time. Invoking this technique in the Chazelle and Matousek [12] framework yields an ǫ-sample of

size O((1/ǫ)2−2/(ν̄+1)(log(1/ǫ))2−1/(ν̄+1)) in O(|X | ·poly(1/ǫ)) time. Specifically, we attain the following result:

Lemma 5.1. For discrete ranges spaces (X ,B) and (X ,E) for X ∈ Rd of size n, we can construct an ǫ-sample of

size O((1/ǫ)2−2/(d+1)(log(1/ǫ))2−1/d+1) in O(n · poly(1/ǫ)) time.

For specific range spaces, the size of ǫ-samples can be improved beyond the VC-dimension bound. Phillips [34]

showed for ranges Rd consisting of axis-aligned boxes in Rd , that ǫ-samples can be created of size O((1/ǫ) ·
log2d(1/ǫ)). This can be generalized to ranges defined by k predefined normal directions of size O((1/ǫ) ·
log2k(1/ǫ)). These algorithms run in time O(|X |(1/ǫ3)poly log(1/ǫ)). And for intervals I over R, ǫ-samples of

(X , I) can be created of size O(1/ǫ) by sorting points and retaining every ǫ|X |th point in the sorted order [27].

ǫ-Samples for kernels. The super-level set of a kernel given one input q ∈ Rd and a value v ∈ R+, is the set

of all points p ∈ Rd such that K(p,q) ≥ v. We say that a kernel is linked to a range space (Rd ,A) if for every

possible input point q ∈ Rd and any value v ∈ R+ that the super-level set of K(·,q) defined by v is equal to

some H ∈ A. For instance multi-variate Gaussian kernels with no skew are linked to (Rd ,B) since all super-

level sets are balls, and multi-variate Gaussian kernels with non-trivial covariance are linked to (Rd ,E) since

all super-level sets are ellipses.

Theorem 5.1. For any kernel K : M×M→ R+ linked to a range space (M,A), an ǫ-sample S of (P,A) for S ⊆M

is a ǫ-sample of (P, K).

9



A (flawed) attempt at a proof may proceed by considering a series of approximate level-sets, within which each

point has about the same function value. Since S is an ǫ-sample of (P,A), we can guarantee the density of S

and P in each level set is off by at most 2ǫ. However, the sum of absolute error over all approximate level-sets

is approximately ǫK+ times the number of approximate level sets. This analysis fails because it allows error to

accumulate; however, a more careful application of the ǫ-sample property shows it cannot. A correct analysis

follows using a charging scheme which prevents the error from accumulating.

Proof. We can sort all pi ∈ P in similarity to q so that pi < p j (and by notation i < j) if K(pi ,q) > K(p j ,q).

Thus any super-level set containing p j also contains pi for i < j. We can now consider the one-dimensional

problem on this sorted order from q.

We now count the deviation E(P,S,q) = κ̄P(P,q)− κ̄S(S,q) from p1 to pn using a charging scheme. That is

each element s j ∈ S is charged to ξ(P)/ξ(S) points in P. For simplicity we will assume that k = ξ(P)/ξ(S) is

an integer, otherwise we can allow fractional charges. We now construct a partition of P slightly differently, for

positive and negative E(P,S,q) values, corresponding to undercounts and overcounts, respectively.

Undercount of κ̄S(S,q). For undercounts, we partition P into 2ξ(S) (possibly empty) sets {P ′1, P1, P ′2,

P2, . . . , P ′
ξ(S)

, Pξ(S)} of consecutive points by the sorted order from q. Starting with p1 (the closest point to

q) we place points in sets P ′j or Pj following their sorted order. Recursively on j and i, starting at j = 1 and

i = 1, we place each pi in P ′
j

as long as K(pi ,q) > K(s j,q) (this may be empty). Then we place the next k

points pi into Pj . After k points are placed in Pj , we begin with P ′j+1, until all of P has been placed in some set.

Let t ≤ ξ(S) be the index of the last set Pj such that ξ(Pj) = k. Note that for all pi ∈ Pj (for j ≤ t) we have

K(s j ,q)≥ K(pi,q), thus κ̄S({s j},q) ≥ κ̄P(Pj ,q).

We can now bound the undercount as

E(P,S,q) =

ξ(S)
∑

j=1

�

κ̄P(Pj ,q)− κ̄S({s j},q)
�

+

ξ(S)
∑

j=1

κ̄P(P
′
j ,q)≤

t+1
∑

j=1

κ̄P(P
′
j ,q)

since the first term is at most 0 and since ξ(P ′j ) = 0 for j > t + 1. Now consider a super-level set H ∈ A

containing all points before st+1; H is the smallest range that contains every non-empty P ′j . Because (for j ≤ t)

each set Pj can be charged to s j, then
∑t

j=1 ξ(Pj ∩ H) = k · ξ(S ∩ H). And because S is an ǫ-sample of (P,A),

then
∑t+1

j=1 ξ(P
′
j ) =
�

∑t+1

j=1 ξ(P
′
j ) +
∑t

j=1 ξ(Pj ∩H)
�

− k ·ξ(S ∩H)≤ ǫξ(P). We can now bound

E(P,S,q) ≤
t+1
∑

j=1

κ̄P(P
′
j ,q) =

t+1
∑

j=1

∑

p∈P ′
j

K(p,q)

ξ(P)
≤

1

ξ(P)

t+1
∑

j=1

ξ(P ′j )K
+ ≤

1

ξ(P)
(ǫξ(P))K+ = ǫK+.

Overcount of κ̄S(S,q): The analysis for overcounts is similar to undercounts, but we construct the partition

in reverse and the leftover after the charging is not quite as clean to analyze. For overcounts, we partition P

into 2ξ(S) (possibly empty) sets {P1, P ′1, P2, P ′2, . . . , Pξ(S), P ′
ξ(S)
} of consecutive points by the sorted order from q.

Starting with pn (the furthest point from q) we place points in sets P ′
j

or Pj following their reverse-sorted order.

Recursively on j and i, starting at j = ξ(S) and i = n, we place each pi in P ′j as long as K(pi,q) < K(s j,q) (this

may be empty). Then we place the next k points pi into Pj . After k points are placed in Pj , we begin with P ′j−1,

until all of P has been placed in some set. Let t ≤ ξ(S) be the index of the last set Pj such that ξ(Pj) = k (the

smallest such j). Note that for all pi ∈ Pj (for j ≥ t) we have K(s j,q) ≤ K(pi,q), thus κ̄S({s j},q)≤ κ̄P(Pj ,q).

We can now bound the (negative) undercount as

E(P,S,q) =

t
∑

j=ξ(S)

�

κ̄P(Pj ,q)− κ̄S({s j},q)
�

+

1
∑

j=t−1

�

κ̄P(Pj ,q)− κ̄S({s j},q)
�

+

ξ(S)
∑

j=1

κ̄P(P
′
j ,q)

≥
�

κ̄P(Pt−1,q)− κ̄S({st−1},q)
�

−
1
∑

j=t−2

κ̄S({s j},q),
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since the first full term is at least 0, as is each κ̄P(Pj,q) and κ̄P(P
′
j
,q) term in the second and third terms. We

will need the one term κ̄P(Pt−1,q) related to P in the case when 1≤ ξ(Pt−1)< k.

Now, using that S is an ǫ-sample of (P,A), we will derive a bound on t, and more importantly (t − 2). We

consider the maximal super-level set H ∈ A such that no points H ∩ P are in P ′j for any j. This is the largest

set where each point p ∈ P can be charged to a point s ∈ S such that K(p,q) > K(s,q), and thus presents the

smallest (negative) undercount. In this case, H ∩ P = ∪s
j=1

Pj for some s and H ∩S = ∪s
j=1
{s j}. Since t ≤ s, then

ξ(H ∩ P) = (s− t + 1)k+ ξ(Pt−1) = (s− t + 1)ξ(P)/ξ(S)+ ξ(Pt−1) and ξ(H ∩ S) = s. Thus

ǫ ≥ ξ̄S(H ∩ S)− ξ̄P(H ∩ P) =
s

ξ(S)
−
(s− t + 1)ξ(P)/ξ(S)

ξ(P)
−
ξ(Pt−1)

ξ(P)
≥

t − 1

ξ(S)
−
ξ(Pt−1)

ξ(P)
.

Thus (t − 2)≤ ǫξ(S) + ξ(Pt−1)(ξ(S)/ξ(P))− 1. Letting pi =mini′∈Pt−1
K(pi′ ,q) (note K(pi ,q)≥ K(st−1,q))

E(P,S,q) ≥
κ(Pt−1,q)

ξ(P)
−

K(st−1,q)

ξ(S)
−
�

ǫξ(S) + ξ(Pt−1)
ξ(S)

ξ(P)
− 1

�

K+

ξ(S)

= −ǫK++ K+
�

k− ξ(Pt−1)

ξ(P)

�

−
k · K(st−1,q)− κ(Pt−1,q)

ξ(P)

≥ −ǫK++ K+
�

k− ξ(Pt−1)

ξ(P)

�

− K(pi ,q)

�

k− ξ(Pt−1)

ξ(P)

�

≥ −ǫK+.

Corollary 5.1. For a Gaussian kernel, any ǫ-sample S for (P,B) (or for (P,E) if we consider covariance) guarantees

that for any query q ∈ Rd that
�

�κ̄P(P,q)− κ̄S(S,q)
�

�≤ ǫK+.

Coreset-based computation of kernel distance. For convenience here we assume that our kernel has

been normalized so K+ = 1. Let P be an ǫ-sample of (P, K), and all points p ∈ P have uniform weights so

ξ(P) = ξ(P) =W . Then for any q ∈ Rd

ǫ ≥ |κ̄P(P,q)− κ̄P(P,q)| =
�

�

�

�

κ(P,q)

ξ(P)
−
κ(P,q)

ξ(P)

�

�

�

�

.

and hence
�

�κ(P,q)− κ(P,q)
�

� ≤ ǫξ(P) = ǫW.

It follows that if Q is also an ǫ-sample for (Q, K), then ‖κ(P,Q) − κ(P,Q)‖ ≤ 2ǫW2. Hence, via known con-

structions of ǫ-samples randomized [47, 44] or deterministic [28, 12, 31, 29, 43, 34] (which can be applied to

weighted point sets to create unweighted ones [28]) and Theorem 5.1 we have the following theorems. The

first shows how to construct a coreset with respect to DK .

Theorem 5.2. Consider any kernel K linked with (Rd ,B) and objects P,Q ⊂M ⊂ Rd , each with total weight W,

and for constant d. We can construct sets P ⊂ P and Q ⊂ Q such that |DK(P,Q)− DK(P,Q)| ≤ ǫW 2 of size:
• O((1/ǫ2−1/(d+1)) log2−1/d+1(1/ǫ)), via Lemma 5.1; or

• O(1/ǫ2)(d + log(1/δ))) via random sampling (correct with probability at least (1− δ)).

We present an alternative sampling condition to Theorem 5.2 in Appendix A. It has larger dependence on ǫ,

and also has either dependence on ∆ or on log n (and is independent of K+). Also in Appendix A we show that

it is NP-hard to optimize ǫ with a fixed subset size k.

The associated runtimes are captured in the following algorithmic theorem.

Theorem 5.3. When K is linked to (Rd ,B), we can compute a number D̃ such that |DK(P,Q)− D̃| ≤ ǫ in time:
• O(n · (1/ǫ2d+2) logd+1(1/ǫ)); or

• O(n+ (log n) · ((1/ǫ2) log(1/δ))+ (1/ǫ4) log2(1/δ)) that is correct with probability at least 1−δ.

Notice that these results automatically work for any kernel linked with (Rd ,B) (or more generally with

(Rd ,E)) with no extra work; this includes not only Gaussians (with non-trivial covariance), but any other

standard kernel such as triangle, ball or Epanechnikov.

11



6 Minimizing the Kernel Distance under Translation and Rotation

We attack the problem of minimizing the kernel distance between P and Q under a set of transformations:

translations or translations and rotations. A translation T ∈ Rd is a vector so Q⊕ T = {q + T | q ∈ Q}. The

translation T ∗ = arg minT∈Rd DK(P,Q⊕ T ), applied to Q minimizes the kernel norm. A rotation R ∈ SO(d) can

be represented as a special orthogonal matrix. We can write R ◦Q= {R(q) | q ∈Q}, where R(q) rotates q about

the origin, preserving its norm. The set of a translation and rotation (T ⋆,R⋆) = arg min(T,R)∈Rd×SO(d) DK(P,R ◦
(Q⊕ T )) applied to Q minimizes the kernel norm.

Decomposition. In minimizing DK(P,R ◦ (Q⊕ T )) under all translations and rotations, we can reduce this

to a simpler problem. The first term κ(P,P) =
∑

p1∈P
∑

p2∈Pµ(p1)µ(p2)K(p1, p2) has no dependence on T or

R, so it can be ignored. And the second term κ(Q,Q) =
∑

q1∈Q
∑

q2∈Q ν(q1)ν(q2)K(R(q1 + T ),R(q2 + T )) can

also be ignored because it is invariant under the choice of T and R. Each subterm K(R(q1+ T ),R(q2+ T )) only

depends on ||R(q1+ T )−R(q2+ T )||= ||q1− q2||, which is also independent of T and R. Thus we can rephrase

the objective as finding

(T ⋆,R⋆) = arg max
(T,R)∈Rd×SO(d)

∑

p∈P

∑

q∈Q
µ(p)ν(q)K(p,R(q+ T )) = arg max

(T,R)∈Rd×SO(d)
κ(P,R ◦ (Q⊕ T )).

We start by providing an approximately optimal translation. Then we adapt this algorithm to handle both

translations and rotations.

6.1 Approximately Optimal Translations

We describe, for any parameter ǫ > 0, an algorithm for a translation T̂ such that D2
K(P,Q⊕ T̂)−D2

K(P,Q⊕T ∗)≤
ǫW 2. We begin with a key lemma providing analytic structure to our problem.

Lemma 6.1. κ(P,Q⊕ T ∗)≥W 2/n2.

Proof. When T ∈ Rd aligns q ∈ Q so q + T = p for p ∈ P it ensures that K(p,q) = 1. We can choose

the points p and q such that µ(p) and ν(q) are as large as possible. They must each be at least W/n, so

K(p,q)µ(p)ν(q)≥W 2/n2. All other subterms in κ(P,Q⊕ T ) are at least 0. Thus κ(P,Q⊕ T ) ≥W 2/n2.

Thus, if κ(P,Q⊕ T ∗)≥W 2/n2, then for some pair of points p ∈ P and q ∈ Q we must have µ(p)ν(q)K(p,q+

T ∗) ≥ µ(p)ν(q)/n2, i.e. K(p,q + T ∗) ≥ 1/n2. Otherwise, if all n2 pairs (p,q) satisfy µ(p)ν(q)K(p,q + T ∗) <
µ(p)ν(q)/n2, then

κ(P,Q⊕ T ∗) =
∑

p∈P

∑

q∈Q
µ(p)ν(q)K(p,q+ T ∗)<

∑

p∈P

∑

q∈Q
µ(p)ν(q)/n2 =W 2/n2.

Thus some pair p ∈ P and q ∈ Q must satisfy ||p− (q+ T ∗)|| ≤
p

ln(n2), via Lemma 2.1 with γ = 1/(n2).

Let Gǫ be a grid on Rd so that when any point p ∈ Rd is snapped to the nearest grid point g ∈ Gǫ, we

guarantee that ||g − p|| ≤ ǫ. We can define an orthogonal grid Gǫ = {(ǫ/
p

d)z | z ∈ Zd}, where Zd is the

d-dimensional lattice of integers. Let G[ǫ, p,Λ] represent the subset of the grid Gǫ that is within a distance Λ

of the point p. In other words, G[ǫ, p,Λ] = {g ∈ Gǫ | ||g − p|| ≤ Λ}.

Algorithm. These results imply the following algorithm. For each point p ∈ P, for each q ∈ Q, and for each

g ∈ G[ǫ/2, p,
p

ln(n2)] we consider the translation Tp,q,g such that q + Tp,q,g = g. We return the translation

Tp,q,g which maximizes κ(P,Q⊕ Tp,q,g), by evaluating κ at each such translation of Q.

Theorem 6.1. The above algorithm runs in time O((1/ǫ)dn4 logd/2 n), for fixed d, and is guaranteed to find a

translation T̂ such that D2
K(P,Q⊕ T̂ )− D2

K(P,Q⊕ T ∗)≤ ǫW 2.
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Proof. We know that the optimal translation T ∗ must result in some pair of points p ∈ P and q ∈ Q such

that ||p − (q + T ∗)|| ≤
p

ln(n2) by Lemma 6.1. So checking all pairs p ∈ P and q ∈ Q, one must have

||p− q|| ≤
p

ln(n2). Assuming we have found this closest pair, p ∈ P and q ∈ Q, we only need to search in the

neighborhood of translations T = p− q.

Furthermore, for some translation Tp,q,g = g− q we can claim that κ(P,Q⊕ T ∗)−κ(P,Q⊕ Tp,q,g)≤ ǫ. Since

||T ∗ − Tp,q,g || ≤ ǫ/2, we have the bound on subterm |K(p,q+ T ∗)− K(p,q+ Tp,q,g)| ≤ ǫ/2, by Lemma 2.2. In

fact, for every other pair p′ ∈ P and q′ ∈ Q, we also know |K(p′,q′ + T ∗)− K(p′,q′ + Tp,q,g)| ≤ ǫ/2. Thus the

sum of these subterms has error at most (ǫ/2)
∑

p∈P
∑

q∈Qµ(p)ν(q) = (ǫ/2)W
2.

Since, the first two terms of D2
K(P,Q⊕T ) are unaffected by the choice of T , this provides an ǫ-approximation

for D2
K(P,Q⊕ T ) because all error is in the (−2)κ(P,Q⊕ T ) term.

For the runtime we need to bound the number of pairs from P and Q (i.e. O(n2)), the time to calculate

κ(P,Q ⊕ T ) (i.e. O(n2)), and finally the number of grid points in G[ǫ/2, p,
p

ln(n2)]. The last term re-

quires O((1/ǫ)d) points per unit volume, and a ball of radius
p

ln(n2) has volume O(logd/2 n), resulting in

O((1/ǫ)d logd/2 n) points. This product produces a total runtime of O((1/ǫ)dn4 logd/2 n).

For a constant dimension d , using Theorem 5.2 to construct a coreset, we can first set n= O((1/ǫ2) log(1/δ))

and now the time to calculate κ(P,Q⊕ T ) is O((1/ǫ4) log2(1/δ)) after spending O(n+ (1/ǫ2) log(1/δ) log n)

time to construct the coresets. Hence the total runtime is

O(n+ log n(1/ǫ2)(log(1/δ)) + (1/ǫd+8) · logd/2((1/ǫ) log(1/δ)) log4(1/δ)),

and is correct with probability at least 1− δ.

Theorem 6.2. For fixed d, in

O(n+ log n(1/ǫ2)(log(1/δ))+ (1/ǫd+8) · logd/2((1/ǫ) log(1/δ)) log4(1/δ))

time we can find a translation T̂ such that D2
K(P,Q⊕ T̂)− D2

K(P,Q⊕ T ∗)≤ ǫW 2, with probability at least 1−δ.

6.2 Approximately Optimal Translations and Rotations

For any parameter ǫ > 0, we describe an algorithm to find a translation T̂ and a rotation R̂ such that

D2
K(P, R̂ ◦ (Q⊕ T̂ ))− D2

K(P,R⋆ ◦ (Q⊕ T ⋆))≤ ǫW 2.

We first find a translation to align a pair of points p ∈ P and q ∈ Q within some tolerance (using a method

similar to above, and using Lemma 2.1 to ignore far-away pairs) and then rotate Q around q. This deviates

from our restriction above that R̂ ∈ SO(d) rotates about the origin, but can be easily overcome by performing

the same rotation about the origin, and then translating Q again so q is at the desired location. Thus, after

choosing a q ∈ Q (we will in turn choose each q′ ∈ Q) we let all rotations be about q and ignore the extra

modifications needed to T̂ and R̂ to ensure R̂ is about the origin.

Given a subset S ⊂ Q of fewer than d points and a pair (p,q) ∈ P×Q where q /∈ S, we can define a rotational

grid around p, with respect to q, so that S is fixed. Let Rd,S be the subset of rotations in d-space under which the

set S is invariant. That is for any R ∈ Rd,S and any s ∈ S we have R(s) = s. Let τ = d−|S|. Then (topologically)

Rd,S = SO(τ). Let RS,p,q = minR∈Rd ,S
||R(q)− p|| and let q̂ = RS,p,q(q). Let H[p,q,S,ǫ,Λ] ⊂ Rd,S be a set

of rotations under which S is invariant with the following property: for any point q′ such that there exists a

rotation R′ ∈ Rd,S where R′(q) = q′ and where ||q′ − q̂|| ≤ Λ, then there exists a rotation R ∈ H[p,q,S,ǫ,Λ]

such that ||R(q)− q′|| ≤ ǫ. For the sanity of the reader, we will not give a technical construction, but just note

that it is possible to construct H[p,q,S,ǫ,Λ] of size O((Λ/ǫ)τ).
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Algorithm. For each pair of ordered sets of d points (p1, p2, . . . , pd)⊂ P and (q1,q2, . . . ,qd)⊂ Q consider the

following set of translations and rotations. Points in P may be repeated. For each g ∈ G[ǫ/d , p1,
p

ln(max{1/ǫ, n2})]
consider translation Tp1,q1,g such that q1 + Tp1 ,q1,g = g. We now consider rotations of the set (Q ⊕ Tp1 ,q1,g).

Let S = {q1} and consider the rotational grid H[p2,q2 + Tp1,q1,g ,S,ǫ/d ,
p

ln(1/ǫ)]. For each rotation R2 ∈
H[p2,q2 + Tp1 ,q1,g ,S,ǫ/d ,

p

ln(1/ǫ)] we recurse as follows. Apply R2(Q⊕ Tp1,q1,g) and place R2(q2 + Tp1,q1,g)

in S. Then in the ith stage consider the rotational grid H[pi ,Ri−1(. . . R2(q2 + Tp1,q1,g) . . .),S,ǫ/d ,
p

ln(1/ǫ)].

Where Ri is some rotation we consider from the ith level rotational grid, let R̄= Rd ◦ Rd−1 ◦ . . . ◦ R2. Let (T̂ , R̂)

be the pair (Tp,q,g , R̄) that maximize κ(P, R̄ ◦ (Q⊕ Tp,q,g)).

Theorem 6.3. The above algorithm runs in time

O(n2d+2(1/ǫ)(d
2−d+2)/2 log(d

2−3d+2)/4(1/ǫ) logd/2(max{n2, 1/ǫ})),

for a fixed d, and is guaranteed to find a translation and rotation pair (T̂ , R̂), such that

D2
K(P, R̂ ◦ (Q⊕ T̂ ))− D2

K(P,R⋆ ◦Q⊕ T ⋆)≤ ǫW 2.

Proof. We compare our solution (T̂ , R̂) to the optimal solution (T ⋆,R⋆). Note that only pairs of points (p,q) ∈
P×Q such that ||p− R⋆(q+ T ⋆)||<

p

ln(1/ǫ) need to be considered.

We first assume that for the ordered sets of d points we consider (p1, p2, . . . , pd)⊂ P and (q1,q2, . . . ,qd) ⊂ Q

we have (A1) ||pi − R⋆(qi + T ⋆)|| ≤
p

ln(1/ǫ), and (A2) for S = {q1, . . . ,qi−1}, let qi ∈ Q be the furthest point

from S such that ||pi − (qi + T ⋆)|| ≤
p

ln(1/ǫ). Note that (A2) implies that for any rotation R ∈ Rd,S that

||qi − R(qi)|| > ||q′ − R(q′)|| for all q′ ∈ Q that can be within the distance threshold under (T ⋆,R⋆). In the case

that fewer than d pairs of points are within our threshold distance, then as long as these are the first pairs

in the ordered sequence, the algorithm works the same up to that level of recursion, and the rest does not

matter. Finally, by Lemma 6.1 we can argue that at least one pair must be within the distance threshold for our

transition grid.

For each point q ∈ Q we can show there exists some pair (T,R) considered by the algorithm such that

||R⋆(q + T ⋆)− R(q + T )|| ≤ ǫ. First, there must be some translation T = Tp1,q1,g in our grid that is within a

distance of ǫ/d of T ⋆. This follows from Lemma 2.2 and similar arguments to the proof for translations.

For each qi we can now show that for some Ri ∈ H (the rotational grid) we have ||Ri(Ri−1(. . . R2(qi +

Tp1,q1,g) . . .))− R⋆(qi + T ⋆)|| ≤ ǫ. By our assumptions, the transformed qi must lie within the extents of H.

Furthermore, there is a rotation R′j that can replace each R j for j ∈ [2, i] that moves qi by at most ǫ/d such

that R′i(R
′
i−1(. . . R′2(qi) . . .)) = R⋆(qi). Hence, the composition of these rotations affects qi by at most ǫ/(i − 1),

and the sum effect of rotation and translation errors is at most ǫ.

Since each qi is invariant to each subsequent rotation in the recursion, we have shown that there is a pair

(T,R) considered so ||R(qi + T )− R⋆(qi + T ⋆)|| ≤ ǫ for qi in the ordered set (q1,q2, . . . ,qd). We can now use

our second assumption (A2) that shows that at each stage of the recursion qi is the point affected most by the

rotation. This indicates that we can use the above bound for all points q ∈ Q, not just those in our ordered set.

Finally, we can use Lemma 2.2 to complete the proof of correctness. Since if each K(p,q) has error at most

ǫ, then

�

�

�

�

�

�

∑

p∈P

∑

q∈Q
µ(p)ν(q)K(p, R̂(q+ T̂ ))−

∑

p∈P

∑

q∈Q
µ(p)ν(q)K(p,R∗(q+ T ∗))

�

�

�

�

�

�

≤
∑

p∈P

∑

q∈Q
µ(p)ν(q)ǫ = ǫW 2.

We can bound the runtime as follows. We consider all d!
�n

d

�

= O(nd) ordered sets of points in Q and all nd

ordered sets of points from P. This gives the leading O(n2d) term. We then investigate all combinations of grid
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points from each grid in the recursion. The translation grid has size O((∆/ǫ)d) = O((1/ǫ)d logd/2(max{1/ǫ, n2})).
The size of the ith rotational grid is O((

p

log(1/ǫ)/ǫ)d−i, starting at i = 2. The product of all the rota-

tional grids is the base to the sum of their powers
∑d−1

i=1 (d − i) =
∑d−1

i=1 i = (d − 1)(d − 2)/2 = (d2 − 3d +

2)/2, that is O((1/ǫ)(d
2−3d+2)/2 log(d

2−3d+2)/4(1/ǫ)). Multiplying by the size of the translational grid we get

O((1/ǫ)(d
2−d+2)/2 log(d

2−3d+2)/4(1/ǫ) logd/2(max{n2, 1/ǫ})). Then for each rotation and translation we must

evaluate κ(P,R ◦ (Q⊕ T )) in O(n2) time. Multiplying these three components gives the final bound of

O(n2d+2(1/ǫ)(d
2−d+2)/2 log(d

2−3d+2)/4(1/ǫ) logd/2(max{n2, 1/ǫ})).

The runtime can again be reduced by first computing a coreset of size O((1/ǫ2) log(1/δ)) and using this

value as n. After simplifying some logarithmic terms we reach the following result.

Theorem 6.4. For fixed d, in

O(n+ log n(1/ǫ2)(log(1/δ))+ (1/ǫ)(d
2+7d+6)/2(log(1/ǫδ))(d

2+7d+10)/4),

time we can find a translation and rotation pair (T̂ , R̂), such that

D2
K(P, R̂ ◦ (Q⊕ T̂ ))− D2

K(P,R⋆ ◦Q⊕ T ⋆)≤ ǫW 2,

with probability at least 1− δ.
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A Coresets for the Kernel Distance

A.1 Alternative Coreset Proof

In Section 5 we presented a construction for a coreset for the kernel distance, that depended only on 1/ǫ for a

fixed kernel. This assumed that K+ =maxp,q K(p,q) was bounded and constant. Here we present an alternative

proof (also by random sampling) which can be made independent of K+. This proof is also interesting because

it relies on ρ the dimension of the feature map.

Again, we sample k points uniformly from P and reweight η(p) =W/k.

Lemma A.1. By constructing S with size k = O((1/ǫ3) log(n/δ) log((1/ǫδ) log n))we guarantee D2
K(P,S) ≤ ǫW 2,

with probability at least 1− δ.

Proof. The error in our approximation will come from two places: (1) the size of the sample, and (2) the

dimension ρ of the feature space we perform the analysis in.

Let φ : P × R+ → H describe the true feature map from a point p ∈ P, with weight µ(p), to an infinite

dimensional feature space. As before, set Φ(P) =
∑

p∈Pµ(p)φ(p), and recall that DK(P,Q) = ‖Φ(P)−Φ(Q)‖H,

for any pair of shapes P and Q.

By the results in the previous section, we can construct φ̃ : P×R+→ Rρ (such as φΥ defined for Lemma 4.1)

such that Φ̃(P) =
∑

p∈P φ̃(p) and for any pair of shapes P and S with weights W =
∑

p∈Pµ(p) =
∑

p∈Sη(p),

we have
�

�‖Φ(P)−Φ(S)‖2
H
−‖Φ̃(P)− Φ̃(S)‖2

�

� ≤ (ǫ/2)W 2, with probability at least 1− δ/2. This bounds the

error in the approximation of the feature space.

We now use the low dimension ρ of this approximate feature space to bound the sampling error. Specifically,

we just need to bound the probability that ‖Φ̃(P)− Φ̃(S)‖2 = ‖E[Φ̃(S)]− Φ̃(S)‖2 ≥ (ǫ/2)W2, since E[Φ̃(S)] =

Φ̃(P). This is always true if for each dimension (or pair of dimensions if we alter bounds by a factor 2)

m ∈ [1,ρ] we have
�

�Φ̃(S)m− E[Φ̃(S)m]
�

�≤
p

ǫW 2/(2ρ), so we can reduce to a 1-dimensional problem.

We can now invoke the following Chernoff-Hoeffding bound. Given a set {X1, . . . , X r} of independent random

variables, such that
�

�X i − E[X i]
�

� ≤ Λ, then for M =
∑r

i=1 X i we can bound Pr[|M− rE[X i]| ≥ α] ≤ 2e−2α2/(rΛ2).
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By letting α =
p

W 2ǫ/(2ρ) and X i = φ̃(pi)m, the mth coordinate of φ̃(pi) for pi ∈ S,

Pr
h




Φ̃(S)− Φ̃(P)






2 ≥ (ǫ/2)W2
i

=Pr

�







Φ̃(S)− E
�

Φ̃(S)
�










2

≥ (ǫ/2)W2

�

≤ρ Pr

��

�

�Φ(S)m− kE
�

φ̃(pi)m
�

�

�

� ≥
p

ǫW 2/(2ρ)

�

≤ρ2e
−2 ǫW

2

2ρ
/(kΛ2) ≤ ρ2e

− ǫW
2

ρk

k2

4W2 = ρ2e−kǫ/(4ρ),

where the last inequality follows because Λ = maxp,q∈S ||φ̃(p)− φ̃(q)|| ≤ 2W/k since for any p ∈ S we have

||φ̃(p)|| = W/k. By setting δ/2 ≥ ρ2e−kǫ/(4ρ), we can solve for k = O((ρ/ǫ) log(ρ/δ)). The final bound

follows using ρ = O((1/ǫ2) log(n/δ)) in Lemma 4.1.

Again using the feature map summarized by Lemma 4.1 we can compute the norm in feature space in O(ρk)

time, after sampling k = O((1/ǫ3) log(n/δ) log((1/ǫδ) log n)) points from P and with ρ = O((1/ǫ2) log(n/δ)).

Theorem A.1. We can compute a vector Ŝ = Φ̃(S) ∈ Rρ in time O(n+(1/ǫ5) log2(n/δ) log2((1/ǫδ) log n))) such

that




Φ̃(P)− Ŝ






2 ≤ ǫW 2 with probability at least 1− δ.

A.2 NP-hardness of Optimal Coreset Construction

In general, the problem of finding a fixed-size subset that closely approximates the kernel norm is NP-hard.

Definition A.1 (KERNEL NORM). Given a set of points P = {X i}ni=1, a kernel function K, parameter k and a

threshold value t, determine if there is a subset of points S⊂ P such that |S| = k and DK(S,P)≤ t.

Theorem A.2. KERNEL NORM is NP-hard, even in the case where k = n/2 and t = 0.

Proof. To prove this, we apply a reduction from PARTITION: given a set Q = {x i}ni=1
of integers with sum to

∑n

i=1 = 2m, determine if there is a subset adding to exactly m. Our reduction transforms Q into a set of points

P = {x ′i}ni=1 which has subset S of size k = n/2 such that ||S− P|| ≤ t if and only if Q has a partition of two

subsets Q1 and Q2 of size n/2 such that the sum of integers in each is m.

Let c = 1

n

∑

x i = 2m/n and x ′i = x i − c and let t = 0. Let the kernel function K be an identity kernel defined

K(a, b) = 〈a, b〉, where the feature map is defined φ(a) = a. This defines the reduction.

Let s = (n/k)
∑

x ′
i
∈S x ′i and p =
∑

x ′
i
∈P x ′i . Note that p = 0 by definition. Since we have an identity kernel so

φ(a) = a, DK(S,P) = ‖s− p‖. Thus there exists an S that satisfies DK(S,P) ≤ 0 if and only if s = 0.

We now need to show that s can equal 0 if and only if there exists a subset Q1 ⊂ Q of size n/2 such that its

sum is m. We can write

s =
n

k

∑

x ′
i
∈S

x ′i = 2
∑

x ′
i
∈S

�

x i −
2m

n

�

= −2m+ 2
∑

x ′
i
∈S

x i.

Thus s = 0 if and only if
∑

x ′
i
∈S x i = m. Since S must map to a subset Q1 ⊂ Q, where x ′

i
∈ S implies x i ∈ Q1,

then s = 0 holds if and only if there is a subset Q1 ⊂ Q such that
∑

xi∈Q1
= m. This would define a valid

partition, and it completes the proof.
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