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Abstract

We consider smoothed versions of geometric range
spaces, so an element of the ground set (e.g. a point) can
be contained in a range with a non-binary value in [0, 1].
Similar notions have been considered for kernels; we ex-
tend them to more general types of ranges. We then
consider approximation of these range spaces through ε-
nets and ε-samples (aka ε-approximations). We charac-
terize when size bounds for ε-samples on kernels can be
extended to these more general smoothed range spaces.
We also describe new generalizations for ε-nets to these
range spaces and show when results from binary range
spaces can carry over to the smoothed ones.

1 Introduction

Combinatorial range spaces play a central role in ge-
ometry and have important connections to many areas,
notably learning theory [6, 3], data structures, and re-
cently differential privacy. We will focus on geometric
range spaces where the ground set P is a point set in
Rd. The family of ranges A are typically defined by sets
of subsets contained in some geometric objects, e.g., a
disk, or a halfspace. The pair (P,A) is called a range
space.

An important consideration is how well we can ap-
proximate these objects through a subset Q ⊂ P , for-
malized as an ε-sample (aka ε-approximation, which
preserves density) and an ε-net (which perverse the ex-
istence of large subsets). Formally, an ε-sample for a
range space (P,A) is a subset Q ⊂ P s.t.

max
A∈A

∣∣∣∣ |A ∩ P ||P |
− |Q ∩A|

|Q|

∣∣∣∣ ≤ ε.
An ε-net of a range space (P,A) is a subset Q ⊂ P s.t.

for all A ∈ A such that |P∩A||P | ≥ ε then A ∩Q 6= ∅.
Through techniques ranging from discrepancy the-

ory to Fourier analysis to basic combinatorics, we now
largely understand these relationship of these bounds
to the size of the subsets Q, for geometrically de-
scribed ranges and with constructions; see a pair of great
books [4, 1]. However, at least at a high-level, many of
these size lower bounds are constructed with sets P so
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that problematic subsets A ∈ A have many elements
near the boundary. This leads to the question, what if
we smoothed out this boundary?

Background on Kernels and Kernel Range Spaces.
This question was studied in the context of ε-samples
for statistical kernels (e.g. Gaussians). A kernel is a bi-
variate similarity function K : Rd×Rd → R+, which can
be normalized so K(x, x) = 1 (which we assume through
this paper). We focus on symmetric, shift invariant ker-
nels which depend only on ‖x− p‖, and can be written
as a single parameter function K(x, p) = k(‖x − p‖),
so it usually decreases as ‖x − p‖ increases; these can
be parameterized by a single bandwidth (or just width)
parameter w so Kw(x, p) = kw(‖x−p‖) = k(‖x−p‖/w).
Most commonly used kernels are Gaussian, Laplace, Tri-
angular, Epanechnikov, and Ball kernels.

A kernel range space [2, 5] (P,K) is an extension of
the combinatorial concept of a range space (P,A) (or to
distinguish it we refer to the classic notion as a binary
range space). It is defined by a point set P ⊂ Rd and
a set of kernels K. An element of K is a kernel K(x, ·)
applied at point x ∈ Rd; it assigns a value in [0, 1] to
each point p ∈ P as K(x, p).

Given a point set P of size n and a kernel K, a ker-
nel density estimate kdeP is the convolution of that
point set with K. For any x ∈ Rd we define kdeP (x) =
1
n

∑
p∈P K(x, p). The notion of ε-kernel sample [2] ex-

tends the definition of ε-sample. It is a subset Q ⊂ P
such that maxx∈Rd |kdeP (x)− kdeQ(x)| ≤ ε.

A binary range space (P,A) is linked to a kernel range
space (P,K) if the set {p ∈ P | K(x, p) ≥ τ} is equal to
P ∩A for some A ∈ A, for any threshold value τ .

Two main observations have been made in the ker-
nel range spaces. (1) An ε-sample for a (linked) range
space defined by balls, is also an ε-sample for kernels [2].
(2) Using a careful discrepancy-based approach, smaller
ε-samples (sometimes significantly smaller) can be con-
structed for kernels than for balls [5]. In this article we
extend this line of work in a few interesting directions.

Contributions.

• We define a general class of smoothed range spaces,
with application to density estimation.

• We define a notion of an (ε, τ)-net for a smoothed
range space. We show how this can inherit sam-
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pling complexity bounds from linked non-smooth
range spaces. We also relate this concept to a
smoothed hitting set problem.

• We provide discrepancy-based bounds and con-
structions for ε-samples on smooth range spaces
requiring significantly fewer points than uniform
sampling approaches and discrepancy-based ap-
proaches on the linked binary range spaces.

2 Smoothed Range Spaces

Let Hw denote the family of smoothed halfspaces with
width parameter w, and let (P,Hw) be the associated
smoothed range space where P ⊂ Rd. Given a point
p ∈ P , the smoothed halfspace h ∈ Hw maps p to a
value vh(p) ∈ [0, 1] (rather than the traditional {0, 1} in
a binary range space).

We first describe a specific mapping to the function
value vh(p). Let F be the (d − 1)-flat defining the
boundary of halfspace h. Given a point p ∈ Rd, let
pF = arg minq∈F ‖p − q‖ describe a point on F closest
to p. We make the definition more general using a shift-
invariant kernel kw(‖p− x‖) = k(‖p− x‖/w) such that
we define vh,w(p) as follows.

vh,w(p) =

{
1
2 + 1

2kw(‖p− pF ‖) p ∈ h
1
2 −

1
2kw(‖p− pF ‖) p /∈ h.

For brevity, we will omit the w and just use vh(p)
when clear. We can also further generalize this by re-
placing the flat F at the boundary of h with a poly-
nomial surface G. The point pG = arg minq∈G ‖p − q‖
replaces pF in the above definitions. Then the slab of
width 2w is replaced with a more curved volume in Rd;
see Figure 1. For concreteness and simplicity, the re-
mainder of this note will focus on halfspaces.

w w

2w

2w

p1

p3

p2

0 1

p1G

p3G

p2G

10

p2

p1
w w

p3

F G

p1F

p2F

p3F

Figure 1: Illustration of the smoothed halfspace F (left),
and smoothed polynomial surface G (middle).

We extend the notion of a kernel density estimate
to these smoothed range spaces. A smoothed density
estimate sdeP is defined for any h ∈ Hw as

sdeP (h) =
1

|P |
∑
p∈P

vh(p).

Then an ε-sample Q of a smoothed range space (P,Hw)
is a subset Q ⊂ P such that

max
h∈Hw

|sdeP (h)− sdeQ(h)| ≤ ε.

(ε, τ)-Net for smoothed range spaces. We introduce
two new definitions to generalize the definition of hit-
ting and ε-net. A subset Q ⊂ P is an (ε, τ)-net of
smoothed range space (P,Hw) if for any h ∈ Hw such
that sdeP (h) ≥ ε, there exists a point q ∈ Q such that
vh(q) ≥ τ . A subset Q ⊂ P is an (ε, τ)-hitting set of
smoothed range space (P,Hw) if for any h ∈ Hw such
that sdeP (h) ≥ ε, then sdeQ(h) ≥ τ . We can show that
both of these notions are implied by an (ε− τ)-sample.

Theorem 1 An (ε− τ)-sample Q in a smoothed range
space (P,Hw) is an (ε, τ)-hitting set in (P,Hw), and
thus also an (ε, τ)-net of (P,Hw).

Consider a smoothed range space (P,Hw), a linked
binary range space (P,A), and an ε-sample Q of (P,A).
Prior results for kernels [2] can be generalized to show
Q is an ε-sample of (P,Hw). We can further extend
this relation for (ε, τ)-nets; thus they can require signif-
icantly smaller size sets Q to satisfy.

Theorem 2 Consider a smoothed range space (P,Hw),
a linked binary range space (P,A), and an (ε − τ)-net
Q of (P,A). Then Q is an (ε, τ)-net of (P,Hw).

Discrepancy-based approaches. We improve on ran-
dom sample bounds using discrepancy [4, 1]. These re-
sults are restricted to when points P are contained in a
d-dimensional cube C`,d of side length `.

Theorem 3 In R2, for any P ⊂ C`,2, we can construct

an ε-sample of (P,Hw) of size O( 1
ε

√
`
w log `

wεδ ) with

probability at least 1− δ.

Theorem 4 In Rd, for any P ⊂ C`,d with d is con-
stant, we can construct an ε-sample of (P,Hw) of size

O
(

(`/w)2(d−1)/(d+2) ·
(

1
ε

√
log `

wεδ

)2d/(d+2))
with prob-

ability at least 1− δ,

We can improve some results if the data is “well-
clustered” under other specific conditions.
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