
Efficient Threshold Monitoring for Distributed
Probabilistic Data

Mingwang Tang1, Feifei Li1, Jeff M. Phillips2, Jeffrey Jestes1
1Computer Science Department, Florida State University; 2 School of Computing, University of Utah

1{tang,lifeifei,jestes}@cs.fsu.edu, 2{jeffp@cs.utah.edu}

Abstract— In distributed data management, a primary concern
is monitoring the distributed data and generating an alarm when
a user specified constraint is violated. A particular useful instance
is the threshold based constraint, which is commonly known
as the distributed threshold monitoring problem [4], [16], [19],
[29]. This work extends this useful and fundamental study to
distributed probabilistic data that emerge in a lot of applications,
where uncertainty naturally exists when massive amounts of
data are produced at multiple sources in distributed, networked
locations. Examples include distributed observing stations, large
sensor fields, geographically separate scientific institutes/units
and many more. When dealing with probabilistic data, there are
two thresholds involved, the score and the probability thresholds.
One must monitor both simultaneously, as such, techniques
developed for deterministic data are no longer directly applicable.
This work presents a comprehensive study to this problem. Our
algorithms have significantly outperformed the baseline method
in terms of both the communication cost (number of messages
and bytes) and the running time, as shown by an extensive
experimental evaluation using several, real large datasets.

I. INTRODUCTION

When massive amounts of data are generated, uncertainty
is inherently introduced at the same time. For instance, data
integration produces fuzzy matches [8], [31]; in measurements,
e.g., sensor readings, data is inherently noisy, and is better
represented by a probability distribution rather than a single
deterministic value [2], [7], [10], [31]. In a lot of these appli-
cations, data are generated at multiple sources, and collected
from distributed, networked locations. Examples include dis-
tributed observing stations, large sensor fields, geographically
separate scientific institutes/units and many more [20], [34].

(a)

Data

Applications

Ships

Towers
satellite,

radio frequency Applications

(b)

Fig. 1. Shipboard Automated Meteorological and Oceanographic System.

A concrete example is the Shipboard Automated Meteo-
rological and Oceanographic System (SAMOS) project [27].
The goal of SAMOS is to provide effective access to marine
meteorological and near-surface oceanographic observations
from research vessels and voluntary ships (see Figure 1(a)).
It has also been extended to include and integrate data from
observation towers at sea in the northern Gulf of Mexico, as
seen in Figure 1(b), in which we were involved. We have
observed that in SAMOS: 1) data are naturally distributed:
ships and towers are at geographically separated locations;

2) ambiguity, errors, imprecise readings, and uncertainty are
present in the real-time data collected, due to hazardous con-
ditions, coarse real-time measurement and multiple readings
for the same observation; 3) large amounts of data needs to be
processed; in fact, often times the ships and towers in SAMOS
generate and report several hundreds of readings for a large
number of attributes (e.g., wind speed, temperature, humidity,
etc.) in less than a minute, continuously.

Clearly, it is useful to represent data in SAMOS (as well
as other applications previously discussed) using distributed
probabilistic data. For instance, due to the continuous influx of
large amounts of data in very short periods, a common practice
in SAMOS is for each ship/tower to buffer data for an interval
(e.g., 5 minutes) and send one representative for data in an
interval. Modeling data in a given interval using probabilistic
data, such as a probability distribution function (pdf), is no
doubt a viable and attractive solution (especially when we want
to also account for the presence of uncertainty and errors in the
raw readings). Meanwhile, as numerous studies in managing
distributed data have shown, a primary concern is monitoring
the distributed data and generating an alarm when a user-
specified constraint is violated. A particular useful instance
is the threshold based constraint, which we refer to as the
distributed threshold monitoring (DTM) problem and has been
extensively studied in distributed deterministic data [4], [16],
[19], [29]. An application scenario is shown in Example 1.

Example 1 Suppose each distributed site continuously cap-
tures temperature readings (one per system-defined time in-
stance), the goal is to monitor them continuously and raise an
alarm at the coordinator site whenever the average temperature
from all sites exceeds 80 degrees at any time instance.

Similar applications are required in managing distributed
probabilistic data. And the notion of distributed threshold
monitoring on probabilistic data is a critical problem, such
as in the SAMOS system. The most natural and popular
way of extending threshold queries to probabilistic data is
probabilistic-threshold semantics [2], [5], [31], which intro-
duces another threshold on the probability of the query answer
in addition to the threshold on the score value of the results.
Consider the following example that extends Example 1:

Example 2 Suppose readings in each site are now represented
as probabilistic data (e.g., as we have just discussed for data in
SAMOS), the goal is to monitor these readings continuously
and raise an alarm at the coordinator site whenever the

probability of the average temperature from all sites exceeding
80 degrees is above 70% at any time instance.

We refer to them as the distributed probabilistic threshold
monitoring (DPTM) problem. This variant is a robust alter-
native to DTM, more robust than the median, in that even
if all sites report low-probability noise which skews their
distributions, DPTM will only raise an alarm if a true threshold
has been crossed, or what may have been noise occurs with
high enough probability that it cannot be ignored. For the
same reasons and motivations of its counterpart, the DTM
problem, a paramount concern is to reduce the communication
cost, measured by both the total number of messages and
bytes communicated in the system. For example, on SAMOS,
cutting down the communication cost would allow for the
transmission of more accurate or diverse measurements. Due
to the inherent difference in query processing between prob-
abilistic and deterministic data, techniques developed from
DTM are no longer directly applicable. This also brings up
another challenge in DPTM, reducing the cpu cost, since query
processing in probabilistic data is often computation-intensive
which is even worse in distributed probabilistic data [20]. This
challenge does not exist in DTM, where the computation cost
is almost trivial.

This work steps up to these challenges and presents a
comprehensive study to the DPTM problem. Specifically:
• We formalize the DPTM problem in Section II.
• We propose baseline methods in Section III, which im-

prove over the naive method of sending all tuples at each
time instance.

• We design two efficient and effective monitoring methods
in Section IV that leverage moment generating functions
and adaptive filters to significantly reduce the costs.

• When an exact solution is not absolutely necessary, we
introduce novel sampling-based methods in Section V to
further reduce the communication and the cpu costs.

• We extensively evaluate all proposed methods in Section
VII on large real data obtained from research vessels in
the SAMOS project. The results have shown that our
monitoring methods have significantly outperformed the
baseline approach. They also indicate that our sampling
method is very effective when it is acceptable to occasion-
ally miss one or two alarms with very small probability.

We discuss some useful extensions in Section VI, survey
the related work in Section VIII, and conclude in Section IX.

II. PROBLEM FORMULATION

Sarma et al. [28] describe various models of uncertainty.
We consider the attribute-level uncertain tuple that has been
used frequently in the literature, and suits the applications for
our problem well (e.g., data in SAMOS).

Each tuple has one or more uncertain attributes. Every un-
certain attribute has a pdf for its value distribution. Correlation
among attributes in one tuple can be represented by a joint
pdf. This model has a lot of practical applications and is most
suitable for measurements and readings [7], [18]. Without

loss of generality, we assume that each tuple has only one
uncertain attribute score. Let Xi be the random variable for
the score of tuple di, where Xi can have either a discrete or a
continuous pdf, with bounded size (see Figure 2). Since each
pdf is bounded, we assume that for all Xi’s, |Xi| ≤ n for
some value n where |Xi| is the size of the pdf for Xi, which
is the number of discrete values Xi may take for a discrete
pdf, or the number of parameters describing Xi and its domain
for a continuous pdf.

tuples attribute score
d1 X1

d2 X2

· . . .
dt Xt

H

c1 c2 cg

Fig. 2. Attribute-level uncertain tuple and the flat model.
Given g distributed clients {c1, . . . , cg}, and a centralized

server H . We consider the flat model for the organization of
distributed sites as shown in Figure 2, e.g., SAMOS uses the
flat model. At each time instance t, for t = 1, . . . , T , client
ci reports a tuple di,t with a score Xi,t. We assume that data
from different sites, are independent. Similar assumptions were
made in most distributed data monitoring or ranking studies
[4], [12], [16], [19], [20], [23], [29]. Without loss of generality
and for the ease of explanation, we assume that Xi,t ∈ R+.
Our techniques can be easily extended to handle the case when
Xi,t may take negative values as well.

Definition 1 (DPTM) Given γ ∈ R+ and δ ∈ [0, 1), let Yt =∑g
i=1Xi,t, for t = 1, . . . , T . The goal is to raise an alarm at

H , whenever for any t ∈ [1, T] Pr[Yt > γ] > δ.
In our definition, DPTM monitors the sum constraint. Moni-

toring the average constraint is equivalent to this case, as well
as any other types of constraints that can be expressed as a
linear combination of one or more sum constraints.

As argued in Section I, the goal is to minimize both the
overall communication and computation costs, at the end of
all time instances. We measure the communication cost using
both the total number of bytes transmitted and the total number
of messages sent. Lastly, when the context is clear, we omit
the subscript t from Yt and Xi,t.

III. BASELINE METHODS

At any time instance t, let X1, . . . , Xg be the scores from
c1 to cg and Y =

∑g
i=1Xi. To monitor if Pr[Y > γ] > δ,

the naive method is to ask each client ci to send his score Xi

to H , which is clearly very expensive.

A. Compute Pr[Y > γ] Exactly

The first challenge is to compute Pr[Y > γ] exactly at H .
We differentiate two cases. When each Xi is represented by
discrete pdf, clearly, we can compute Y1,2 = X1+X2 in O(n2)
time by a nested loop over the possible values they may take.
Next, we can compute Y1,2,3 = X1 +X2 +X3 = Y1,2 +X3

using Y1,2 and X3 in O(n3) time, since in the worst case the
size of Y1,2 is O(n2). We can recursively apply this idea to
compute Y = Y1,...,g in O(ng) time, then check Pr[Y > γ]

exactly. But note that in this approach, since we did not sort
the values in the output (to reduce the cost), in each step the
discrete values in the output pdf is no longer sorted.

A better idea is to compute Y1,...,g/2, and Yg/2+1,...,g

separately, which only takes O(ng/2) time. Then, by using
the cdf (cumulative distribution function) of Yg/2+1,...,g , we
can compute Pr[Y > γ] as follows:

Pr[Y > γ] =
∑
∀y∈Y1,...,g/2

Pr[Y1,...,g/2 = y] · Pr[Yg/2+1,...,g > γ − y].

Computing the cdf of Yg/2+1,...,g takes O(ng/2 log ng/2) in the
worst case: as discussed above, discrete values in Yg/2+1,...,g

are not sorted. After which, finding out Pr[Yg/2+1,...,g > γ−y]
for any y takes only constant time. Hence, this step takes
O(ng/2) time only (the size of Y1,...,g/2 in the worst case).
So the overall cost of computing Pr[Y > γ] exactly at H
becomes O(ng/2 log ng/2).

When some Xi’s are represented by continuous pdfs, the
above process no longer works. In this case, we leverage on
the characteristic functions of Xi’s to compute Y exactly. The
characteristic function [1] of a random variable X is:

ϕX(β) = E(eiβX) =

∫ +∞

−∞
eiβxfX(x)d(x),∀β ∈ R,

where i is the imaginary unit and fX(x) is the pdf of X . Let
ϕi(β) and ϕ(β) be the characteristic functions of Xi and Y
respectively, a well-known result is that ϕ(β) =

∏g
i=1 ϕi(β)

[1]. Furthermore, by definition, ϕi(β) and ϕ(β) are the Fourier
transform of the pdfs for Xi and Y respectively. Hence, an
immediate algorithm for computing the pdf of Y is to compute
the Fourier transforms for the pdfs of Xi’s, multiply them
together to get ϕ(β), then do an inverse Fourier transform on
ϕ(β) to obtain the pdf of Y . After which, we can easily check
if Pr[Y > γ] > δ. The cost of this algorithm depends on the
cost of each Fourier transform, which is dependent on the types
of distributions being processed. Note that using this approach
when all pdfs are discrete does not result in less running time
than the method above: since the size of Y in the worst case
is O(ng) (the pdf describing Y), this algorithm takes at least
O(ng) time in the worst case, even though we can leverage
on fast Fourier transform in this situation.

We denote the above algorithms as EXACTD and EXACTC,
for the discrete and continuous cases respectively.

B. Filtering by Markov Inequality

By the Markov inequality, we have Pr[Y > γ] ≤ E(Y)
γ .

Given that E(Y) =
∑g
i=1 E(Xi), if each client Xi only sends

E(Xi), H can check if E(Y)
γ < δ; if so, no alarm should be

raised for sure; otherwise, we can then ask for Xi’s, and apply
the exact algorithm. We dub this approach the Markov method.

We can improve this further. Since E(Y) =
∑g
i=1 E(Xi)

and our goal is to monitor if E(Y) < γδ by the Markov in-
equality, we can leverage on the adaptive thresholds algorithm
for the DTM problem in deterministic data [16] to monitor if∑g
i=1 E(Xi) < γδ continuously, which installs local filters

at clients and adaptively adjusts them. Specifically, γδ is

treated as the global constraint; at each time instance, client ci
can compute E(Xi) locally which becomes a “deterministic
score”. Thus, the algorithm from [16] is applicable. Whenever
it cannot assert an alarm at a time instance t, clients transmit
Xi’s to H and the server applies the exact algorithm (only for
that instance). This helps reduce the communication cost and
we dub this improvement the Madaptive method.

IV. IMPROVED METHODS

We now improve on these baseline techniques. We replace
the Markov Inequality through more complicated to apply, but
more accurate, Chebyshev and Chernoff bounds (Improved
Fig 3). Then, we redesign Improved to leverage adaptive
monitoring techniques designed for DTM (Iadaptive Fig 4).

A. Improved Bounds on Pr[Y > γ]

We first leverage on the general Chebyshev bound:

Pr[|Y −E(Y)| ≥ a
√

Var(Y)] ≤ 1/a2 for any a ∈ R+,

which gives us the following one-sided forms:

Pr[Y ≥ E(Y) + a] ≤ Var(Y)

Var(Y) + a2
,∀a ∈ R+ (1)

Pr[Y ≤ E(Y)− a] ≤ Var(Y)

Var(Y) + a2
,∀a ∈ R+. (2)

When γ > E(Y), setting a = γ −E(Y) in (1) leads to:

Pr[Y > γ] < Pr[Y ≥ γ] ≤ Var(Y)

Var(Y) + (γ −E(Y))2
. (3)

As such, when γ > E(Y), if Var(Y)
Var(Y)+(γ−E(Y))2 ≤ δ, we

definitely do not have to raise an alarm.
When γ < E(Y), we can set a = E(Y)− γ in (2) to get:

Pr[Y ≤ γ] ≤ Var(Y)

Var(Y) + (E(Y)− γ)2
. (4)

This implies that,

Pr[Y > γ] = 1− Pr[Y ≤ γ] > 1− Var(Y)

Var(Y)+(E(Y)−γ)2 . (5)

Hence, when γ < E(Y), as long as 1− Var(Y)
Var(Y)+(E(Y)−γ)2 ≥

δ, we should surely raise an alarm.
Given these observations, in each time instance, clients

send E(Xi)’s and Var(Xi)’s to H , which computes E(Y)
and Var(Y) locally (given that Xi’s are independent from
each other, Var(Y) =

∑g
i=1 Var(Xi)). Depending whether

E(Y) > γ or E(Y) < γ, H uses (3) or (5) to decide to raise
or not to raise an alarm for this time instance. Nevertheless,
this approach may still incur expensive communication and
computation when E(Y) = γ, or (3) ((5), resp.) does not hold
when E(Y) > γ (E(Y) < γ, resp.). It is also limited in the
fact that H can only check either to raise an alarm or not to
raise an alarm, but not both simultaneously, as E(Y) > γ and
E(Y) < γ cannot hold at the same time.

We remedy these problems using the general Chernoff
bound and the moment-generating function [1]. For any ran-
dom variable Y , suppose its moment generating function is
given by M(β) = E(eβY) for any β ∈ R, then:

Pr[Y ≥ a] ≤ e−βaM(β) for all β > 0,∀a ∈ R (6)
Pr[Y ≤ a] ≤ e−βaM(β) for all β < 0,∀a ∈ R (7)

Here a can be any real value (positive or negative). Suppose
the moment generating function of Xi and Y is Mi(β) and
M(β) respectively, then M(β) =

∏g
i=1Mi(β) [1]. Hence,

when the checking based on either (3) or (5) has failed, for
any β1 > 0 and β2 < 0, the server requests ci to calculate
and send back Mi(β1) and Mi(β2). He computes M(β1) and
M(β2), and by setting a = γ in (6) and (7), he checks if:

Pr[Y > γ] ≤ Pr[Y ≥ γ] ≤ e−β1γM(β1) ≤ δ, and (8)
Pr[Y > γ] = 1− Pr[Y ≤ γ] > 1− e−β2γM(β2) ≥ δ. (9)

When (8) holds, he does not raise an alarm; when (9) holds,
he raises an alarm; only when both have failed, he requests
Xi’s for the exact computation.

Calculating Mi(β) at a client ci is easy. For a lot of para-
metric continuous pdfs, closed-form expressions exist for their
moment generating functions, or, one can use numeric methods
to compute Mi(β) to arbitrary precision for other continuous
pdfs. For discrete pdfs, Mi(β) =

∑
x∈Xi e

βx Pr[Xi = x].
Another key issue is to figure out the optimal values for

β1 and β2 in (8) and (9) to make the corresponding bound
as tight as possible, which is to minimize e−β1γM(β1) and
e−β2γM(β2) in (8) and (9) respectively. The central limit
theorem states that the mean of a sufficiently large number of
independent random variables will be approximately normally
distributed, if each independent variable has finite mean and
variance [1]. For a normal distribution with mean µ and
variance σ2, its moment generating function is eβµ+

1
2σ

2β2

for
any β ∈ R. Hence, let Y ′ = 1

gY , then Y ′ can be approximated
by a normal distribution well, and we can approximate its
moment generating function as:

MY ′(β) ≈ eβE(Y ′)+ 1
2 Var(Y ′)β2

,∀β ∈ R. (10)

Note that Y = gY ′, (8) and (10) imply that for any β1 > 0:

Pr[Y ≥ γ] = Pr[Y ′ ≥ γ

g
] ≤ e−β1

γ
gMY ′(β1)

≈ e−β1
γ
g eβ1E(Yg)+ 1

2 Var(Yg)β2
1 by (10)

= e
β1
g (E(Y)−γ)+ 1

2g2
Var(Y)β2

1 (11)

Hence, we can approximate the optimal β1 value for (8)
by finding the β1 value that minimizes the RHS of (11). Let
f(β1) be the RHS of (11) and take its derivative w.r.t. β1:

f ′(β1) = e
β1
g (E(Y)−γ)+ 1

2g2
Var(Y)β2

1 (
E(Y)− γ

g
+

Var(Y)

g2
β1).

Let f ′(β1) = 0, we get β1 = g(γ−E(Y))
Var(Y) . Furthermore, we

can show that the second order derivative of f(β1),f ′′(β1), is
always greater than 0 (we omit the details for brevity). That

Algorithm Improved(c1, . . . , cg, H)
1. for t = 1, . . . , T
2. let Xi = Xi,t and Y = Yt =

∑g
i=1Xi;

3. each ci computes E(Xi) and Var(Xi) locally,
and sends them to H;

4. H sets E(Y) =
∑

E(Xi), Var(Y) =
∑

Var(Xi);
5. if (γ > E(Y) and Var(Y)

Var(Y)+(γ−E(Y))2 ≤ δ)
6. raise no alarm; continue to next time instance;
7. if (γ < E(Y) and 1− Var(Y)

Var(Y)+(E(Y)−γ)2 ≥ δ)
8. raise an alarm; continue to next time instance;
9. H sets β1 and β2 according to (12);
10. H broadcasts β1, β2 to all clients, and asks them

to compute and send back Mi(β1)′s and Mi(β2)′s;
11. H sets M(β1) =

∏
iMi(β1), M(β2) =

∏
iMi(β2);

12. if (e−β1γM(β1) ≤ δ)
13. raise no alarm; continue to next time instance;
14. if (1− e−β2γM(β2) ≥ δ)
15. raise an alarm; continue to next time instance;
16. H asks for Xi’s, applies EXACTD or EXACTC;

Fig. 3. The Improved method.

said, f(β1) (hence, the RHS of (11)) takes its minimal value
when β1 = g(γ−E(Y))

Var(Y) . Using a similar analysis, we can derive
the optimal β2 value. However, a constraint is that β1 > 0 and
β2 < 0. That said, also with the observation that f(β1) (the
corresponding function for β2) is monotonically increasing
when β1 > g(γ−E(Y))

Var(Y) (β2 < g(γ−E(Y))
Var(Y) respectively), let

θ > 0 be some small value,
β1 = g(γ−E(Y))

Var(Y) , β2 = −θ if γ >
∑g
i=1 E(Xi),

β1 = θ, β2 = g(γ−E(Y))
Var(Y) if γ <

∑g
i=1 E(Xi),

β1 = θ, β2 = −θ otherwise,

(12)

will help achieve tight bounds in (8) and (9).
This yields the Improved method, shown in Figure 3.

B. Improved Adaptive Threshold Monitoring

The Improved method needs at least g messages per time
instance, to reduce this, we again leverage on the adaptive
thresholds algorithm developed for work on DTM [16].

Consider (8) and (9), when we can continuously monitor if:

e−β1γ

g∏
i=1

M(β1) ≤ δ, or 1− e−β2γ

g∏
i=1

M(β2) ≥ δ (13)

efficiently, whenever the first inequality in (13) holds at a time
instance t, H knows for sure that Pr[Y > γ] ≤ δ at t and
no alarm should be raised at this time instance; whenever the
second inequality in (13) holds at t, H knows for sure that
Pr[Y > γ] > δ at t and an alarm should be raised. Monitoring
the first inequality in (13) is the same as monitoring if

g∑
i=1

lnMi(β1) ≤ ln δ + β1γ. (14)

We can treat (ln δ+β1γ) as the global constraint, and at time
t, let Vi = lnMi(β1) be the local deterministic score at client

ci; this becomes the exactly same formulation for the DTM
problem. We now apply the adaptive thresholds algorithm for
constraint monitoring from [16] to monitor (14). We denote
this monitoring instance as J1. At any time t, if J1 raises no
alarm, H knows that no alarm should be raised at t, since by
implication (14) holds, and hence Pr[Y > γ] ≤ δ.

Monitoring the 2nd inequality in (13) is to monitor if
g∑
i=1

lnMi(β2) ≤ ln(1− δ) + β2γ. (15)

By treating (ln(1− δ) +β2γ) as the global constraint, at time
t let Wi = lnMi(β2) be the local deterministic score at client
ci; then we again apply [16] to monitor (15). Denote this
monitoring instance as J2. Constrasting J1 to J2, when J2
does not report an alarm at t, it means that (15) holds, which
implies that Pr[Y > γ] > δ, so H needs to raise an alarm.

One choice is to let H run both J1 and J2. However, when
Pr[Y > γ] deviates from δ considerably, one of them will
almost always raise alarms, which results in a global poll and
adjusting the local filters [16]. So the total communication
cost will actually be higher than running just one. A critical
challenge is deciding which instance to run. A simple and
effective method is to make this decision periodically using
recent observations of Pr[Y > γ] and δ.

Suppose we set the period to k, and the current time instance
is t. For any i ∈ [t− k, t), let ei = 1 if Pr[Yi > γ] > δ and 0
otherwise; and e =

∑t−1
i=t−k ei. If e ≥ k/2, then in majority of

recent instances Pr[Yi > γ] > δ, hence (15) is more likely to
hold and J2 is most likely not going to raise alarms and more
efficient to run. If e < k/2, in majority of recent instances
Pr[Yi > γ] < δ, (14) is more likely to hold and J1 is most
likely not going to raise alarms and more efficient to run.

Another question is how to set the β1 and β2 values in (14)
and (15). Since they are derived directly from (13), which are
originated from (8) and (9), the same way of setting them
as shown in (12) will likely result in tight bounds, thus, less
violations to (14) and (15), making J1 and J2 efficient to run
respectively. However, this does require H to ask for E(Xi)’s
and Var(Xi)’s in every time instance, defeating the purpose of
using the adaptive thresholds algorithm to reduce the number
of messages. To remedy, we let H reset the optimal β1 and β2
values for the two adaptive thresholds instances periodically
in every k time instances, for a system parameter k.

The complete algorithm, Iadaptive, is shown in Figure 4.

V. SAMPLING METHODS TO ESTIMATE THE THRESHOLD

In either of the previous methods, when the algorithm fails
to definitively indicate that an alarm should be raised or not,
then likely Pr[Y > γ] is close to δ. If H needs to be sure that
the (γ, δ) threshold is crossed, all of Xi have to be retrieved,
and the exact algorithms in Section III-A are applied. But
in a lot of situations, this is expensive and impractical, due
to both the communication and computation costs involved.
Since uncertainties naturally exist in probabilistic data, it is
very likely that users are willing to approximate the conditions
under which the server raises the alarm, if approximation
guarantees can be provided.

Algorithm Iadaptive(c1, . . . , cg, H, k)
1. initialize (without starting) two adaptive thresholds

instances J1, J2 [16]: J1 monitors
∑
i Vi ≤ ln δ + β1γ,

and J2 monitors if
∑
iWi ≤ ln(1− δ) + β2γ;

2. H sets β1 to a small positive value, e = 0, starts J1;
3. for t = 1, . . . , T
4. let Xi = Xi,t, Y = Yt =

∑
Xi;

5. ci computes Vi = lnMi(β1), or Wi = lnMi(β2);
6. if (J1 is running and raises no alarm)
7. H raises no alarm; continue to line 11;
8. if (J2 is running and raises no alarm)
9. H raises an alarm; e = e+ 1; continue line 11;
10. H asks for Xi’s, applies EXACTD or EXACTC,

sets e = e+ 1 if an alarm is raised;
11. if (t mod k == 0)
12. stop the currently running instance Jx;
13. each ci sends E(Xi) and Var(Xi) to H;
14. reset β1 in J1 and β2 in J2 according to (12);
15. if (e ≥ k/2) set x = 2 else set x = 1;
16. H sets e = 0, starts Jx, broadcasts setup

information of Jx, and new β1 and β2 values;

Fig. 4. The Iadaptive method.

A natural choice and standard approximation is to leverage
random sampling. Technical details of adapting the most
general random sampling technique to our problem are pre-
sented in Appendix A, and designated MRS. It approximates
Pr[Y > γ] within ε with at least (1 − φ) probability, using
O(g/ε2 ln(1/φ)) bytes, for any ε, φ ∈ (0, 1).

A. Random Distributed ε-Sample

Instead of using the standard random sampling approach as
shown in Appendix A, we can leverage on a more powerful
machinery in our analysis to derive a new algorithm with the
same guarantee w.r.t. a fixed pair of thresholds (γ, δ), but it
is simpler to implement and works better in practice. Later, in
Section VI, we also show that it can handle multiple pairs of
thresholds simultaneously without incurring additional costs.

We can approximate the probabilities of raising an alarm by
a Monte Carlo approach where H asks each ci for a sample
xi from Xi. He then computes a value y =

∑g
i=1 xi; this is a

sample estimate from the distribution over Y , so Pr[Y > γ] =
Pr[y > γ]. Repeating this to amplify success is the random
distributed ε-sample (RDεS) algorithm in Figure 5.

Theorem 1 RDεS gives E(v/κ) = Pr[Y > γ] and Pr[|v/κ−
Pr[Y > γ]| ≤ ε] ≥ 1− φ, using O(gε2 ln 1

φ) bytes.

Proof: First, it is clear that in line 7 for any j ∈
[1, κ], yj =

∑g
i=1 xi,j is a random sample drawn from the

distribution of Y . Hence, E(v) = κ · Pr[Y > γ].
We next leverage on the concept of VC-dimension [33]. Let

P be a set of points, or more generally a distribution. Let I
be a family of subsets of P . Let P have domain R and let
I consist of ranges of the form of one-sided intervals (x,∞)
for any x ∈ R. The pair (P, I) is a range space and we say

Algorithm RDεS (c1, . . . , cg, H, t, ε, φ)
1. Xi = Xi,t, Y =

∑g
i=1Xi, Si = ∅, v = 0, κ = 1

ε2 ln 1
φ ;

2. for i = 1, . . . , g
3. for j = 1, . . . , κ
4. ci selects some value xi,j from Xi, into Si, at

random according to its underlying distribution;
5. ci sends Si to H;
6. for j = 1, . . . , κ
7. if (yj =

∑g
i=1 xi,j > γ) v = v + 1;

8. if (v/κ > δ) H raises an alarm;
9. else H raises no alarm;

Fig. 5. The RDεS method.

a subset X ⊂ P shatters a range space (P, I) if every subset
Xs ⊆ X can be defined as I ∩X for some I ∈ I. The size of
the largest subset X that shatters (P, I) is the VC-dimension
of (P, I). For one-sided intervals I, the VC-dimension for a
range space (P, I) using any set P is ν = 1.

An ε-sample for a range space (P, I) is a subset Q ⊂ P
that approximates the density of P such that:

max
I∈I

∣∣∣∣ |I ∩ P ||P |
− |I ∩Q|
|Q|

∣∣∣∣ ≤ ε. (16)

A classic result of Vapnik and Chervonenkis [33] shows that
if (P, I) has VC-dimension ν and if Q is a random sample
from P of size O((ν/ε2) log(1/φ)), then Q is an ε-sample of
(P, I) with probability at least 1− φ.

Every yj in line 7 can be viewed as a random point in P ,
the distribution of values for Y . The ranges we estimate are
one-sided intervals ((γ,∞) for any γ ∈ R and they have VC-
dimension ν = 1). If we let κ = O((1/ε2) ln(1/φ)), DTS gets
exactly an ε-sample and guarantees that |v/κ− Pr[Y > γ]| ≤
ε with probability at least 1− φ.

B. Deterministic Distributed ε-Sample

The sizes of samples in RDεS could be large, especially
for small ε and φ values, which drive up the communication
cost (measured in bytes). We introduce another sampling algo-
rithm, the deterministic distributed ε-sample (DDεS) method,
to address this problem, which is shown in Figure 6.

Algorithm DDεS (c1, . . . , cg, H, t, ε, φ)
1. Xi = Xi,t, Y =

∑g
i=1Xi, Si = ∅, v = 0;

2. ε′ = ε/g, κ = 1/ε′;
3. for i = 1, . . . , g
4. ci selects κ evenly-spaced xi,j’s from Xi into Si, s.t.

Si = {xi,1, . . . , xi,κ}, and
∫ xi,j+1

x=xi,j
Pr[Xi = x]dx = ε′;

5. ci sends Si to H;
6. let (1, . . . , κ)g define a g-dimensional space where each

dimension takes values {1, . . . , κ};
7. for each u ∈ (1, . . . , κ)g //u is a vector of g elements
8. if (

∑g
i=1 xi,ui > γ) v = v + 1;

9. if (v/κg > δ) H raises an alarm;
10. else H raises no alarm;

Fig. 6. The DDεS method.

Let X̃i represent Si in the DDεS algorithm. Clearly, X̃i

approximates Xi. Let Ỹ =
∑g
i=1 X̃i, i.e., for any u ∈

(1, . . . , κ)g (as in lines 6-8) insert
∑g
i=1 xi,ui into Ỹ , by the

construction of the DDεS, it is easy to see that:

Pr[Ỹ > γ] = v/κg. (17)

To analyze its error, consider the distribution Y6=j =∑g
i=1,i6=j Xi. Note that Y = Y6=j + Xj . We can claim the

following about the random variable Ỹj = Y6=j + X̃j :
Lemma 1 If X̃j is an ε-sample of (Xj , I) then |Pr[Ỹj >
γ]− Pr[Y > γ]| ≤ ε with probability 1.

Proof: The distribution of the random variable Ỹj has
two components Y6=j and X̃j . The first has no error, thus,

Pr[Ỹj > γ] =
1

|X̃j |

∑
x∈X̃j

Pr[x+ Y6=j > γ]

Each x ∈ X̃j shifts the distribution of the random variable
Y6=j , so part of that distribution that is greater than γ for xi ∈
X̃j will also be greater than γ for xi+1 ∈ X̃j (since xi+1 > xi
by definition). Let yi = γ − xi denote the location in the
distribution for Y6=j where xi causes y ∈ Y6=j to have Ỹj > γ.
Now for y ∈ [yi, yi+1] has y+xl ≤ γ if l < i and y+xl > γ
if l ≥ i. So y ∈ [yi, yi+1] only has error in Pr[y + x > γ]
(where x is either drawn from Xj or X̃j) for x ∈ [xi, xi+1].
Otherwise, for x ∈ [xl, xl+1], for l < i has Pr[y+x > γ] = 0
and for x ∈ [xl, xl+1], for l > i has Pr[y+x > γ] = 1. Since
for any i

∫ xi+1

x=xi
Pr[Xj = x] ≤ ε (because X̃j is an ε-sample

of (Xj , I)), we observe that:∫ yi+1
y=yi

Pr[Y6=j = y] 1
|X̃j |

∑
x∈X̃j | Pr[y + x > γ]− Pr[y +Xj > γ] | dy

≤ ε
∫ yi+1

y=yi

Pr[Y6=j = y]dy. Thus we use that

Pr[Ỹj > γ] =

∫
y

Pr[Y6=j = y]
1

|X̃j |

∑
x∈X̃j

Pr[y + x > γ]dy

to conclude that∣∣∣Pr[Y > γ]− Pr[Ỹj > γ]
∣∣∣ ≤∑|X̃j |i=0 ε

∫ yi+1

y=yi
Pr[Y 6=j = y]dy ≤ ε.

This bounds the error on Y with Ỹj where a single Xj is
replaced with X̃j . We can now define (Ỹj)l = Ỹj−Xl+X̃l =∑g
i=16=j,lXi + X̃j + X̃l. And then apply Lemma 1 to show

that if X̃l is an ε-sample of (Xl, I) then

|Pr[(Ỹj)l > γ]− Pr[Ỹj > γ]| ≤ ε.

We can apply this lemma g times, always replacing one Xi

with X̃i in the approximation to Y . Then the sum of error is
at most εg. This implies the following theorem.

Theorem 2 If for each ci constructs X̃i as an (ε/g)-sample
for (Xi, I) then for any γ |Pr[Ỹ > γ]−Pr[Y > γ]| ≤ ε with
probability 1.

Finally, by the definition of ε-samples on one-sided intervals
(refer to (16) and the fact that in our case I consists of
(γ,∞)’s), it is easy to see that:

Lemma 2 Using g/ε evenly spaced points, each Si in DDεS
gives X̃i that is an ε/g-sample of (Xi, I).

Combining with (17), we have:

Corrolary 1 DDεS gives |Pr[Ỹ > γ]− Pr[Y > γ]| ≤ ε with
probability 1 in g2/ε bytes.

A randomized improvement. We can improve the analysis
slightly by randomizing the construction of the α-samples for
each Xi. We choose xi,1 ∈ X̃i (the smallest point) to be at
random so that Pr[xi,1 = x] = 1

α Pr[Xi = x | x ≤ xα] where
xα is defined so

∫ xα
x=−∞ Pr[Xi = x]dx = α. Then each xi,j

still satisfies that
∫ xi,j+1

x∈xi,j Pr[Xi = x]dx = α. This keeps the
points evenly spaced, but randomly shifts them.

Now we can improve Theorem 2 by modifying the result
of Lemma 1. We can instead state that the error caused by X̃i

Hi = (Pr[Ỹj > γ]− Pr[Y > γ]) ∈ [−α, α].

Because of the random shift of X̃i places each xi,j ∈ X̃i with
equal probability as each point it represents in Xi, then for
I ∈ I we have that

E

[
|I ∩ X̃i|
|X̃i|

]
= E

[
|I ∩Xi|
|Xi|

]
and hence for any γ E[Pr[Ỹj > γ]] = E[Pr[Y > γ]]. Thus
E[Hi] = 0 and for all i ∆ = max{Hi} − min{Hi} ≤ 2α.
Since the Hi are independent, we can apply a Chernoff-
Hoeffding bound to the error on Ỹ . So,

Pr[|Pr[Ỹ > γ]− Pr[Y > γ]| ≥ ε] = Pr[|
g∑
i=1

Hi| ≥ ε]

≤ 2 exp(−2ε2/(g∆2)) ≤ 2 exp(−ε2/(2gα2)) ≤ φ,

when α ≤ ε/
√

2g ln(2/φ). This implies that:

Theorem 3 If each X̃i is of size (1/ε)
√

2g ln(2/φ) and is
randomly shifted, for any γ

Pr[|Pr[Ỹ > γ]− Pr[Y > γ]| < ε] > 1− φ.

This gives a better bound when the acceptable failure
probability φ satisfies 2 ln(2/φ) < g. We can modify DDεS
according to Theorem 3 to get the αDDεS method:

Corrolary 2 αDDεS guarantees Pr[|Pr[Ỹ > γ] − Pr[Y >
γ]| < ε] > 1− φ for any ε, φ, γ in (g/ε)

√
2g ln(2/φ) bytes.

C. Practical Improvements

Whenever a sample is required at any time t, for both RDεS
and DDεS algorithms when the local sample size |Si| at t
has exceeded the size required to represent the distribution
Xi, client ci simply forwards Xi to the server and the server
can generate the sample for Xi himself. This is a simple
optimization that will minimize the communication cost.

For the DDεS algorithm (in both its basic version and the
random-shift version), a drawback is that its computation
cost might become expensive for larger sample size or a
large number of clients. In particular, executing its lines 7-10

requires the calculation of κg sums. In practice, however, we
have observed that the DDεS algorithm can still give accurate
estimation if we test only a small, randomly selected subset of
possible combinations of local samples, instead of testing all
κg combinations, i.e., in line 7, we randomly select m < κg

such u’s and in line 9 we test v/m instead.

VI. EXTENSION

A. Weighted Constraint

Suppose the user is interested at monitoring Y =∑g
i=1 aiXi, for some weights {a1, . . . , ag}, ∀ai ∈ R+. All

of our results can be easily extended to work for this case.
The Improved and Iadaptive methods can be adapted based
on the observations that: 1) E(Y) =

∑g
i=1 aiE(Xi) and

Var(Y) =
∑g
i=1 a

2
i Var(Xi); 2) M(β) =

∏g
i=1Mi(aiβ).

The RDεS and DDεS algorithms can also be easily adapted.
For any sample j, instead of checking if

∑g
i=1 xi,j > γ, they

check if
∑g
i=1 aixi,j > γ, in line 7 and 8 of Figures 5 and 6

respectively. The exact methods can also be extended easily.
The discrete case is trivial, and the continuous case leverages
on the observation that ϕ(β) =

∏g
i=1 ϕ(aiβ).

B. Handling Multiple (γ, δ) Thresholds

The other nice aspect of RDεS and DDεS is that after the
server has gathered the samples Si’s from all clients and he
wants to check another threshold pair (γ′, δ′), he already has
sufficient information. H re-executes lines 6-9 of RDεS or
lines 6-10 of DDεS, with the new threshold pair (γ′, δ′). The
estimation of Pr[Y > γ′] is again within ε of δ′ with at least
probability 1− φ and 1 for RDεS and DDεS respectively, i.e.,
the same error ε and the failure probability φ (or 0) cover all
possible pairs (γ, δ) simultaneously in RDεS (or DDεS). This
is especially useful if there was a continuous set of threshold
pairs Γ×∆ such that any violation of (γ, δ) ∈ Γ×∆ should
raise the alarm. Then RDεS and DDεS are sufficient to check
all of them, and are correct within ε with probability at least
(1− φ) and 1, respectively, without additional costs.

This also means that RDεS delivers stronger guarantee than
the basic random sampling method in Appendix A. For the
basic random sampling method approach, a second pair of
thresholds (γ′, δ′) is a separate, but dependent problem. We
can also estimate Pr[Y > γ′] > δ′ with ε-error with failure
probability φ using the same sample as we used for estimating
Pr[Y > γ] > δ. But now the probability that either of the
thresholds has more than ε error is greater than φ. Using union
bound, we need a sample size of about O(1

ε2 log 1
εφ) from each

client to monitor 1
ε pairs of thresholds simultaneously, which

is more than the sample size O(1
ε2 log 1

φ) required by RDεS.
Small additional samples are also required for αDDεS to

monitor multiple pairs of thresholds simultaneously.

VII. EXPERIMENTS

All algorithms were implemented in C++. We used the GMP
library when necessary in calculating the moment generating
function Mi(β). We simulated the distributed clients and the
server, and executed all experiments in a Linux machine with

0 100 200 300 400
0

50

100

150

200

250

300

E(X
i,t

)

c
o
u
n
ts

WD

(a) WD.

0 10 20 30 40
0

500

1000

1500

2000

2500

E(X
i,t

)

c
o
u
n
ts

WS

(b) WS.

335 340 345 350
0

2000

4000

6000

8000

10000

12000

14000

E(X
i,t

)

c
o
u
n
ts

SS

(c) SS.

5 10 15 20 25 30 35
0

2000

4000

6000

8000

E(X
i,t

)

c
o

u
n

ts

TEM

(d) TEM.
Fig. 7. Distributions of E(Xi,t) for WD, WS, SS, and TEM, where i ∈ [1, g] and t ∈ [1, T].

an Intel Xeon E5506 cpu at 2.13GHz and 6GB memory.
Since the flat model is used, server-to-client communication is
broadcast and client-to-server communication is unicast. The
server-to-client broadcast counts as one message, regardless
the number of clients. Every client-to-server transmission is
one separate message, which may contain multiple values or
a pdf. Score and probability values are both 4 bytes.

Datasets and setup. We used real datasets from the SAMOS
project [27]. Raw readings from the research vessel Wecoma
were obtained which consists of approximately 11.8 million
records observed during a 9 month interval in 2010, from
March to November. Each record consists of the current time
and date, and the wind direction (WD), wind speed (WS), sound
speed (SS), and temperature (TEM) measurements which are
observed roughly every second (sometimes in less than a sec-
ond). The wind direction measures the directional degree of the
wind. The wind speed and sound speed are measured in meters
per second and the temperature is in degrees Celsius. We
observed that some measurements were erroneous or missing,
e.g., a temperature of 999 or -999 degrees Celsius. Currently
in SAMOS, to reduce communication and processing costs,
records are grouped every τ consecutive seconds (the grouping
interval), then replaced by one record taking the average
readings of these records on each measurement respectively,
which obviously loses a lot of useful information.

Instead, we derive pdfs (one per measurement) for records
in one grouping interval and assign these pdfs to an attribute-
level probabilistic tuple. There are different ways in how to
derive a pdf for a measurement attribute, for example, [6],
[7], [18], which is not the focus of this work. Without loss
of generality and to ease the presentation, we simply generate
a discrete pdf based on the frequencies of distinct values for
a given measurement attribute: the probability of a distinct
value is proportional to its frequency over the total number of
records in the current grouping interval.

Four measurements lead to four datasets WD, WS, SS, and
TEM, each with one probabilistic attribute. We were unable
to obtain additional datasets of large raw readings from other
research vessels, since in most cases they did not keep them
after reporting the average readings per grouping interval. As
a result, we simulate the effect of having multiple distributed
vessels by assigning to each vessel tuples from a given dataset.
Tuples are assigned in a round robin fashion to ensure and
preserve the temporal locality of observed measurements.

The default values of key parameters are: τ = 300, g = 10,
δ = 0.7, and γ is set to a value for a given dataset such

that over all T instances, there should be approximately 30%
alarms raised by an exact algorithm. The domains (in R) of
WD, WS, SS, and TEM are [0, 359], [0, 58.58], [335.25, 355.9],
and [5.88, 41.3] respectively. These datasets also give us quite
different distributions, allowing us to investigate different algo-
rithms thoroughly. To illustrate this, we plot the distributions
of E(Xi,t) where i = [1, g] and t = [1, T] in the default
setup in Figure 7. E(Xi,t) also presents interesting (but quite
different) temporal patterns and significant temporal changes
in 4 datasets, which is also quite natural given that they
precisely represent the large, real raw readings of different
measurements at sea for a long period. Due to the space
constraint, we omit these figures. That said, the default γ value
is 230g, 17g, 343g, and 19g for WD, WS, SS, and TEM. Xi,t

also has quite different sizes in 4 datasets. Under the default
setup, the average size of Xi,t is 41.15, 204.84, 20.5, and 20.98
for WD, WS, SS, and TEM respectively (they also change when
we vary τ , obviously). Under the default setup, T = 3932.

For each experiment, we vary one of the key parameters
while keeping the others fixed at their default values. For
any sampling method, the default sample size per client is
κ = 30. In the Iadaptive method, k = 0.3T by default. For
communication costs and running time, since T may vary, we
report the average cost of one time instance which is obtained
by dividing the corresponding total cost by T . Note that,
we calculate the total running time by counting the server’s
running time plus the maximum running time of one client
at each time instance. This ensures that the average running
time reflects the expected response time at each round (since
clients are running in parallel at distributed sites).

When most Xi,t have large variances, sampling methods
have the worst approximations. In our datasets, Var(Xi,t) in
WD are consistently large (much larger than other datasets)
which least favors our methods. WD also has a medium average
distribution size and a wide range of values (which makes it
the most interesting for a monitoring problem). Thus, we use
WD as the default dataset. For our problem, the naive solution
is to run EXACTD every time instance, which is clearly much
worse than the two baseline methods, Madaptive and Markov.
Between the two, Madaptive is always better. Hence, we only
show the results from Madaptive as the competing baseline.

Effect of γ. Figure 8 shows the communication costs of
Madaptive, Improved, and Iadaptive when we vary γ from
1500 to 3100. Both the number of messages and bytes reduce
for all algorithms while γ increases, since probabilistic tail
bounds become tighter for larger γ values. Nevertheless,

1500 2000 2500 3000
0

4

8

12

16

γ

n
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s

Madaptive Improved Iadaptive

(a) Messages.

1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

γ

n
u
m

b
e
r

o
f
b
y
te

s

Madaptive Improved Iadaptive

(b) Bytes.
Fig. 8. Communication: vary γ.

Figure 8(a) indicates that Iadaptive communicates the least
number of messages, and Figure 8(b) shows that Improved
sends the least number of bytes. Improved employs the most
sophisticated combination of various lower and upper bounds
(on both sides of E(Y)), thus it has the largest number of “cer-
tain” instances where retrieving Xi,t’s can be avoided, which
explains its best communication cost in bytes. Furthermore, it
maintains low bytes for all γ values (a wide range we have
tested), meaning that its pruning is effective on both sides
of E(Y). However, Improved does require at least one, to a
few, message(s) per client at every time instance, as shown in
Figure 8(a). When reducing the number of messages is the top
priority, Iadaptive remedies this problem. Figure 8(a) shows in
most cases, it uses only half to one-third number of messages
compared to Madaptive and Improved. In fact, it sends less
than one message per client per time instances in most cases.

Figure 9 shows the response time of these methods when γ
varies. Clearly, all methods take less time as γ increases, since
there are less number of instances where they need to call the
EXACTD method (which is costly). Improved and Iadaptive
are much more efficient than Madaptive. The dominant cost
in Madaptive and Improved is the calls to EXACTD, while
the dominant cost in Iadaptive is the calculation of the
moment generating function at the client. This explains why
the response time of both Madaptive and Improved improves
at a faster pace than that in Iadaptive when γ increases,
since this mainly reduces the number of calls to EXACTD, but
Iadaptive still needs to calculate moment generating functions.
Nevertheless, Iadaptive is still more efficient than Madaptive
in all cases. When γ = 3100, Iadaptive takes less than 0.001
second, and Improved takes close to 0.0003 second.

1500 2000 2500 3000
10

−4

10
−3

10
−2

γ

re
s
p
o
n
s
e
 t
im

e
 (

s
e
c
s
)

Madaptive Improved Iadaptive

Fig. 9. Response time: vary γ
0.5 0.6 0.7 0.8 0.9

10
−4

10
−3

10
−2

δ

re
s
p
o
n
s
e
 t
im

e
 (

s
e
c
s
)

Madaptive Improved Iadaptive

Fig. 10. Response time: vary δ

0.5 0.6 0.7 0.8 0.9
0

4

8

12

16

δ

n
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s

Madaptive Improved Iadaptive

(a) Messages.

0.5 0.6 0.7 0.8 0.9
0

500

1000

1500

2000

2500

3000

δ

n
u
m

b
e
r

o
f
b
y
te

s

Madaptive Improved Iadaptive

(b) Bytes.
Fig. 11. Communication: vary δ.

Effect of δ. When δ changes from 0.5 to 0.9 in Figure 11,

Madaptive benefits the most where both its messages and bytes
are decreasing, since its global constraint is linearly dependent
on δ, leading to a linearly increasing global constraint. Nev-
ertheless, Iadaptive still uses much fewer messages and bytes
than Madaptive, and Improved uses the least number of bytes,
in all cases. In terms of the response time, Figure 10 shows
that their trends are similar to what we have observed in Figure
9: Improved and Iadaptive are more efficient than Madaptive.

5 10 15 20

5

10

15

20

25

30

g

n
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s

Madaptive Improved Iadaptive

(a) Messages.

5 10 15 20
0

1000

2000

3000

4000

5000

g

n
u
m

b
e
r

o
f
b
y
te

s

Madaptive Improved Iadaptive

(b) Bytes.
Fig. 12. Communication: vary g.

Effect of g. We next investigate the impact of the number of
clients; Figure 12 shows the results on communication. Not
surprisingly, we see a linear correlation between the number
of messages and g in Figure 12(a) where Iadaptive consistently
performs the best. Figure 12(b) shows that all methods send
more bytes as g increases, nevertheless, both Improved and
Iadaptive send many fewer bytes than Madaptive.

5 10 15 20
10

−4

10
−3

10
−2

10
−1

g

re
s
p
o
n
s
e
 t
im

e
 (

s
e
c
s
)

Madaptive Improved Iadaptive

Fig. 13. Response time: vary g

150 300 450 600 750 900
10

−5

10
−4

10
−3

10
−2

τ

re
s
p
o
n
s
e
 t
im

e
 (

s
e
c
s
)

Madaptive Improved Iadaptive

Fig. 14. Response time: vary τ

All methods take longer to respond on average in Figure
13 for larger g values, due to the increasing cost in executing
EXACTD. However, the cost of Madaptive increases at a faster
pace than other methods, since it makes many more calls to
EXACTD. On the other hand, both Improved and Iadaptive
are highly efficient, even though EXACTD becomes quite
expensive for large g values, since they avoid calling EXACTD
in most cases. Even when g = 20, both of them only take less
than 0.005 seconds to respond.

150 300 450 600 750 900
6

8

10

12

14

16

τ

n
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s

Madaptive Improved Iadaptive

(a) Messages.

150 300 450 600 750 900
0

500

1000

1500

2000

2500

3000

3500

τ

n
u

m
b

e
r

o
f

b
y
te

s

Madaptive Improved Iadaptive

(b) Bytes.
Fig. 15. Communication: vary τ .

Effect of τ . When τ changes, Figure 15 shows the communi-
cation of various methods. Figure 15(a) shows that Iadaptive
reduces messages when τ increases, while the other two
methods sends more messages. Larger τ values lead to larger
pdfs, i.e., more values in Xi,t but each taking smaller prob-
ability value, which make the bounds based on the moment
generating functions tighter. But other bounds become looser,

0 20 40 60
0.92

0.94

0.96

0.98

1

κ

p
re

c
is

io
n

RDεS DDεS αDDεS

(a) Precision.

0 20 40 60
0.95

0.96

0.97

0.98

0.99

1

κ

re
c
a
ll

RDεS DDεS αDDεS

(b) Recall.

0 20 40 60
0

1000

2000

3000

4000

κ

n
u
m

b
e
r

o
f
b
y
te

s

EXACTD Sampling Methods

(c) Communication: bytes.

0 20 40 60
10

−5

10
−4

10
−3

10
−2

κ

re
s
p

o
n

s
e

 t
im

e
 (

s
e

c
s
)

EXACTD RDεS DDεS αDDεS

(d) Response time.
Fig. 16. Performance of the sampling methods: vary κ (sample size per client).

0.97

0.98

0.99

1

p
re

c
is

io
n

WD WS SS TEM

RDεS DDεS αDDεS

(a) Precision.
0.97

0.98

0.99

1

re
c
a
ll

WD WS SS TEM

RDεS DDεS αDDεS

(b) Recall.
0

5000

10000

15000

20000

n
u
m

b
e
r

o
f
b
y
te

s

WD WS SS TEM

EXACTD
Sampling Methods

(c) Communication: bytes.
10

−5

10
−3

10
−1

10
1

re
s
p
o
n
s
e
 t
im

e
 (

s
e
c
s
)

WD WS SS TEM

EXACTD

RDεS

DDεS

αDDεS

(d) Response time.
Fig. 17. Performance of the sampling methods: vary datasets.

since Xi,t becomes relatively more uniform for larger pdfs.
Hence, Iadaptive, relying only the moment generating function
bounds, is performing better for larger τ values, while others
degrade slowly, in terms of number of messages. In terms
of number of bytes, all methods send more bytes for larger τ
values, which is easy to explain: whenever a call to EXACTD is
necessary, Xi,t’s need to be communicated and they become
larger for larger τ values. Nevertheless, both Iadaptive and
Improved are still much more effective than Madaptive, e.g.,
even when τ = 900 (15 minutes grouping interval), Improved
only sends about 1000 bytes per time instance. Figure 14
shows that all methods take longer time to respond, since
EXACTD becomes more expensive due to the increase in
the pdf size. Improved and Iadaptive are clearly faster than
Madaptive. When τ = 900, both of them still only take less
than 0.005 second to respond.

Sampling methods. The RDεS method offers similar (and even
stronger, see Section VI-B) theoretical guarantee than the basic
random sampling method in Appendix A. Its performance in
practice is also better. Thus, we focus on studying RDεS, DDεS
and its randomized improvement, denoted as αDDεS. Note that
we have incorporated the practical improvements introduced
in Section V-C; m = 2 for both DDεS and αDDεS (which has
achieved sufficient accuracy for both methods).

In this set of experiments, we compare sampling methods
against the EXACTD method by running them over all T
time instances. We use the precision and recall metrics to
measure the approximation quality of sampling methods. Here,
precision and recall are calculated w.r.t. the set of true alarms
among the T instances, i.e., suppose there are a set A of 300
true alarms over T = 1000 time instances; an approximate
method may raise a set B of 295 alarms out of the 1000
instances, with 5 false positives and 10 false negatives. Then,
its precision is 290/295 and its recall is 290/300.

Figures 16(a) and 16(b) show that all sampling methods
improve their precisions and recalls when the sample size per
client κ increases. Theoretically, both αDDεS and DDεS should
always have better precisions and recalls than RDεS given the

same sample size. However, since we have incorporated the
practical improvement to αDDεS and DDεS to cut down their
computation cost, RDεS might perform better in some cases.
Nevertheless, Figures 16(a) and 16(b) show that in practice,
given the same sample size, αDDεS achieves the best precision
while DDεS has the best recall; and αDDεS always outperforms
RDεS. When κ = 30, they have achieved a precision and
recall close to or higher than 0.98. The sample size required
in practice to achieve good accuracy for all sampling methods
is clearly much less than what our theoretical analysis has
suggested. This is not surprising, since theoretical analysis
caters for some worst cases that rarely exist in real datasets.
In all remaining experiments, we use κ = 30 by default.

Figures 16(c) and 16(d) show that sampling methods result
in clear savings in communication (bytes) and computation
costs. They are especially useful in saving response time,
which is 1-2 orders magnitude faster than EXACTD and the
gap expects to be even larger for larger pdfs or more clients.
Note that all sampling methods have the same communication
cost given the same sample size (hence we only show one line
for all of them in Figure 16(c)). Also, they result in the same
number of messages as EXACTD.

We have also tested the sampling methods using all 4
datasets under the default setup, and the results are shown
in Figure 17; the trends are clearly similar to what we have
observed in Figure 16. Note that WS has quite large pdfs, thus,
EXACTD becomes very expensive on this dataset in terms of
both bytes communicated and running time, making sampling
methods more valuable under these situations (several orders
of magnitude more efficient than EXACTD).

Integrated methods. Lastly, we integrate our sampling meth-
ods with Madaptive, Improved, and Iadaptive to derive the
MadaptiveS, ImprovedS, and IadaptiveS methods, where in
any time instance a call to EXACTD is replaced with a call
to a sampling method. In particular, we use αDDεS as the
sampling method since it achieves the best trade-off between
efficiency and accuracy as shown in last set of experiments.
We tested these methods, along with their exact versions, on

0

5

10

15

20
n
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s

WD WS SS TEM

Madaptive, MadaptiveS
Improved, ImprovedS
Iadaptive, IadaptiveS

(a) Communication: messages.

10
1

10
2

10
3

10
4

n
u
m

b
e
r

o
f
b
y
te

s

WD WS SS TEM

Madaptive, MadaptiveS
Improved, ImprovedS
Iadaptive, IadaptiveS

(b) Communication: bytes.
10

−6

10
−4

10
−2

10
0

10
2

re
s
p
o
n
s
e
 t
im

e
 (

s
e
c
s
)

WD WS SS TEM

Madaptive, MadaptiveS
Improved, ImprovedS
Iadaptive, IadaptiveS

(c) Response time.
0.996

0.997

0.998

0.999

1

p
re

c
is

io
n

 a
n

d
 r

e
c
a

ll

WD WS SS TEM WD WS SS TEM

precision recall

MadaptiveS ImprovedS IadaptiveS

(d) Precision and recall.
Fig. 18. Performance of all methods: vary datasets.

all datasets using the default setup. The results are shown
in Figure 18. The trends are clear: 1) The approximate
versions have outperformed the corresponding exact versions
in both communication and response time consistently; 2) Our
methods have outperformed the baseline methods, Madap-
tive and MadaptiveS in all cases, by significant margins; 3)
Iadaptive and IadaptiveS are the best exact and approximate
methods in saving the number of messages, and Improved
and ImprovedS are the best methods in saving the number of
bytes. For example, Iadaptive and IadaptiveS use less than one
message per client per time instance on all datasets; Improved
and ImprovedS use less than 1000 and 100 bytes per time
instance respectively on WS that has an average pdf size of
204.84; 4) Iadaptive, IadaptiveS, Improved and ImprovedS are
efficient to run. In particular, IadaptiveS and ImprovedS are
extremely fast, e.g., Figure 18(c) shows that they take less
than 10−3 and 10−4 seconds to respond, respectively, in all
datasets. 5) αDDεS is highly effective. Figure 18(d) shows that
MadaptiveS, ImprovedS, and IadaptiveS have almost perfect
precisions and recalls on all datasets (more than 0.996 in all
cases). Note that their precisions and recalls are clearly better
than using sampling methods on every time instance, since
many alarms will already be caught certainly by Madaptive,
Improved, and Iadaptive, only a tiny fraction of undecided
cases will be then decided by the sampling methods.

VIII. RELATED WORK

To our knowledge, aggregate constraint monitoring on dis-
tributed data with uncertainty has not been explored before.

That said, ranking and frequent items queries were studied
on distributed probabilistic data in [20], [34]. Monitoring
centralized uncertain data for top-k and similarity queries were
studied in [11], [17], [35]. On the other hand, due to their
importance and numerous applications, constraint and func-
tion monitoring with thresholds on deterministic distributed
data were examined extensively, e.g., [4], [12], [16], [19],
[23], [29]. In our study, we have leveraged on the adaptive
thresholds algorithm for the deterministic (sum) constraint
monitoring from [16]. This choice is independent from the
design of our adaptive algorithms for the DPTM problem: any
adaptive algorithms for the (sum) constraint monitoring in
deterministic data can be used in our Iadaptive method.

Our study is also related to aggregation queries in proba-
bilistic data, e.g., [14], [15], [22], [26], [30], [32]. However,
monitoring both score and probability thresholds on aggregate
constraints continuously over distributed probabilistic data is
clearly different from these studies. Probabilistic threshold

queries in uncertain data are also relevant [3], [5], [24], [25],
as they are also concerned with the probability thresholds on
the query results, but they mostly focus on one-shot query
processing over centralized, offline probabilistic data.

Lastly, the basic sampling method MRS in Appendix A can
be viewed as a standard extension of the random sampling
technique [21], [33]. The RDεS and DDεS methods are related
to VC-dimensions and ε-samples [33] as we already pointed
out. The design principle behind the RDεS method, i.e., using
a Monte Carlo approach, has also been used for general query
processing in probabilistic data (e.g., [9], [13], [24] and more
in [31]). The DDεS and αDDεS are based on several intriguing
insights to the distinct properties of our problem.

IX. CONCLUSION

This paper presents a comprehensive study on the threshold
monitoring problem over distributed probabilistic data. We
focus on the sum constraint and explore a number of novel
methods that have effectively and efficiently reduced both
the communication and computation costs in monitoring the
user-specified constraint continuously. Extensive experiments
demonstrate the excellent performance and significant savings
achieved by our methods, compared to the baseline algorithms.
Many interesting directions are open for future work. Exam-
ples include but not limit to how to extend our study to the
hierarchical model that is often used in a sensor network, how
to monitor more sophisticated constraints (beyond sum and
linear combinations of sum constraints) continuously, and how
to handle the case when data from different sites are correlated.

REFERENCES

[1] P. Billingsley. Probability and measure. Wiley-Interscience, 1995.
[2] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic

queries over imprecise data. In SIGMOD, 2003.
[3] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter. Efficient

indexing methods for probabilistic threshold queries over uncertain data.
In VLDB, 2004.

[4] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for distributed
functional monitoring. In SODA, 2008.

[5] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. In VLDB, 2004.

[6] A. Deshpande, C. Guestrin, and S. Madden. Using probabilistic models
for data management in acquisitional environments. In CIDR, 2005.

[7] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networks. In VLDB, 2004.

[8] X. Dong, A. Y. Halevy, and C. Yu. Data integration with uncertainty.
In VLDB, 2007.

[9] T. Ge, D. Grabiner, and S. B. Zdonik. Monte carlo query processing of
uncertain multidimensional array data. In ICDE, 2011.

[10] L. Gruenwald, H. Chok, and M. Aboukhamis. Using data mining to
estimate missing sensor data. In ICDMW, 2007.

[11] M. Hua and J. Pei. Continuously monitoring top-k uncertain data
streams: a probabilistic threshold method. DPD, 26(1):29–65, 2009.

[12] L. Huang, M. Garofalakis, A. D. Joseph, and N. Taft. Communication-
efficient tracking of distributed cumulative triggers. In ICDCS, 2007.

[13] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine, and P. J.
Haas. MCDB: a monte carlo approach to managing uncertain data. In
SIGMOD, 2008.

[14] T. S. Jayram, S. Kale, and E. Vee. Efficient aggregation algorithms for
probabilistic data. In SODA, 2007.

[15] T. S. Jayram, A. McGregor, S. Muthukrishnan, and E. Vee. Estimating
statistical aggregates on probabilistic data streams. In PODS, 2007.

[16] S. Jeyashanker, S. Kashyap, R. Rastogi, and P. Shukla. Efficient
constraint monitoring using adaptive thresholds. In ICDE, 2008.

[17] C. Jin, K. Yi, L. Chen, J. X. Yu, and X. Lin. Sliding-window top-k
queries on uncertain streams. In VLDB, 2008.

[18] B. Kanagal and A. Deshpande. Online filtering, smoothing and proba-
bilistic modeling of streaming data. In ICDE, 2008.

[19] R. Keralapura, G. Cormode, and J. Ramamirtham. Communication
efficient distributed monitoring of thresholded count. In SIGMOD, 2006.

[20] F. Li, K. Yi, and J. Jestes. Ranking distributed probabilistic data. In
SIGMOD, 2009.

[21] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[22] R. Murthy, R. Ikeda, and J. Widom. Making aggregation work in
uncertain and probabilistic databases. TKDE, 23(8):1261–1273, 2011.

[23] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries
over distributed data streams. In SIGMOD, 2003.

[24] L. Perez, S. Arumugam, and C. Jermaine. Evaluation of probabilistic
threshold queries in MCDB. In SIGMOD, 2010.

[25] Y. Qi, R. Jain, S. Singh, and S. Prabhakar. Threshold query optimization
for uncertain data. In SIGMOD, 2010.

[26] R. Ross, V. S. Subrahmanian, and J. Grant. Aggregate operators in
probabilistic databases. J. ACM, 52(1):54–101, 2005.

[27] SAMOS. Shipboard Automated Meteorological and Oceanographic
System. http://samos.coaps.fsu.edu.

[28] A. D. Sarma, O. Benjelloun, A. Halevy, S. Nabar, and J. Widom.
Representing uncertain data: models, properties, and algorithms. The
VLDB Journal, 18(5):989–1019, 2009.

[29] I. Sharfman, A. Schuster, and D. Keren. A geometric approach
to monitoring threshold functions over distributed data streams. In
SIGMOD, 2006.

[30] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Probabilistic top-k and
ranking-aggregate queries. TODS, 33(3):1–54, 2008.

[31] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic Databases.
Synthesis Lectures on Data Management. Morgan & Claypool Publish-
ers, 2011.

[32] T. T. L. Tran, A. McGregor, Y. Diao, L. Peng, and A. Liu. Conditioning
and aggregating uncertain data streams: Going beyond expectations.
PVLDB, 3(1):1302–1313, 2010.

[33] V. Vapnik and A. Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. The. of Prob. App., 16:264–
280, 1971.

[34] S. Wang, G. Wang, and J. Chen. Distributed frequent items detection
on uncertain data. In ADMA, 2010.

[35] H. Woo and A. K. Mok. Real-time monitoring of uncertain data streams
using probabilistic similarity. In RTSS, 2007.

APPENDIX

A. The Random Sampling Approach

We first introduce the RS algorithm in Figure 19.

Algorithm RS (c1, . . . , cg, t,H, ε)
1. let Xi = Xi,t, Y = Yt =

∑g
i=1Xi, S = ∅, κ = 4/ε2;

2. for i = 1, . . . , g
3. send random sample Si = {xi,1, . . . , xi,κ} of Xi to H;
4. For any j ∈ [1, κ], H inserts

∑g
i=1 xi,j into S;

5. let s(γ) be the number of elements in S greater than γ;
6. return p̂(γ) = s(γ) · ε

2

4 ;

Fig. 19. The RS estimator

Lemma 3 The RS estimator satisfies E(p̂(γ)) = Pr[Y > γ],
and Pr[|p̂(γ)− Pr[Y > γ]| < ε] > 3

4 .
Proof: Let ε′ = ε/2, then κ in line 1 is 1/ε′2. Clearly,

by lines 2-5, S is a random sample of Y with size 1/ε′2.
Suppose Y ’s distribution is represented by a multi-set P of
elements P = {y1, . . . , yN} for some imaginary, sufficiently
large value N ∈ Z+. Let r(γ) be the number of elements in
P that is larger than γ, then Pr[Y > γ] = r(γ)/N .

Let p = 1/(ε′2N), we then define N i.i.d. random variables
Z1, . . . , ZN , such that Pr[Zi = 1] = p and Pr[Zi = 0] = 1−p.
We associate Zi with yi ∈ P . Then, S can be viewed as
being created by the following process: for each i ∈ [1, N],
insert yi into S if Zi = 1. For any γ, s(γ) in line 6 is
a random variable determined by the number of elements
in P larger than γ (each sampled with probability p) in S.
There are precisely r(γ) such elements in P , and we denote
them as {y`1 , . . . , y`r(γ)}, where y`i ∈ P . This means that:
s(γ) =

∑r(γ)
i=1 Z`i . Since each Zi is a Bernoulli trial, s(γ) is

a Binomial distribution B(r(γ), p). Immediately, E(s(γ)) =

p·r(γ). Hence, E(p̂(γ)) = E(ε′2N s(γ)
N) = 1

p
p·r(γ)
N = Pr[Y >

γ], and

Var(
s(γ)

p
) =

1

p2
Var(s(γ)) =

1

p2
r(γ)p(1− p)

<
r(γ)

p
= r(γ)ε′2N ≤ (ε′N)2.

Also, E(s(γ)/p) = r(γ). By Chebyshev’s inequality:
Pr[
∣∣∣ s(γ)p − r(γ)

∣∣∣ ≥ 2ε′N] ≤ 1
4 , which implies that:

Pr[1
N

∣∣∣ s(γ)p − r(γ)
∣∣∣ ≥ 2ε′] ≤ 1

4 . Given ε = 2ε′ and p =

1/(ε′2N), s(γ)pN = s(γ)ε2

4 , we have Pr[
∣∣∣ s(γ)ε24 − Pr[Y > γ]

∣∣∣ ≥
ε] ≤ 1

4 . Immediately, Pr[|p̂(γ)− Pr[Y > γ]| < ε] > 3
4 .

We can boost up Pr[|p̂(γ)−Pr[Y > γ]| < ε] to be arbitrarily
close to 1 by the MRS (median RS) Algorithm in Figure 20.

Algorithm MRS (c1, . . . , cg, t,H, ε, φ)
1. run 8 ln 1

φ independent instances RS (c1, . . . , cg, t,H, ε);
2. let p̂i(γ) be the ith RS’s output for i ∈ [1, 8 ln 1

φ];
3. set Ii be 1 if |p̂i(γ)− Pr[Y > γ]| < ε, and 0 otherwise;
4. let Ij be the median of I = {I1, . . . , I8 ln 1

φ
};

5. return p̂j(γ);

Fig. 20. The MRS estimator
Theorem 4 MRS returns p̂j(γ) s.t. Pr[|p̂j(γ)−Pr[Y > γ]| <
ε] > 1− φ, for any ε, φ ∈ (0, 1); it uses 32 g

ε2 ln 1
φ bytes.

Proof: By Lemma 3, each Ii outputs 1 with probability at
least 3

4 in line 3 in Figure 20. Let h = 8 ln 1
φ , by the common

form of the Chernoff Bound [21], Pr[
∑h
i=1 Ii < h

2] <

e−2h(
3
4−

1
2)

2

= φ. Pr[
∑h
i=1 Ii <

h
2] is exactly the probability

that less than half of Ii’s being 0. Since Ij is the median in
I (line 4), there is at least (1−φ) probability that Ij = 1. By
line 3, in this case, we must have |p̂j(γ) − Pr[Y > γ]| < ε.
The communication in bytes is straightforward.

Lastly, if p̂(γ) returned by MRS is greater than δ, H raises
an alarm at t; otherwise no alarm is raised.

http://samos.coaps.fsu.edu

