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Abstract

This document reviews the definition of the kernel distance, providing a gentle introduction tailored to a
reader with background in theoretical computer science, but limited exposure to technology more common
to machine learning, functional analysis and geometric measure theory. The key aspect of the kernel distance
developed here is its interpretation as an L2 distance between probability measures or various shapes (e.g.
point sets, curves, surfaces) embedded in a vector space (specifically an RKHS). This structure enables several
elegant and efficient solutions to data analysis problems. We conclude with a glimpse into the mathematical
underpinnings of this measure, highlighting its recent independent evolution in two separate fields.

1 Definitions

Let K : Rd ×Rd → R be a similarity function with the property that for any x , K(x , x) = 1, and as the distance
between x and y increases, K(x , y) decreases. A simple example of a kernel is the Gaussian kernel K(x , y) =
exp(− ‖x−y‖2

σ2 ).

Definition 1.1 (Kernel Distance [3, 4, 6–8, 15, 16]). Let P and Q be sets of points in Rd . The kernel distance
between P and Q is

D2
K(P,Q)¬

∑

p∈P

∑

p′∈P

K(p, p′) +
∑

q∈Q

∑

q′∈Q

K(q, q′)− 2
∑

p∈P

∑

q∈Q

K(p, q). (1.1)

Note that the kernel distance is defined in terms of its square. We will continue this formulation so as
to avoid the repeated use of square roots. While DK(P,Q) satisfies symmetry and one side of the identity of
indiscernables, it might not in general be a metric, or even a pseudometric. In Section 4 we will discuss specific
conditions on the similarity function K for which DK is a metric; in short, K must be a positive definite kernel.

2 From Similarities to Distances

The construction of the kernel distance involves a transformation from similarities to distances. This transfor-
mation takes the following general form. Given two “objects” A and B, and a measure of similarity between
them given by K(A, B), then the induced distance between A and B can be defined as the difference between
the self-similarities K(A, A) + K(B, B) and the cross-similarity K(A, B):

d(A, B) = K(A, A) + K(B, B)− 2K(A, B).

(Note that the multiplicative factor 2 is needed to ensure that d(A, A) = 0.) This construction can also be
motivated set-theoretically: we can express the cardinality of the symmetric difference S∆S′ between two sets
S, S′ (a measure of the distance between them) as the expression |S∆S′|= |S|+ |S′| −2|S ∩ S′|, where now the
cardinality of the intersection plays the role of the similarity function K .

∗This is a “gentle” introduction, which means that where necessary, it will sacrifice mathematical rigor for ease of exposition. The
cited references provide a more rigorous treatment of the material.
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2.1 Point-wise Similarities

Consider two points p, q. The kernel distance D2
K({p}, {q}) = K(p, p) + K(q, q) − 2K(p, q) = 2(1 − K(p, q))

(when K(p, p) = 1). Here, the expression 1− K(p, q) acts like a (squared) distance between the two points.
Alternately, we can view the kernel distance as given by the sum of the self-similarities of p and q, from which
we subtract the cross-similarity K(p, q). Note that

• if the two points are identical, this expression is zero. i.e x = y ⇒ DK(x , y) = 0.

• DK(p, q) = DK(q, p).

• As the points become more distant, the self-similarities remain the same while the cross-similarity de-
creases, which increases DK .

Formulating the kernel distance in terms of self- and cross-similarities allows us to recover the general form
of the definition. Let the cross-similarity of point sets P and Q be given by κ(P,Q) =

∑

p∈P

∑

q∈Q K(p, q). Then
we can write

D2
K(P,Q) = κ(P, P) +κ(Q,Q)− 2κ(P,Q).

2.2 Comparing data with uncertainty

Another way of interpreting the kernel distance comes from modeling data with uncertainty. If we have two
sets of points P and Q, a naive way of estimating their difference would be to compute the symmetric difference
|P∆Q|= |P|+ |Q|−2|P ∩Q|. Of course, in all but a few cases, this number would be meaningless, since |P ∩Q|
would equal zero unless points exactly coincided. We can replace the sharp similarity function k(p, q) = 1p=q by
the smoother similarity function K(p, q), where K(p, ·) represents uncertainty in the location of p (for example,
as a Gaussian). In this case, the above symmetric difference |P∆Q| then turns into D2

K(p, q).

3 Generalizations

One of the features of the kernel distance is that it can be generalized beyond point sets to distributions in
space and even to higher dimensional geometric structures like curves and surfaces, where it is often called
the current distance [16]. In this section we merely define the appropriate generalizations, giving some simple
intuition where appropriate. A deeper treatment of the mathematics underpinning these constructions will be
presented in Section 5.

3.1 Measures and Distributions

We can think of a point set as a set of δ-functions at each location, which gives us a representation of the point
set as a measure over Rd . We can then weight these functions, which allows us to compare weighted point sets.
Let P = (P, w) be a point set with an associated weight function w : P → R, and let Q = (Q, w′) be another
such weighted point set. We can define the cross-similarity κ(P,Q) =

∑

p∈P

∑

q∈Q w(p)K(p, q)w′(q) and then
as before define

D2
K(P,Q) = κ(P,P) + κ(Q,Q)− 2κ(P,Q).

In general, given two distributions overRd , we can define the kernel distance between them merely by replacing
the sum in the cross similarity by an integration. Specifically, if we are given two distributions µ,ν , we define
the cross-similarity as

κ(µ,ν) =

∫ ∫

K(p, q)dµ(p)dν(q)

after which DK can be defined in the usual manner.
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3.2 Curves

Let us now consider the case when P and Q are curves. For convenience we will assume that they are C1
continuous (i.e. continuous curves with well-defined tangent vectors everywhere). While it is possible to define
the kernel distance between them by treating the curves as (infinite) sets of points, this approach ignores the
fact that we would like to match not only the locations of points but the curve gradients.

Let tP(p) denote a unit tangent vector at the point p ∈ P on the curve. We can then define the pointwise
similarity between the two points p ∈ P and q ∈ Q as the function k(p, q) = K(p, q)〈tP(p), tQ(q)〉. The cross-
similarity between P and Q can then be defined as

κ(P,Q) =

∫

P

∫

Q

K(p, q)〈tP(p), tQ(q)〉. (3.1)

3.3 Surfaces

The same construction as above can be applied to orientable surfaces of co-dimension 1 in Rd , with the differ-
ence being that we use a unit normal at a point (which is a vector), in place of its tangent.

4 Reproducing Kernel Hilbert Spaces

Not all similarity functions K yield a distance metric. Consider the box similarity given by

K(x , y) =

(

1 ‖x − y‖ ≤ 2

0 otherwise.

Let A be a set of three points all lying close to the origin in R1. Fix B to be the set {(−1− ε), (1+ ε), (0)}. It is
easy to verify that D2

K(A, B) =−2, and thus DK(A, B) is not even defined.
There is a simple sufficient condition on K to ensure that DK to be a metric:

K must be a positive definite kernel.

For those well-versed in the theory of reproducing kernel Hilbert spaces [1], this observation follows easily by
replacing the K(x , y) terms by the appropriate inner products in the feature space. For those unfamiliar with
this theory, an explanation follows. The material here is cobbled together from Daumé’s[2] and Jordan’s[9]
notes on RKHSs.

4.1 Positive Definite Matrices

Positive definite kernels generalizes the idea of a positive definite matrix. Let us start with a simple matrix
kernel: K(x , y) = x>Ay . If we set the matrix A to be identity, we get the standard Euclidean inner product
〈x , y〉. In general however, we can set A to be any positive definite matrix and guarantee that the resulting
function x>Ay satisfies the properties of an inner product.

A lifting map. Any positive definite matrix A can be decomposed as A= B>B. Substituting this back into the
bilinear form x T Ay , we get the expression x T BT B y , which we can rewrite as 〈Bx , B y〉. If we now define the
linear map Φ(x) = Bx , we can rewrite the original matrix kernel as

K(x , y) = 〈Φ(x),Φ(y)〉.

There is further structure in the mapping Φ(x) that we can explore. Since K is symmetric as well as real-valued,
it can be written in the form K = QΛQ> where the columns of Q are eigenvectors of K , and Λ is a diagonal
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matrix consisting of the eigenvalues of K . Since K is positive definite, all the elements of Λ are positive, and
we can thus set B = Λ1/2Q>, which means that each coordinate of Φ(x) is of the form

p
λ〈v, x〉, where v is an

eigenvector of K and λ is the associated eigenvalue. More generally, this means that the eigenvectors of K form
an orthonormal basis describing the vector space Φ(x).

4.2 General Positive Definite Kernels

If K is a general function (i.e not a matrix), much of the above theory carries over in a similar manner, where
instead of vector spaces we now reason about function spaces.

A note on function spaces.

While not entirely rigorous, it is helpful to think of function spaces as merely infinite-dimensional vector spaces. A
function f : X → R can be thought of as a vector whose “dimensions” are indexed by elements of X , so that f (x) = c can
be translated as “the xth coordinate of the vector f is c.” Similarly, the function K : X × X → R can be interpreted as a
matrix indexed by elements of X where the (x , y)th entry is K(x , y).
Integration can then be viewed as a product. For example, the integral

∫

K(x , y) f (y)d y can be interpreted as a general-
ized matrix product between the “matrix” K and the “vector” f . We will also look at “eigenfunctions” as the generalization
of eigenvectors.

We first define a positive definite kernel.

Definition 4.1. A function K : X ×X → R is a positive definite kernel if for any n and any set {x1, x2, . . . , xn} ⊂ X ,
the matrix A= (ai j = K(x i , x j)) is positive definite.

Any positive definite kernel induces a Hilbert space (the reproducing kernel Hilbert space) H. There are two
different constructions yielding H. We will focus here on the method based on Mercer’s theorem, since that
yields an orthonormal representation of H that will be useful.

A matrix K defines the linear operator TK( f ) = K f , here operating on a vector f and producing another
vector. Similarly, a positive definite kernel K defines a linear operator on functions given by

[TK( f )](·) =
∫

K(·, y) f (y)d y.

Again in this continuous setting, TK is an operator that now takes a function f as input and returns a function
[TK( f )](·). The operator TK is linear by virtue of the linearity of the integral, and so it has eigenvalues and
eigenfunctions.

Mercer’s theorem can then be seen as the analog of the above decomposition of the positive definite matrix
A as B>B, B = Λ1/2Q>.

Theorem 4.1 (Mercer). If K is a continuous symmetric positive definite kernel, then there is an orthonormal basis
{vi} consisting of eigenfunctions of TK (with associated eigenvalues λi) such that

K(x , y) =
∞
∑

0

λi vi(x)vi(y).

The trick here is in thinking of vi(x) as the xth “coordinate” of the “eigenvector” vi .
The main consequence of this result is that we can now describe H as the vector space spanned by the vi ,

with the associated inner product given by




∑

ci vi ,
∑

d j v j
�

H =
∑ cidi

λi
.

By scaling the coordinates ci by
p

λi , we can use the Euclidean inner product instead, giving us a Euclidean
space. We summarize with the following statement, which captures the key properties of positive definite
kernels.
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Theorem 4.2. For any positive definite kernel K : X × X → R, there exists a Euclidean space H and a lifting map
Φ : X →H such that

K(x , y) = 〈Φ(x),Φ(y)〉.

4.3 The Kernel Distance as a Hilbertian metric

We can now rewrite the kernel distance DK in terms of the associated lifting map Φ. Using the linearity of the
inner product, it is easy to show that

DK(P,Q) =









∑

p∈P

Φ(p)−
∑

q∈Q

Φ(q)







.

This of course immediately implies that DK is a pseudometric. A further technical condition on K is needed to
ensure that DK(P,Q) = 0⇒ P =Q; the reader is referred to [14] for more details.

There are four important consequences of this recasting of the kernel distance.

1. The kernel distance embeds isometrically in a Euclidean space. While in general H might be infinite
dimensional, the Hilbert space structure implies that for any finite collection of inputs, the effective
dimensionality of the space can be reduced via projections to a much smaller finite number [10, 12, 17].

2. Most analysis problems are “easier” in Euclidean spaces. This includes problems like near-neighbor find-
ing and clustering. The embedding of the kernel distance in such a space means that we now have access
to a number of tools for analyzing collections of shapes. Indeed, a complicated shape can be represented
as a single vector Φ̄(P) =

∑

p∈P Φ(p) in the RKHS [13].

3. The embedding “linearizes” the metric by mapping the input space to a vector space. This is indeed the
primary reason for the popularity of kernel methods in machine learning. In the context of shape analysis,
it means that many problems in the analysis of shape (finding consensus, averages, etc) can be solved
easily by exploiting the linear structure of the lifted space.

4. The complexity of computing the kernel distance is reduced significantly. If we assume that H is approx-
imated to within the desired error by a space of fixed dimension ρ, then in this space, computing the
kernel distance between two point sets of total size n takes O(nρ) time, instead of Θ(n2) time. Since ρ
will in general be logarithmic in n (or even independent of n), this is a significant improvement.

5 Mathematical Motivation

There are two distinct motivations that yield the kernel distance as formulated in (1.1). The first motivation
is based on the desire to metrize distributions, to construct a metric on distributions such that a convergent
sequence with respect to this distance metric also converges in distribution. The second motivation comes from
shape analysis in an attempt to use a geometric measure-theoretic view of shapes to define a distance between
them that does not rely on explicit correspondences between features of shapes.

Both of these approaches rely on the idea of “test functions” and “dual spaces”, which we explore next.

5.1 Dual Vector Spaces And Test Functions

Let V be a vector space, and let f be a continuous linear functional over V . In other words, f is a linear
function that takes an element v ∈ V , and returns a scalar f (v). The space of all such f is itself a vector space,
and is called the dual of V , denoted V ∗. A very simple discrete example has V and V ∗ represent the columns
and rows, respectively, of a fixed matrix. We can use structures defined on V ∗ to construct similar structures on
V ; this is particularly useful when V is an ill-formed space, but V ∗ has more structure.
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Consider another simple example. Let V be Rd , in which case the dual space V ∗ is also Rd . Suppose we wish
to define a norm on V . We can do this via pullback from a norm on V ∗ by the following construction:

‖v‖= sup
w∈V ∗,‖w‖≤1

|w(v)|.

It is not hard to verify that this indeed satisfies the properties of a norm. In fact, if we set the norm on V ∗ to be
an `p norm with p ≥ 1, then the resulting norm ‖ · ‖ on V is `q, where 1/p+ 1/q = 1 (the dual norm).

Notice that choosing different subsets of V ∗ (by changing the norm) allows us to generate different norms
on V . The case of `2 is particularly instructive. Here, the set of all w such that ‖w‖ ≤ 1 is the set of all vectors
in the unit ball, and since |w(v)| is increased by making w larger, we can assume without loss of generality
that ‖w‖= 1, which means that we are considering all directions in Rd . In this case, w(v) is merely 〈w, v〉, the
projection of v onto the direction w, and so the maximization over w returns precisely the `2 norm of v.

Norms yield metrics in the usual way, by setting d(x , y) = ‖x − y‖. Continuing the same construction, we
can define a metric on V by the construction

d(v, v′) = sup
w∈V ∗,‖w‖≤1

|w(v)−w(v′)|.

Again returning to our example in `2, this has a nice geometric interpretation. Since each w is a direction in
Rd , the expression being maximized is merely the length of the vector vv′ when projected onto w. Clearly,
maximizing this yields the actual `2 distance between v and v′.

5.2 Metrizing Measures

With the above construction in mind, we can now build a metric over probability measures. The general
construction, deemed an integral probability measure by Muller [11], takes two probability measures P and Q
over a space M , and defines the distance1

dF(P,Q) = sup
f ∈F

�

�

�

�

∫

f dP −
∫

f dQ

�

�

�

�

.

Here, the class F is the dual space to the space of probability measures, and consists of a class of real-valued
bounded measurable functions over M . We can think of

∫

f dP as the action f (P) of f on P; this is linear since
the integral operator is linear.

Many interesting distances between distributions can be generated by picking a particular subset of F. Some
well-known cases:

• If F = { f | ‖ f ‖∞ ≤ 1}, then dF(P,Q) is the `1 distance between P and Q.

• If M , the domain of f , is endowed with a metric ρ, and we define ‖ f ‖L = sup{ f (x)− f (y)
ρ(x ,y) , x 6= y}, then the

resulting distance is the Kantorovich metric, also known as the Earth mover’s distance [5].

Finally, and this is the case of relevance here, we can set F = { f | ‖ f ‖H ≤ 1}, where H is a reproducing
kernel Hilbert space. In this setting, it can be shown that the resulting distance can be rewritten as

DK(P,Q) =













∫

K(·, x)dP(x)−
∫

K(·, x)dQ(x)













H

which, after some expansion and simplification, yields the familiar form

D2
K(P,Q) =

∫ ∫

K(x , y)dP(x)dP(y) +

∫ ∫

K(x , y)dQ(x)dQ(y)− 2

∫ ∫

K(x , y)dP(x)dQ(y)

1Note that
∫

f dP is a sparser notation for the more explicit representation of the intregral
∫

x
f (x)P(x)d x or

∫

f (x)dP(x).
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which brings us back to (1.1).
Note that by choosing the measures P and Q appropriately, we can generate the different variants of the

kernel distance described in Section 3.

5.3 Currents: Distributions with geometry

We now move to the problem of comparing shapes, specifically point sets, curves and surfaces. The key view-
point we will take is to treat the shape S as a probability measure. For point sets, this approach is easy to see,
and for curves and surfaces, an appropriate discretization yields the desired probability measure. Once this is
done, we can invoke the techniques from Section 5.2 to define a distance metric between two shapes.

For point sets, this construction is sufficient; however, curves and surfaces have more information than merely
the spatial location of points. The well known example comparing the Hausdorff distance to the Frechét dis-
tance for comparing curves illustrates that a proper comparison of curves requires not only spatial information,
but also information about orientation, and this continues to be true for surfaces.

Geometric measure theory is the discipline that develops the tools to do this, and develops the idea of a cur-
rent as the geometric measure-theoretic analog of a surface that elegantly encodes the orientation information
of the surface. The idea of normal vectors generalizes to higher dimensions with k-forms.

Wedge Products, k-vectors, and k-forms

The cross product of two vectors in R3 is a well-defined function whose main characteristics are that v × v = 0 and
v × w + w × v = 0. The wedge product (denoted by ∧) generalizes the cross product to arbitrary vectors v ∈ Rd . It has
the property that v ∧ v = 0 (which implies that v ∧ w = −w ∧ v a). A simple k-vector is defined as the wedge product
of k vectors: w = v1 ∧ v2 · · · ∧ vk, and the space of all linear combinations of k-vectors is denoted ∧k(Rd). Note that
∧1(Rd) = Rd . k-vectors generalize the idea of a tangent vector, by capturing in one expression a k-dimensional subspace
of the tangent space at a point.
A differential form can now be understand as a linear functional over the k-vectors. Formally, a k-formω is an assignment
of a linear functional ωx at each point x on the manifold. This linear functional ωx is a linear mapping from ∧k(Rd) to
R, and the space of all such functionals is denoted ∧k(Rd). Since k-forms and k-vectors are dual by construction, we will
use the expression ω(v) or 〈w, v〉 to denote the induced action of one on the other.

aThis can be shown by expanding (w+ v)∧ (w+ v) = 0.

We can integrate a k-form ω over a k-dimensional oriented manifold S. Using dS to denote the appropriate
“tangent space displacement” (a generalized tangent vector) on the surface, we can write this integral as
∫

ω(dS) or
∫

ωdS when the action is understood. By integrating on the k-vector dS at each point p ∈ S,
instead of just the point p, we capture the orientation information of the manifold S, not just the spatial
information. By duality, this can be seen as an action of S on ω, and leads us (finally) to the definition of a
current:

Definition 5.1. A k-current is a continuous linear functional over the space of k-forms.

Currents generalize oriented manifolds. They allow us to account for irregularities and sharp edges in a
manifold, at the cost of including elements that may not look like standard manifolds. Very crudely, the
relation between currents and oriented manifolds is akin to the relationship between (Schwarz) distributions
and probability measures.

We can now define a norm on the space of currents much as before, by placing a norm on the space of
k-forms and pulling it back. The equivalent of the total variation norm (by computing supω(v),‖ω‖∞ ≤ 1)
is called the mass norm; unfortunately, much like the total variation, it does not capture variations between
currents in a useful manner. For example, given two curves with disjoint support, the distance induced by the
mass norm is 2, irrespective of the actual shape of the curves. This is similar to how the total variation distance
between two distributions is always 2 if they have disjoint support.
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By setting the space of test functions to be the unit ball in an RKHS as before, we retrieve the kernel distance
as described in Section 3. For instance, consider two curves S and T so the k-vectors dS and dT are the tangent
vectors tS(·) and tT (·). We can expand

DK(S, T ) =













∫

K(·, x)dS(x)−
∫

K(·, x)dT (x)













H

as

D2
K(S, T ) =

∫ ∫

(dS(x))T K(x , y)dS(y) +

∫ ∫

(dT (x))T K(x , y)dT (y)− 2

∫ ∫

(dS(x))T K(x , y)dT (y)

=

∫

S

∫

S

(tS(x))
T K(x , y)tS(y) +

∫

T

∫

T

(tT (x))
T K(x , y)tT (y)− 2

∫

S

∫

T

(tS(x))
T K(x , y)tT (y),

where (·)T represent a vector transpose. Since K(x , y) is a scalar, we can factor it out of each term

D2
K(S, T ) =

∫

S

∫

S

K(x , y)〈tS(x), tS(y)〉+
∫

T

∫

T

K(x , y)〈tT (x), tT (y)〉 − 2

∫

S

∫

T

K(x , y)〈tS(x), tT (y)〉,

precisely as in the similarity term from (3.1). This derivation of DK has led to the alternate name current
distance.
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