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This abstract considers geometric inference from a noisy point cloud using the kernel distance. Recently
Chazal, Cohen-Steiner, and Mérgot [2] introduced distance to a measure, which is a distance-like function
robust to perturbations and noise on the data. Here we show how to use the kernel distance in place of the
distance to a measure; they have very similar properties, but the kernel distance has several advantages.

e The kernel distance has a small coreset, making efficient inference possible on millions of points.
e Its inference works quite naturally using the super-level set of a kernel density estimate.
e The kernel distance is Lipschitz on the outlier parameter o.

Kernels, Kernel Density Estimates, and Kernel Distance ‘

A kernel is a similarity measure K : R? x R? — R*; more similar
points have higher value. For the purposes of this article we will focus
on the Gaussian kernel defined K (p, z) = o2 exp(—||p — z||?/20?).

A kernel density estimate represents a continuous distribution func-
tion over R¢ for point set P C R%:

KDEp(z) = ’]13| Z K(p,x).
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More generally, it can be applied to any measure p (on R?) as sity estimates on 2000 points.

KDE, (r) = prRd K(p,z)u(p)dp.
The kernel distance [3, 5] is a metric between two point sets P and (), or more generally two measures
and v (as long as K is positive definite, e.g. the Guassian kernel). Define x(P, Q) = ﬁ ﬁ ZpeP quQ K(p,q).

Then the kernel distance is defined

x(P.Q) = VK(P,P) +r(Q,Q) — 2k(P,Q).

For the kernel distance D (u, v) between two measures p and v, we define x more generally as x(u, ) =
fp cRd fq cra K (p, @) p(p)p(q)dpdg. When the points set () (or measure v) is a single point z (or unit Dirac
mass at x), then the important term in the kernel distance is x(P, z) = KDEp(z) (or £(p, ) = KDE,(x)).

Distance to a Measure: A Review

Let .S be a compact set, and fg : R% — R be a distance function to S. As explained in [2], there are a few
properties of fg that are sufficient to make it useful in geometric inference such as [1]:

(F1) fs is 1-Lipschitz: for all z,y € R, |fs(z) — fs(y)| < ||z — y]|.
(F2) f2is 1-semiconcave: the map z € R? — (fs(z))? — ||z is concave.

Given a probability measure 1 on R% and let mg > 0 be a parameter smaller than the total mass of j, then
the distance to a measure d, ,, : R" — R* [2] is defined for any point x € R? as

mo 1/2 )
Ay () = <1 / (6M,m(x))2dm> . where 8 m(z) = inf {r > 0: u(By(z)) < m} .

mO m=0



and where B,.(x) is a ball of radius r centered at  and B,.(z) is its closure. It has been shown in [2] using
dy,m, in place of fg satisfies (F1) and (F2), and furthermore has the following stability property:

(F3) [Stability] If 4z and 4’ are two probability measures on R? and mo > 0, then ||dy,m, — dpr my || oo

\/i,ToWQ (i, 1), where W5 is the Wasserstein distance between the two measures.
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Our Results

We demonstrate (with proof sketches) that similar properties hold for the kernel distance defined as dp(x) =
D (P, x). These properties also hold on d,,(-) = Dg (1, -) for a measure y in place of P.
(K1) dp is 1-Lipschitz.
This is implied by d% being 1-semiconcave.
(K2) d% is 1-semiconvave: The map = — (dp(z))? — ||z||? is concave.

In any direction, the second derivative of (dp(x))? is at most that of a single kernel K (p, x) for any
p, and this is maximized at z = p. The second derivative of ||z||? is 2 everywhere, thus the second
derivative of (dp(z))? — ||z||? is non-positive, and hence is concave.

(K3) [Stability] If P and @ are two point sets in R?, then ||dp — dgllee < Dk (P, Q).

Using that Dy (-, ) is a metric, we compare Dy (P, Q), Dg (P, x) and Dk (Q, z). Note: Wasserstein
and kernel distance are different integral probability metrics [5], so (F3) and (K3) are not comparable.

Advantages of the kernel distance.
e There exists a coreset Q C P of size O(((1/¢)/log(1/25))?¥(@+2)) [4] such that ||dp — dg]|ee < €
and |[KDEp —KDE(||oc < € with probability at least 1 — §. The same holds under a random sample of
size O((1/e%)(d+1og(1/9))) [3]. In ongoing work, this allows us to operate with | P| = 100,000,000.

Bottleneck distance between persistence diagrams dp(Dgm(KDEp), Dgm(KDEq)) < ¢ is preserved.

e We can perform geometric inference on noisy P by considering the superlevel sets of KDEp; the 7-
superlevel set of KDEp is {x € R? | KDEp(z) > 7}. This follows since dp(-) is monotonic with
KDEp(+); as dp(x) gets smaller, KDEp(z) gets larger. This arguably is a more natural interpretation
than using the sublevel sets of some fg. Figure 1 shows an example with 25% of P as noise.

e Both the distance to a measure and the kernel distance have parameters that control the amount of
outliers allowed (my for d,; ,, and o for dp). For dp the smoothing effect of o has been well-studied,
and in fact dp(z) is Lipschitz continuous with respect to o (for o greater than a fixed constant).
Alternatively, dp,, (), for fixed z, is not known to be Lipschitz (for arbitrary P) with respect to m
and fixed x; we suspect that the Lipschitz constant for my is a function of A(P) = max,, ycp |[[p—p/||.
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