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Abstract. We consider smoothed versions of geometric range spaces, so
an element of the ground set (e.g. a point) can be contained in a range
with a non-binary value in [0, 1]. Similar notions have been considered
for kernels; we extend them to more general types of ranges. We then
consider approximations of these range spaces through ε-nets and ε-
samples (aka ε-approximations). We characterize when size bounds for
ε-samples on kernels can be extended to these more general smoothed
range spaces. We also describe new generalizations for ε-nets to these
range spaces and show when results from binary range spaces can carry
over to these smoothed ones.

1 Introduction

This paper considers traditional sample complexity problems but adapted to
when the range space (or function space) smoothes out its boundary. This is
important in various scenarios where either the data points or the measuring
function is noisy. Similar problems have been considered in specific contexts of
functions classes with a [0, 1] range or kernel density estimates. We extend and
generalize various of these results, motivated by scenarios like the following.

(S1) Consider maintaining a random sample of noisy spatial data points (say
twitter users with geo-coordinates), and we want this sample to include a
witness to every large enough event. However, because the data coordinates
are noisy we use a kernel density estimate to represent the density. And
moreover, we do not want to consider regions with a single or constant
number of data points which only occurred due to random variations. In
this scenario, how many samples do we need to maintain?

(S2) Next consider a large approximate (say high-dimensional image feature [1])
dataset, where we want to build a linear classifier. Because the features are
approximate (say due to feature hashing techniques), we model the classifier
boundary to be randomly shifted using Gaussian noise. How many samples
from this dataset do we need to obtain a desired generalization bound?

(S3) Finally, consider one of these scenarios in which we are trying to create an
informative subset of the enormous full dataset, but have the opportunity to
do so in ways more intelligent than randomly sampling. On such a reduced
dataset one may want to train several types of classifiers, or to estimate the
density of various subsets. Can we generate a smaller dataset compared to
what would be required by random sampling?
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The traditional way to study related sample complexity problems is through
range spaces (a ground set X, and family of subsets A) and their associated
dimension (e.g., VC-dimension [25]). We focus on a smooth extension of range
spaces defined on a geometric ground set. Specifically, consider the ground set
P to be a subset of points in Rd, and let A describe subsets defined by some
geometric objects, for instance a halfspace or a ball. Points p ∈ Rd that are
inside the object (e.g., halfspace or ball) are typically assigned a value 1, and
those outside a value 0. In our smoothed setting points near the boundary are
given a value between 0 and 1, instead of discretely switching from 0 to 1.

In learning theory these smooth range spaces can be characterized by more
general notions called P -dimension [22] (or Pseudo dimension) or V -dimension [24]
(or “fat” versions of these [2]) and can be used to learn real-valued functions for
regression or density estimation, respectively.

In geometry and data structures, these smoothed range spaces are of interest
in studying noisy data. Our work extends some recent work [12, 21] which ex-
amines a special case of our setting that maps to kernel density estimates, and
matches or improves on related bounds for non-smoothed versions.

Main contributions. We next summarize the main contributions in this paper.

• We define a general class of smoothed range spaces (Sec 3.1), with application
to density estimation and noisy agnostic learning, and we show that these
can inherit sample complexity results from linked non-smooth range spaces
(Corollary 1).

• We define an (ε, τ)-net for a smoothed range space (Sec 3.3). We show how
this can inherit sampling complexity bounds from linked non-smooth range
spaces (Theorem 2), and we relate this to non-agnostic density estimation
and hitting set problems.

• We provide discrepancy-based bounds and constructions for ε-samples on
smooth range spaces requiring significantly fewer points than uniform sam-
pling approaches (Theorems 4 and 5), and also smaller than discrepancy-
based bounds on the linked binary range spaces.

2 Definitions and Background

Recall that we will focus on geometric range spaces (P,A) where the ground
set P ⊂ Rd and the family of ranges A are defined by geometric objects. It is
common to approximate a range space in one of two ways, as an ε-sample (aka
ε-approximation) or an ε-net. An ε-sample for a range space (P,A) is a subset
Q ⊂ P such that

max
A∈A

∣∣∣∣ |A ∩ P ||P |
− |Q ∩A|

|Q|

∣∣∣∣ ≤ ε.
An ε-net of a range space (P,A) is a subset Q ⊂ P such that

for all A ∈ A such that
|P ∩A|
|P |

≥ ε then A ∩Q 6= ∅.

2



Given a range space (P,A) where |P | = m, then πA(m) describes the maximum
number of possible distinct subsets of P defined by some A ∈ A. If we can
bound, πA(m) ≤ Cmν for absolute constant C, then (P,A) is said to have
shatter dimension ν. For instance the shatter dimension of H halfspaces in Rd
is d, and for B balls in Rd is d+ 1. For a range space with shatter dimension ν,
a random sample of size O((1/ε2)(ν+ log(1/δ))) is an ε-sample with probability
at least 1−δ [25, 14], and a random sample of size O((ν/ε) log(1/εδ)) is an ε-net
with probability at least 1− δ [11, 18].

An ε-sample Q is sufficient for agnostic learning with generalization error ε,
where the best classifier might misclassify some points. An ε-net Q is sufficient
for non-agnostic learning with generalization error ε, where the best classifier is
assumed to have no error on P .

The size bounds can be made deterministic and slightly improved for certain
cases. An ε-sample Q can be made of size O(1/ε2ν/(ν+1)) [15] and this bound
can be no smaller [16] in the general case. For balls B in Rd which have shatter-

dimension ν = d+ 1, this can be improved to O(1/ε2d/(d+1) logd/(d+1)(1/ε)) [4,
16], and the best known lower bound is O(1/ε2d/(d+1)). For axis-aligned rect-
angles R in Rd which have shatter-dimension ν = 2d, this can be improved to
O((1/ε) logd+1/2(1/ε)) [13].

For ε-nets, the general bound ofO((ν/ε) log(1/ε)) can also be made determin-
istic [15], and for halfspaces in R4 the size must be at least Ω((1/ε) log(1/ε)) [19].
But for halfspaces in R3 the size can be O(1/ε) [17, 10], which is tight. By a sim-
ple lifting, this also applies for balls in R2. For other range spaces, such as
axis-aligned rectangles in R2, the size bound is Θ((1/ε) log log(1/ε)) [3, 19].

2.1 Kernels

A kernel is a bivariate similarity function K : Rd × Rd → R+, which can be
normalized so K(x, x) = 1 (which we assume through this paper). Examples
include ball kernels (K(x, p) = {1 if ‖x − p‖ ≤ 1 and 0 otherwise}), trian-
gle kernels (K(x, p) = max{0, 1 − ‖x − p‖}), Epanechnikov kernels (K(x, p) =
max{0, 1−‖x−p‖2}), and Gaussian kernels (K(x, p) = exp(−‖x−p‖2), which is
reproducing). In this paper we focus on symmetric, shift invariant kernels which
depend only on z = ‖x − p‖, and can be written as a single parameter func-
tion K(x, p) = k(z); these can be parameterized by a single bandwidth (or just
width) parameter w so K(x, p) = kw(‖x− p‖/w).

Given a point set P ⊂ Rd and a kernel, a kernel density estimate kdeP is
the convolution of that point set with K. For any x ∈ Rd we define kdeP (x) =

1
|P |
∑
p∈P K(x, p).

A kernel range space [12, 21] (P,K) is an extension of the combinatorial
concept of a range space (P,A) (or to distinguish it we refer to the classic notion
as a binary range space). It is defined by a point set P ⊂ Rd and a kernel K. An
element Kx of K is a kernel K(x, ·) applied at point x ∈ Rd; it assigns a value
in [0, 1] to each point p ∈ P as K(x, p). If we use a ball kernel, then each value
is exactly {0, 1} and we recover exactly the notion of a binary range space for
geometric ranges defined by balls.
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The notion of an ε-kernel sample [12] extends the definition of ε-sample. It
is a subset Q ⊂ P such that

max
x∈Rd

|kdeP (x)− kdeQ(x)| ≤ ε.

A binary range space (P,A) is linked to a kernel range space (P,K) if the
set {p ∈ P | K(x, p) ≥ τ} is equal to P ∩ A for some A ∈ A, for any threshold
value τ . [12] showed that an ε-sample of a linked range space (P,A) is also an ε-
kernel sample of a corresponding kernel range space (P,K). Since all range spaces
defined by symmetric, shift-invariant kernels are linked to range spaces defined
by balls, they inherit all ε-sample bounds, including that random samples of size
O((1/ε2)(d+log(1/δ)) provide an ε-kernel sample with probability at least 1−δ.
Then [21] showed that these bounds can be improved through discrepancy-based
methods to O(((1/ε)

√
log(1/εδ))2d/(d+2)), which is O((1/ε)

√
log(1/εδ)) in R2.

A more general concept has been studied in learning theory on real-valued
functions, where a function f as a member of a function class F describes a
mapping from Rd to [0, 1] (or more generally R). A kernel range space where
the linked binary range space has bounded shatter-dimension ν is said to have
bounded V-dimension [24] (see [2]) of ν. Given a ground set X, then for (X,F)
this describes the largest subset Y of X which can be shattered in the following
sense. Choose any value s ∈ [0, 1] for all points y ∈ Y , and then for each subset
of Z ⊂ Y there exists a function f ∈ F so f(y) > s if y ∈ Z and f(y) < s if
y /∈ Z. The best sample complexity bounds for ensuring Q is an ε-sample of P
based on V-dimension are derived from a more general sort of dimension (called
a P-dimension [22] where in the shattering definition, each y may have a distinct
s(y) value) requires |Q| = O((1/ε2)(ν + log(1/δ))) [14]. As we will see, these
V-dimension based results are also general enough to apply to the to-be-defined
smooth range spaces.

3 New Definitions

In this paper we extend the notion of a kernel range spaces to other smoothed
range spaces that are “linked” with common range spaces, e.g., halfspaces. These
inherent the construction bounds through the linking result of [12], and we show
cases where these bounds can also be improved. We also extend the notion of
ε-nets to kernels and smoothed range spaces, and showing linking results for
these as well.

3.1 Smoothed Range Spaces

Here we will define the primary smoothed combinatorial object we will examine,
starting with halfspaces, and then generalizing. Let Hw denote the family of
smoothed halfspaces with width parameter w, and let (P,Hw) be the associated
smoothed range space where P ⊂ Rd. Given a point p ∈ P , then smoothed
halfspace h ∈ Hw maps p to a value vh(p) ∈ [0, 1] (rather than the traditional
{0, 1} in a binary range space).
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Fig. 1. Illustration of the smoothed halfspace, and smoothed polynomial surface, with
function value of three points {p1, p2, p3} defined using a triangle kernel.

We first describe a specific mapping to the function value vh(p) that will be
sufficient for the development of most of our techniques. Let F be the (d − 1)-
flat defining the boundary of halfspace h. Given a point p ∈ Rd, let pF =
arg minq∈F ‖p− q‖ describe the point on F closest to p. Now we define

vh,w(p) =


1 p ∈ h and ‖p− pF ‖ ≥ w
1
2 + 1

2
‖p−pF ‖

w p ∈ h and ‖p− pF ‖ < w
1
2 −

1
2
‖p−pF ‖

w p /∈ h and ‖p− pF ‖ < w

0 p /∈ h and ‖p− pF ‖ ≥ w.

These points within a slab of width 2w surrounding F can take on a value
between 0 and 1, where points outside of this slab revert back to the binary
values of either 0 or 1.

We can make this more general using a shift-invariant kernel k(‖p − x‖) =
K(p, x), where kw(‖p − x‖) = k(‖p − x‖/w) allows us to parameterize by w.
Define vh,w(p) as follows.

vh,w(p) =

{
1− 1

2kw(‖p− pF ‖) p ∈ h
1
2kw(‖p− pF ‖) p /∈ h.

For brevity, we will omit the w and just use vh(p) when clear. These definitions
are equivalent when using the triangle kernel. But for instance we could also use
a Epanechnikov kernel or Gaussian kernel. Although the Gaussian kernel does
not satisfy the restriction that only points in the width 2w slab take non {0, 1}
values, we can use techniques from [21] to extend to this case as well. This is
illustrated in Figure 1. Another property held by this definition which we will
exploit is that the slope ς of these kernels is bounded by ς = O(1/w) = c/w, for
some constant c; the constant c = 1/2 for triangle and Gaussian, and c = 1 for
Epanechnikov.

Finally, we can further generalize this by replacing the flat F at the boundary
of h with a polynomial surface G. The point pG = arg minq∈G ‖p − q‖ replaces
pF in the above definitions. Then the slab of width 2w is replaced with a curved
volume in Rd; see Figure 1. For instance, if G defines a circle in Rd, then vh
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defines a disc of value 1, then an annulus of width 2w where the function value
decreases to 0. Alternatively, if G is a single point, then we essentially recover the
kernel range space, except that the maximum height is 1/2 instead of 1. We will
prove the key structural results for polynomial curves in Section 5, but otherwise
focus on halfspaces to keep the discussion cleaner. The most challenging elements
of our results are all contained in the case with F as a (d− 1)-flat.

3.2 ε-Sample in a Smoothed Range Space

It will be convenient to extend the notion of a kernel density estimate to these
smoothed range space. A smoothed density estimate sdeP is defined for any
h ∈ Hw as

sdeP (h) =
1

|P |
∑
p∈P

vh(p).

An ε-sample Q of a smoothed range space (P,Hw) is a subset Q ⊂ P such that

max
h∈Hw

|sdeP (h)− sdeQ(h)| ≤ ε.

Given such an ε-sampleQ, we can then consider a subset H̄w of Hw with bounded
integral (perhaps restricted to some domain like a unit cube that contains all

of the data P ). If we can learn the smooth range ĥ = arg maxh∈H̄w
sdeQ(h),

then we know sdeP (h∗)−sdeQ(ĥ) ≤ ε, where h∗ = arg maxh∈H̄w
sdeP (h), since

sdeQ(ĥ) ≥ sdeQ(h∗) ≥ sdeP (h∗)−ε. Thus, such a set Q allows us to learn these
more general density estimates with generalization error ε.

We can also learn smoothed classifiers, like scenario (S2) in the introduction,
with generalization error ε, by giving points in the negative class a weight of −1;
this requires separate (ε/2)-samples for the negative and positive classes.

3.3 (ε, τ )-Net in a Smoothed Range Space

We now generalize the definition of an ε-net. Recall that it is a subset Q ⊂ P
such that Q “hits” all large enough ranges (|P∩A|/|P | ≥ ε). However, the notion
of “hitting” is now less well-defined since a point q ∈ Q may be in a range but
with value very close to 0; if a smoothed range space is defined with a Gaussian
or other kernel with infinite support, any point q will have a non-zero value for
all ranges! Hence, we need to introduce another parameter τ ∈ (0, ε), to make
the notion of hitting more interesting in this case.

A subset Q ⊂ P is an (ε, τ)-net of smoothed range space (P,Hw) if for any
smoothed range h ∈ Hw such that sdeP (h) ≥ ε, then there exists a point q ∈ Q
such that vh(q) ≥ τ .

The notion of ε-net is closely related to that of hitting sets. A hitting set of a
binary range space (P,A) is a subset Q ⊂ P so every A ∈ A (not just the large
enough ones) contains some q ∈ Q. To extend these notions to the smoothed
setting, we again need an extra parameter τ ∈ (0, ε), and also need to only
consider large enough smoothed ranges, since there are now an infinite number
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even if P is finite. A subset Q ⊂ P is an (ε, τ)-hitting set of smoothed range
space (P,Hw) if for any h ∈ Hw such that sdeP (h) ≥ ε, then sdeQ(h) ≥ τ .

In the binary range space setting, an ε-net Q of a range space (P,A) is
sufficient to learn the best classifier on P with generalization error ε in the non-
agnostic learning setting, that is assuming a perfect classifier exists on P from A.
In the density estimation setting, there is not a notion of a perfect classifier, but
if we assume some other properties of the data, the (ε, τ)-net will be sufficient to
recover them. For instance, consider (like scenario (S1) in the introduction) that
P is a discrete distribution so for some “event” points p ∈ P , there is at least an
ε-fraction of the probability distribution describing P at p (e.g., there are more
than ε|P | points very close to p). In this setting, we can recover the location of
these points since they will have probability at least τ in the (ε, τ)-net Q.

4 Linking and Properties of (ε, τ )-Nets

First we establish some basic connections between ε-sample, (ε, τ)-net, and (ε, τ)-
hitting set in smoothed range spaces. In binary range spaces an ε-sample Q is
also an ε-net, and a hitting set is also an ε-net; we show a similar result here up
to the covering constant τ .

Lemma 1. For a smoothed range space (P,Hw) and 0 < τ < ε < 1, an (ε, τ)-
hitting set Q is also an (ε, τ)-net of (P,Hw).

Proof. The (ε, τ)-hitting set property establishes for all h ∈ Hw with sdeP (h) ≥
ε, then also sdeQ(h) ≥ τ . Since sdeQ(h) = 1

|Q|
∑
q∈Q vh(q) is the average over

all points q ∈ Q, then it implies that at least one point also satisfies vh(q) ≥ τ .
Thus Q is also an (ε, τ)-net. ut

In the other direction an (ε, τ)-net is not necessarily an (ε, τ)-hitting set since
the (ε, τ)-net Q may satisfy a smoothed range h ∈ Hw with a single point q ∈ Q
such that vh(q) ≥ τ , but all others q′ ∈ Q \ {q} having vh(q′) � τ , and thus
sdeQ(h) < τ .

Theorem 1. For 0 < τ < ε < 1, an (ε− τ)-sample Q in smoothed range space
(P,Hw) is an (ε, τ)-hitting set in (P,Hw), and thus also an (ε, τ)-net of (P,Hw).

Proof. Since Q is the (ε − τ)-sample in the smoothed range space, for any
smoothed range h ∈ Hw we have |sdeP (h) − sdeQ(h)| ≤ ε − τ . We consider
the upper and lower bound separately.

If sdeP (h) ≥ ε, when sdeP (h) ≥ sdeQ(h), we have

sdeQ(h) ≥ sdeP (h)− (ε− τ) ≥ ε− (ε− τ) = τ.

And more simply when sdeQ(h) ≥ sdeP (h) and sdeP (h) ≥ ε ≥ τ , then
sdeQ(h) ≥ τ . Thus in both situations, Q is an (ε, τ)-hitting set of (P,Hw).
And then by Lemma 1 Q is also an (ε, τ)-net of (P,Hw). ut
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4.1 Relations between Smoothed Range Spaces and Linked Binary
Range Spaces

Consider a smoothed range space (P,Hw), and for one smoothed range h ∈ Hw,
examine the range boundary F (e.g. a (d− 1)-flat, or polynomial surface) along
with a symmetric, shift invariant kernel K that describes vh. The superlevel
set (vh)τ is all points x ∈ Rd such that vh(x) ≥ τ . Then recall a smoothed
range space (P,Hw) is linked to a binary range space (P,A) if every set {p ∈
P | vh(p) ≥ τ} for any h ∈ Hw and any τ > 0, is exactly the same as some
range A ∩ P for A ∈ A. For smoothed range spaces defined by halfspaces, then
the linked binary range space is also defined by halfspaces. For smoothed range
spaces defined by points, mapping to kernel range spaces, then the linked binary
range spaces are defined by balls.

Joshi et al. [12] established that given a kernel range space (P,K), a linked
binary range space (P,A), and an ε-sample Q of (P,A), then Q is also an ε-
kernel sample of (P,K). An inspection of the proof reveals the same property
holds directly for smoothed range spaces, as the only structural property needed
is that all points p ∈ P , as well as all points q ∈ Q, can be sorted in decreasing
function value K(p, x), where x is the center of the kernel. For smoothed range
space, this can be replaced with sorting by vh(p).

Corollary 1 ([12]). Consider a smoothed range space (P,Hw), a linked binary
range space (P,A), and an ε-sample Q of (P,A) with ε ∈ (0, 1). Then Q is an
ε-sample of (P,Hw).

We now establish a similar relationship to (ε, τ)-nets of smoothed range
spaces from (ε− τ)-nets of linked binary range spaces.

Theorem 2. Consider a smoothed range space (P,Hw), a linked binary range
space (P,A), and an (ε − τ)-net Q of (P,A) for 0 < τ < ε < 1. Then Q is an
(ε, τ)-net of (P,Hw).

Proof. Let |P | = n. Then since Q is an (ε−τ)-net of (P,A), for any range A ∈ A,
if |P ∩A| ≥ (ε− τ)n, then Q ∩A 6= ∅.

Suppose h ∈ Hw has sdeP (h) ≥ ε and we want to establish that sdeQ(h) ≥
τ . Let A ∈ A be the range such that (ε − τ)n points with largest vh(pi) values
are exactly the points in A. We now partition P into three parts (1) let P1 be
the (ε − τ)n − 1 points with largest vh values, (2) let y be the point in P with
(ε− τ)nth largest vh value, and (3) let P2 be the remaining n−n(ε− τ) points.
Thus for every p1 ∈ P1 and every p2 ∈ P2 we have vh(p2) ≤ vh(y) ≤ vh(p1) ≤ 1.

Now using our assumption n · sdeP (h) ≥ nε we can decompose the sum

n · sdeP (h) =
∑
p1∈P1

vh(p1) + vh(y) +
∑
p2∈P2

vh(p2) ≥ nε,

and hence using upper bounds vh(p1) ≤ 1 and vh(p2) ≤ vh(y),

vh(y) ≥ nε−
∑
p1∈P1

vh(p1)−
∑
p2∈P2

vh(p2)

≥ nε− (n(ε− τ)− 1) · 1− (n− n(ε− τ))vh(y).
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Solving for vh(y) we obtain

vh(y) ≥ nτ + 1

n− n(ε− τ) + 1
≥ nτ

n− n(ε− τ)
≥ nτ

n
= τ.

Since (P,A) is linked to (P,Hw), there exists a range A ∈ A that includes
precisely P1 ∪ y (or more points with the same vh(y) value as y). Because Q is
an (ε − τ)-net of (P,A), Q contains at least one of these points, lets call it q.
Since all of these points have function value vh(p) ≥ vh(y) ≥ τ , then vh(q) ≥ τ .
Hence Q is also an (ε, τ)-net of (P,Hw), as desired. ut

This implies that if τ ≤ cε for any constant c < 1, then creating an (ε, τ)-net
of a smoothed range space, with a known linked binary range space, reduces to
computing an ε-net for the linked binary range space. For instance any linked
binary range space with shatter-dimension ν has an ε-net of size O(νε log 1

ε ),
including halfspaces in Rd with ν = d and balls in Rd with ν = d + 1; hence
there exists (ε, ε/2)-nets of the same size. For halfspaces in R2 or R3 (linked to
smoothed halfspaces) and balls in R2 (linked to kernels), the size can be reduced
to O(1/ε) [17, 10, 23].

5 Min-Cost Matchings within Cubes

Before we proceed with our construction for smaller ε-samples for smoothed
range spaces, we need to prepare some structural results about min-cost match-
ings. Following some basic ideas from [21], these matchings will be used for
discrepancy bounds on smoothed range spaces in Section 6.

In particular, we analyze some properties of the interaction of a min-cost
matching M and some basic shapes ([21] considered only balls). Let P ⊂ Rd
be a set of 2n points. A matching M(P ) is a decomposition of P into n pairs
{pi, qi} where pi, qi ∈ P and each pi (and qi) is in exactly one pair. A min-cost
matching is the matching M that minimizes cost1(M,P ) =

∑n
i=1 ‖pi − qi‖. The

min-cost matching can be computed in O(n3) time by [9] (using an extension of
the Hungarian algorithm from the bipartite case). In R2 it can be calculated in
O(n3/2 log5 n) time [26].

Following [21], again we will base our analysis on a result of [5] which says that
if P ⊂ [0, 1]d (a unit cube) then for d a constant, costd(M,P ) =

∑n
i=1 ‖pi−qi‖d =

O(1), where M is the min-cost matching. We make no attempt to optimize
constants, and assume d is constant.

One simple consequence, is that if P is contained in a d-dimensional cube of
side length `, then costd(M,P ) =

∑n
i=1 ‖pi − qi‖d = O(`d).

We are now interested in interactions with a matching M for P in a d-
dimensional cube of side length ` C`,d (call this shape an (`, d)-cube), and more
general objects; in particular Cw a (w, d)-cube and, Sw a slab of width 2w, both
restricted to be within C`,d. Now for such an object Ow (which will either be Cw
or Sw) and an edge {p, q} where line segment pq intersects Ow define point pB
(resp. qB) as the point on segment pq inside Ow closest to p (resp. q). Note if p
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(resp. q) is inside O then pB = p (resp. qB = q), otherwise it is on the boundary
of Ow. For instance, see C20w in Fig 2.

20w

p0

qq0

20w

w

p

q0B qB

pB p0B

Fig. 2. (T3) edges

Define the length of a matching M restricted to an
object Ow ⊂ Rd as

ρ(Ow,M) =
∑

(q,p)∈M
min

{
(2w)d, ‖pB − qB‖d

}
.

Note this differs from a similar definition by [21] since
that case did not need to consider when both p and
q were both outside of Ow, and did not need the
min{(2w)d, . . .} term because all objects had diameter 2.

Lemma 2. Let P ⊂ C`,d, where d is constant, and M be its min-cost matching.
For any (w, d)-cube Cw ⊂ C`,d we have ρ(Cw,M) = O(wd).

Proof. We cannot simply apply the result of [5] since we do not restrict that
P ⊂ Cw. We need to consider cases where either p or q or both are outside of
Cw. As such, we have three types of edges we consider, based on a cube C20w of
side length 20w and with center the same as Cw.

(T1) Both endpoints are within C20w of edge length at most
√
d20w.

(T2) One endpoint is in Cw, the other is outside C20w.
(T3) Both endpoints are outside C20w.

For all (T1) edges, the result of Bern and Eppstein can directly bound their
contribution to ρ(Cw,M) as O(wd) (scale to a unit cube, and rescale). For all
(T2) edges, we can also bound their contribution to ρ(Cw,M) as O(wd), by
extending an analysis of [21] when both Cw and C20w are similarly proportioned
balls. This analysis shows there are O(1) such edges.

We now consider the case of (T3) edges, restricting to those that also intersect
Cw. We argue there can be at most O(1) of them. In particular consider two
such edges {p, q} and {p′, q′}, and their mappings to the boundary of C20w as
pB , qB , p

′
B , q

′
B ; see Figure 2. If ‖pB − p′B‖ ≤ 10w and ‖qB − q′B‖ ≤ 10w, then we

argue next that this cannot be part of a min-cost matching since ‖p− p′‖+ ‖q−
q′‖ < ‖p − q‖ + ‖p′ − q′‖, and it would be better to swap the pairing. Then it
follows from the straight-forward net argument below that there can be at most
O(1) such pairs.

We first observe that ‖pB − p′B‖+ ‖qB − q′B‖ ≤ 10w + 10w < 20w + 20w ≤
‖pB − qB‖ + ‖p′B − q′B‖. Now we can obtain our desired inequality using that
‖p− q‖ = ‖p− pB‖+ ‖pB − qB‖+ ‖qB − q‖ (and similar for ‖p′ − q′‖) and that
‖p− p′‖ ≤ ‖p− pB‖+ ‖pB − p′B‖+ ‖p′B − p′‖ by triangle inequality (and similar
for ‖q − q′‖).

Next we describe the net argument that there can be at most O(d2 · 22d) =
O(1) such pairs with ‖pB−p′B‖ > 10w and ‖qB−q′B‖ > 10w. First place a 5w-net
Nf on each (d− 1)-dimensional face f of C20w so that any point x ∈ f is within
5w of some point η ∈ Nf . We can construct Nf of size O(2d) with a simple grid.

10



Then let N =
⋃
f Nf as the union of the nets on each face; its size is O(d · 2d).

Now for any point p /∈ C20w let η(p) = arg minη∈N ‖pB − η‖ be the closest point
in N to pB . If two points p and p′ have η(p) = η(p′) then ‖p− p′‖ ≤ 10w. Hence
there can be at most O((d · 2d)2) edges with {p, q} mapping to unique η(p) and
η(q) if no other edge {p′, q′} has ‖pB − p′B‖ ≤ 10w and ‖qB − q′B‖ ≤ 10w.

Concluding, there can be at most O(d2 ·22d) = O(1) edges in M of type (T3),
and the sum of their contribution to ρ(Cw,M) is at most O(wd), completing the
proof. ut
Lemma 3. Let P ⊂ C`,d, where d is constant, and let M be its min-cost match-
ing. For any width 2w slab Sw restricted to C`,d we have ρ(Sw,M) = O(`d−1w).

Proof. We can cover the slab Sw with O((`/w)d−1) (w, d)-cubes. To make this
concrete, we cover C`,d with d`/wed cubes on a regular grid. Then in at least one
basis direction (the one closest to orthogonal to the normal of F ) any column
of cubes can intersect Sw in at most 4 cubes. Since there are d`/wed−1 such
columns, the bound holds. Let Cw be the set of these cubes covering Sw.

Restricted to any one such cube Cw, the contribution of those edges to
ρ(Sw,M) is at most O(wd) by Lemma 2. Now we need to argue that we can just
sum the effect of all covering cubes. The concern is that an edge goes through
many cubes, only contributing a small amount to each ρ(Cw,M) term, but when
the total length is taken to the dth power it is much more. However, since each
edge’s contribution is capped at (2w)2, we can say that if any edge goes through
more than O(1) cubes, its length must be at least w, and its contribution in
one such cube is already Ω(w), so we can simply inflate the effect of each cube
towards ρ(Sw,M) by a constant.

In particular, consider any edge pq that has p ∈ Cw. Each cube has 3d − 1
neighboring cubes, including through vertex incidence. Thus if edge pq passes
through more than 3d cubes, q must be in a cube that is not one of C ′w’s neigh-
bors. Thus it must have length at least w; and hence its length in at least one
cube C ′w must be at least w/3d, with its contribution to ρ(C ′w,M) > wd/(3d

2

).

Thus we can multiply the effect of each edge in ρ(Cw,M) by 3d
2

2d = O(1) and
be sure it is at least as large as the effect of that edge in ρ(Sw,M). Hence

ρ(Sw,M) ≤ 3d
2

2d
∑

Cw∈Cw

ρ(Cw,M) ≤ O(1)
∑

Cw∈Cw

O(wd)

= O((`/w)d−1) ·O(wd) = O(`d−1w). ut

We can apply the same decomposition as used to prove Lemma 3 to also prove
a result for a w-expanded volume Gw around a degree g polynomial surface G. A
degree g polynomial surface can intersect a line at most g times, so for some C`,d
the expanded surface Gw∩C`,d can be intersected by O(g(`/w)d−1) (w, d)-cubes.
Hence we can achieve the following bound.

Corollary 2. Let P ⊂ C`,d, where d is constant, and let M be its min-cost
matching. For any volume Gw defined by a polynomial surface of degree g ex-
panded by a width w, restricted to C`,d we have ρ(Gw,M) = O(g`d−1w).
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6 Constructing ε-Samples for Smoothed Range Spaces

In this section we build on the ideas from [21] and the new min-cost match-
ing results in Section 5 to produce new discrepancy-based ε-sample bounds for
smoothed range spaces. The basic construction is as follows. We create a min-
cost matching M on P , then for each pair (p, q) ∈ M , we retain one of the two
points at random, halving the point set. We repeat this until we reach our desired
size. This should not be unfamiliar to readers familiar with discrepancy-based
techniques for creating ε-samples of binary range spaces [16, 6]. In that litera-
ture similar methods exist for creating matchings “with low-crossing number”.
Each such matching formulation is specific to the particular combinatorial range
space one is concerned with. However, in the case of smoothed range spaces, we
show that the min-cost matching approach is a universal algorithm. It means
that an ε-sample Q for one smoothed range space (P,Hw) is also an ε-sample for
any other smoothed range space (P,H′w), perhaps up to some constant factors.
We also show how these bounds can sometimes improve upon ε-sample bounds
derived from linked range spaces; herein the parameter w will play a critical role.

6.1 Discrepancy for Smoothed Halfspaces

To simplify arguments, we first consider P ⊂ R2 extending to Rd in Section 6.4.
Let χ : P → {−1,+1} be a coloring of P , and define the discrepancy of

(P,Hw) with coloring χ as discχ(P,Hw) = maxh∈Hw |
∑
p∈P χ(p)vh(p)|. Re-

stricted to one smoothed range h ∈ Hw this is discχ(P, h) = |
∑
p∈P χ(p)vh(p)|.

We construct a coloring χ using the min-cost matchingM of P ; for each {pi, qi} ∈
M we randomly select one of pi or qi to have χ(pi) = +1, and the other
χ(qi) = −1. We next establish bounds on the discrepancy of this coloring for
a ς-bounded smoothed range space (P,Hw), i.e., where the gradient of vh is
bounded by ς ≤ c1/w for a constant c1 (see Section 3.1).

For any smoothed range h ∈ Hw, we can now define a random variable
Xj = χ(pj)vh(pj) + χ(qj)vh(qj) for each pair {pj , qj} in the matching M . This
allows us to rewrite discχ(P, h) = |

∑
j Xj |. We can also define a variable ∆j =

2|vh(pj)− vh(qj)| such that Xj ∈ {−∆j/2, ∆j/2}. Now following the key insight
from [21] we can bound

∑
j ∆

2
j using results from Section 5, which shows up in

the following Chernoff bound from [8]: Let {X1, X2, . . .} be independent random
variables with E[Xj ] = 0 and Xj = {−∆j/2, ∆j/2} then

Pr
[
discχ(P, h) ≥ α

]
= Pr

[∣∣∣∑
j

Xj

∣∣∣ ≥ α] ≤ 2 exp

(
−2α2∑
j ∆

2
j

)
. (1)

Lemma 4. Assume P ⊂ R2 is contained in some cube C`,2 and with min-cost
matching M defining χ, and consider a ς-bounded smoothed halfspace h ∈ Hw

associated with slab Sw. Let ρ(Sw,M) ≤ c2(`w) for constant c2 (see definition

of ρ in Section 5). Then Pr

[
discχ(P, h) > C

√
`
w log(2/δ)

]
≤ δ for any δ > 0

and constant C = c1
√

2c2.
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Proof. Using the gradient of vh is at most ς = c1/w and |vh(pj) − vh(qj)| ≤
ς max{2w, ‖pj − qj‖} we have∑

j

∆2
j =

∑
j

4(vh(pj)− vh(qj))
2 ≤ 4ς2ρ(Sw,M) ≤ 4c21/w

2 · c2`w = 4c21c2`/w,

where the second inequality follows by Lemma 3 which shows that ρ(Sw,M) =∑
j max{(2w)2, ‖pj − qj‖2} ≤ c2(`w).
We now study the random variable discχ(P, h) = |

∑
iXi| for a single h ∈ Hw.

Invoking (1) we can bound Pr[discχ(P, h) > α] ≤ 2 exp(−α2/(2c21c2`/w)). Setting

C = c1
√

2c2 and α = C
√

`
w log(2/δ) reveals Pr

[
discχ(P, h) > C

√
`
w log(2/δ)

]
≤

δ. ut

6.2 From a Single Smoothed Halfspace to a Smoothed Range Space

The above theorems imply small discrepancy for a single smoothed halfspace
h ∈ Hw, but this does not yet imply small discrepancy discχ(P,Hw), for all
choices of smoothed halfspaces simultaneously. And in a smoothed range space,
the family Hw is not finite, since even if the same set of points have vh(p) = 1,
vh(p) = 0, or are in the slab Sw, infinitesimal changes of h will change sdeP (h).
So in order to bound discχ(P,Hw), we will show that there are polynomial in
n number of smoothed halfspaces that need to be considered, and then apply a
union bound across this set. The proof is deferred to the full version.

Theorem 3. For P ⊂ R2 of size n, for Hw, and value Ψ(n, δ) = O
(√

`
w log n

δ )
)

for δ > 0, we can choose a coloring χ such that Pr[discχ(P,Hw) > Ψ(n, δ)] ≤ δ.

6.3 ε-Samples for Smoothed Halfspaces

To transform this discrepancy algorithm to ε-samples, let f(n) = discχ(P,Hw)/n
be the value of ε in the ε-samples generated by a single coloring of a set of size

n. Solving for n in terms of ε, the sample size is s(ε) = O( 1
ε

√
`
w log `

wεδ ). We

can then apply the MergeReduce framework [7]; iteratively apply this random
coloring inO(log n) rounds on disjoint subsets of sizeO(s(ε)). Using a generalized
analysis (c.f., Theorem 3.1 in [20]), we have the same ε-sample size bound.

Theorem 4. For P ⊂ C`,2 ⊂ R2, with probability at least 1−δ, we can construct

an ε-sample of (P,Hw) of size O( 1
ε

√
`
w log `

wεδ ).

To see that these bounds make rough sense, consider a random point set
P in a unit square. Then setting w = 1/n will yield roughly O(1) points in
the slab (and should roughly revert to the non-smoothed setting); this leads to
discχ(P,Hw) = O(

√
n
√

log(n/δ)) and an ε-sample of size O((1/ε2)
√

log(1/εδ)),
basically the random sampling bound. But setting w = ε so about εn points
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are in the slab (the same amount of error we allow in an ε-sample) yields
discχ(P,Hw) = O((1/

√
εn) ·

√
log(n/δ)) and the size of the ε-sample to be

O( 1
ε

√
log(1/εδ)), which is a large improvement over O(1/ε4/3), and the best

bound known for non-smoothed range spaces [16].

However, the assumption that P ⊂ C`,2 (although not uncommon [16]) can
be restrictive. In the full version we relax the condition for well clustered data.

6.4 Generalization to d Dimensions

We now extend from R2 to Rd for d > 2. Using results from Section 5 we implic-
itly get a bound on

∑
j ∆

d
j , but the Chernoff bound we use requires a bound on∑

j ∆
2
j . As in [21], we can attain a weaker bound using Jensen’s inequality over

at most n terms∑
j

1

n
∆2
j

d/2

≤
∑
j

1

n

(
∆2
j

)d/2
so

∑
j

∆2
j ≤ n1−2/d

∑
j

∆d
j

2/d

. (2)

Replacing this bound and using ρ(Sw,M) ≤ O(`d−1w) in Lemma 4 and con-
sidering ς = c1/w for some constant c1 results in the next lemma. Its proof is
deferred to the full version.

Lemma 5. Assume P ⊂ Rd is contained in some cube C`,d and with min-cost
matching M , and consider a ς-bounded smoothed halfspace h ∈ Hw associated
with slab Sw. Let ρ(Sw,M) ≤ c2(`d−1w) for constant c2. Then Pr

[
discχ(P, h) >

Cn1/2−1/d(`/w)1−1/d
√

log(2/δ)
]
≤ δ for any δ > 0 and C =

√
2c1(c2)1/d.

For all choices of smoothed halfspaces, applying the union bound, the discrep-
ancy is increased by a

√
log n factor, with the following probabilistic guarantee,

Pr[discχ(P,Hw) > Cn1/2−1/d(`/w)1−1/d
√

log(n/δ)] ≤ δ.

Ultimately, we can extend Theorem 4 to the following.

Theorem 5. For P ⊂ C`,d ⊂ Rd, where d is constant, with probability at least

1 − δ, we can construct an ε-sample of (P,Hw) of size O
(

(`/w)2(d−1)/(d+2) ·(
1
ε

√
log `

wεδ

)2d/(d+2))
.

Note this result addresses scenario (S3) from the introduction where we want
to find a small set (the ε-sample) so that it could be much smaller than the
d/ε2 random sampling bound, and allows generalization error O(ε) for agnostic
learning as described in Section 3.2. When `/w is constant, the exponents on
1/ε are also better than those for binary ranges spaces (see Section 2).
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