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Abstract

This paper proposes a new distance metric between clus-
terings that incorporates information about the spatial dis-
tribution of points and clusters. Our approach builds on
the idea of a Hilbert space-based representation of clusters
as a combination of the representations of their constituent
points. We use this representation and the underlying metric
to design a spatially-aware consensus clustering procedure.
This consensus procedure is implemented via a novel reduc-
tion to Euclidean clustering, and is both simple and efficient.
All of our results apply to both soft and hard clusterings.
We accompany these algorithms with a detailed experimen-
tal evaluation that demonstrates the efficiency and quality
of our techniques.

Keywords: Clustering, Ensembles, Consen-
sus, Reproducing Kernel Hilbert Space.

1 Introduction

The problem of metaclustering has become important
in recent years as researchers have tried to combine the
strengths and weaknesses of different clustering algo-
rithms to find patterns in data. A popular metaclus-
tering problem is that of finding a consensus (or en-
semble) partition! from among a set of candidate par-
titions. Ensemble-based clustering has been found to
be very powerful when different clusters are connected
in different ways, each detectable by different classes
of clustering algorithms [34]. For instance, no single
clustering algorithm can detect clusters of symmetric
Gaussian-like distributions of different density and clus-
ters of long thinly-connected paths; but these clusters
can be correctly identified by combining multiple tech-
niques (i.e. k-means and single-link) [13].

" *This research was supported by NSF award CCF-0953066 and
a subaward to the University of Utah under NSF award 0937060
to the Computing Research Association.

IWe use the term partition instead of clustering to represent
a set of clusters decomposing a dataset. This avoids confusion
between the terms ’cluster’; ’clustering’ and the procedure used
to compute a partition, and will help us avoid phrases like,
“We compute consensus clusterings by clustering clusters in
clusterings!”

Other related and important metaclustering prob-
lems include finding a different and yet informative par-
tition to a given one, or finding a set of partitions that
are mutually diverse (and therefore informative). In all
these problems, the key underlying step is comparing
two partitions and quantifying the difference between
them. Numerous metrics (and similarity measures) have
been proposed to compare partitions, and for the most
part they are based on comparing the combinatorial
structure of the partitions. This is done either by exam-
ining pairs of points that are grouped together in one
partition and separated in another [29, 4, 25, 10], or
by information-theoretic considerations stemming from
building a histogram of cluster sizes and normalizing it
to form a distribution [24, 34].

These methods ignore the actual spatial description
of the data, merely treating the data as atoms in a set
and using set information to compare the partitions.
As has been observed by many researchers [38, 3, 7],
ignoring the spatial relationships in the data can be
problematic. Consider the three partitions in Figure 1.
The first partition (FP) is obtained by a projection
onto the y-axis, and the second (SP) is obtained via
a projection onto the z-axis. Partitions (FP) and (SP)
are both equidistant from partition (RP) under any of
the above mentioned distances, and yet it is clear that
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Figure 1: Why spatially-aware distances are important [7]:
first and second partitions are equidistant from the refer-

ence partition under a set-based distance. However, FP is
clearly more similar to RP than SP (See 2D2C in Table 1).



(FP) is more similar to the reference partition, based on
the spatial distribution of the data.

Some researchers have proposed spatially-aware dis-

tances between partitions [38, 3, 7] (as we review below
in Section 1.2.3), but they all suffer from various defi-
ciencies. They compromise the spatial information cap-
tured by the clusters ([38, 3]), they lack metric proper-
ties ([38, 7]) (or have discontinuous ranges of distances
to obtain metric properties ([3])), or they are expensive
to compute, making them ineffective for large data sets
(7).
1.1 Owur Work. In this paper we exploit a concise,
linear reproducing kernel Hilbert space (RKHS) repre-
sentation of clusters. We use this representation to con-
struct an efficient spatially-aware metric between parti-
tions and an efficient spatially-aware consensus cluster-
ing algorithm.

We build on some recent ideas about clusters: (i)
that a cluster can be viewed as a sample of data
points from a distribution [19], (ii) that through a
similarity kernel K, a distribution can be losslessly lifted
to a single vector in a RKHS [26] and (iii) that the
resulting distance between the representative vectors of
two distributions in the RKHS can be used as a metric
on the distributions [26, 32, 31].

Representations. We first adapt the representa-
tion of the clusters in the RKHS in two ways: approx-
imation and normalization. Typically, vectors in an
RKHS are infinite dimensional, but they can be approx-
imated arbitrarily well in a finite-dimensional ¢5 space
that retains the linear structure of the RKHS [28, 20].
This provides concise and easily manipulated represen-
tations for entire clusters. Additionally, we normalize
these vectors to focus on the spatial information of the
clusters. This turns out to be important in consensus
clustering, as illustrated in Figure 4.

Distance Computation. Using this convenient
representation (an approximate normalized RKHS vec-
tor), we develop a metric between partitions. Since the
clusters can now be viewed as points in (scaled) Eu-
clidean space we can apply standard measures for com-
paring point sets in such spaces. In particular, we define
a spatially-aware metric LIFTEMD between partitions
as the transportation distance [15] between the repre-
sentatives, weighted by the number of points they rep-
resent. While the transportation distance is a standard
distance metric on probability distributions, it is expen-
sive to compute (requiring O(n?) time for n points) [21].
However, since the points here are clusters, and the
number of clusters (k) is typically significantly less than
the data size (n), this is not a significant bottleneck as
we see in Section 6.

Consensus. We exploit the linearity of the RKHS
representations of the clusters to design an efficient con-
sensus clustering algorithm. Given several partitions,
each represented as a set of vectors in an RKHS, we can
find a partition of this data using standard Euclidean
clustering algorithms. In particular, we can compute a
consensus partition by simply running k-means (or hier-
archical agglomerative clustering) on the lifted represen-
tations of each cluster from all input partitions. This
reduction from consensus to Euclidean clustering is a
key contribution: it allows us to utilize the extensive
research and fast algorithms for Euclidean clustering,
rather than designing complex hypergraph partitioning
methods [34].

Evaluation. All of these aspects of our technical
contributions are carefully evaluated on real-world and
synthetic data. As a result of the convenient isometric
representation, the well-founded metric, and reduction
to many existing techniques, our methods perform well
compared to previous approaches and are much more
efficient.

1.2 Background

1.2.1 Clusters as Distributions. The core idea in
doing spatially aware comparison of partitions is to treat
a cluster as a distribution over the data, for example as
a sum of J-functions at each point of the cluster [7] or as
a spatial density over the data [3]. The distance between
two clusters can then be defined as a distance between
two distributions over a metric space (the underlying
spatial domain).

1.2.2 Metrizing Distributions. There are stan-
dard constructions for defining such a distance; the
most well known metrics are the transportation dis-
tance [15] (also known as the Wasserstein distance, the
Kantorovich distance, the Mallows distance or the Earth
mover’s distance), and the Prokhorov metric [27]. An-
other interesting approach was initiated by Miiller [26],
and develops a metric between general measures based
on integrating test functions over the measure. When
the test functions are chosen from a reproducing ker-
nel Hilbert space [2] (RKHS), the resulting metric on
distributions has many nice properties [32, 17, 31, 5],
most importantly that it can be isometrically embed-
ded into the Hilbert space, yielding a convenient (but
infinite dimensional) representation of a measure.

This measure has been applied to the problem of
computing a single clustering by Jegelka et. al. [19]. In
their work, each cluster is treated as a distribution and
the partition is found by maximizing the inter-cluster
distance of the cluster representatives in the RKHS. We
modify this distance and its construction in our work.



A parallel line of development generalized this idea
independently to measures over higher dimensional ob-
jects (lines, surfaces and so on). The resulting metric
(the current distance) is exactly the above metric when
applied to 0-dimensional objects (scalar measures) and
has been used extensively [36, 16, 9, 20] to compare
shapes. In fact, thinking of a cluster of points as a
“shape” was a motivating factor in this work.

1.2.3 Distances Between Partitions. Section 1
reviews spatially-aware and space-insensitive ap-
proaches to comparing partitions. We now describe
prior work on spatially-aware distances between parti-
tions in more detail.

Figure 2: Dataset with 3 concentric circles, each rep-
resenting a cluster partitioning the data. The CC dis-
tance [38] can not distinguish between these clusters.

Zhou et al [38] define a distance metric CC by re-
placing each cluster by its centroid (this of course as-
sumes the data does not lie in an abstract metric space),
and computing a weighted transportation distance be-
tween the sets of cluster centroids. Technically, their
method yields a pseudo-metric, since two different clus-
ters can have the same centroid, for example in the case
of concentric ring clusters (Figure 2). It is also oblivious
to the distribution of points within a cluster.

Coen et al [7] avoid the problem of selecting a
cluster center by defining the distance between clus-
ters as the transportation distance between the full sets
of points comprising each cluster. This yields a met-
ric on the set of all clusters in both partitions. In a
second stage, they define the similarity distance CD1s-
TANCE between two partitions as the ratio between the
transportation distance between the two partitions (us-
ing the metric just constructed as the base metric) and
a “non-informative” transportation distance in which
each cluster center distributes its mass equally to all
cluster centers in the other partition. While this mea-
sure is symmetric, it does not satisfy triangle inequality
and is therefore not a metric.

Bae et al [3] take a slightly different approach. They

build a spatial histogram over the points in each cluster,
and use the counts as a vector signature for the cluster.
Cluster similarity is then computed via a dot product,
and the similarity between two partitions is then defined
as the sum of cluster similarities in an optimal matching
between the clusters of the two partitions, normalized
by the self-similarity of the two partitions.
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Figure 3: Data set with 4 clusters, each a set grouped in a
single grid cell. The two clusters with blue open circles are
as close as the two clusters with filled red triangles under
the Dapco distance [3].

In general, such a spatial partitioning would require
a number of histogram bins exponential in the dimen-
sion; they get around this problem by only retaining in-
formation about the marginal distributions along each
dimension. One weakness of this approach is that only
points that fall into the same bin contribute to the over-
all similarity. This can lead dissimilar clusters to be
viewed as similar; in Figure 3, the two A (red) clus-
ters will be considered as similar as the two O (blue)
clusters.

Their approach yields a similarity, and not a dis-
tance metric. In order to construct a metric, they have
to do the usual transformation dist = 1 — sim and then
add one to each distance between non-identical items,
which yields the somewhat unnatural (and discontinu-
ous) metric Dapco. Their method also implicitly as-
sumes (like Zhou et al [38]) that the data lies in Eu-
clidean space.

Our approach. Our method, centered around the
RKHS-based metric between distributions, addresses all
of the above problems. It yields a true metric, incorpo-
rates the actual distribution of the data correctly, and
avoids exponential dependency on the dimension. The
price we pay is the requirement that the data lie in a
space admitting a positive definite kernel. However, this
actually enables us to apply our method to clustering
objects like graphs and strings, for which similarity ker-
nels exist [12, 23] but no convenient vector space repre-
sentation is known.

1.2.4 Consensus Clustering Algorithms. One of
the most popular methods for computing consensus be-
tween a collection of partitions is the majority rule: for



each pair of points, each partition “votes” on whether
the pair of points is in the same cluster or not, and the
majority vote wins. While this method is simple, it is
expensive and is spatially-oblivious; two points might
lie in separate clusters that are close to each other.

Alternatively, consensus can be defined via a 1-
median formulation: given a distance between parti-
tions, the consensus partition is the partition that min-
imizes the sum of distances to all partitions. If the
distance function is a metric, then the best partition
from among the input partitions is guaranteed to be
within twice the cost of the optimal solution (via trian-
gle inequality). In general, it is challenging to find an
arbitrary partition that minimizes this function. For ex-
ample, the above majority-based method can be viewed
as a heuristic for computing the 1-median under the
Rand distance, and algorithms with formal approxima-
tions exist for this problem [14].

Recently Ansari et al [1] extended these above
schemes to be spatially-aware by inserting CDISTANCE
in place of Rand distance above. This method is suc-
cessful in grouping similar clusters from an ensemble
of partitions, but it is quite slow on large data sets P
since it requires computing dr (defined in Section 2.1)
on the full dataset. Alternatively using representations
of each cluster in the ambient space (such as its mean,
as in CC [38]) would produce another spatially-aware
ensemble clustering variant, but would be less effective
because its representation causes unwanted simplifica-
tion of the clusters; see Figure 2.

2 Preliminaries

2.1 Definitions. Let P be the set of points being
clustered, with |P| = n. We use the term cluster to
refer to a subset C' of P (i.e an actual cluster of the
data), and the term partition to refer to a partitioning
of P into clusters (i.e what one would usually refer
to as a clustering of P). Clusters will always be
denoted by the capital letters A, B, C, ..., and partitions
will be denoted by the symbols A,B,C,.... We will
also consider soft partitions of P, which are fractional
assignments {p(C|z)} of points x to clusters C' such that
for any x, the assignment weights p(C|z) sum to one.

We will assume that P is drawn from a space X
endowed with a reproducing kernel v : X x X —
R [2]. The kernel & induces a Hilbert space H, via
the lifting map ® : X — H,, with the property that
k(z,y) = (®(x), P(y))x, (-, )x being the inner product
that defines H,..

Let p,q be probability distributions defined over
X. Let F be a set of real-valued bounded measurable
functions defined over X. Let F, 2 {f € F| || fll. < 1}
denote the wnit ball in the Hilbert space H,. The

integral probability metric [26] 7, on distributions p, ¢
is defined as v, (p, q) = supseq, | [y fdp — [y fdq|. We
will make extensive use of the following explicit formula
for v (p, q):

21)  ipg) = //X k(2,y)dp(z)dp(y)

N / /X k(2. y)dg(x)dq(y)

_ 2//)( k(z,y)dp(z)dg(y),

which can be derived (via the kernel trick) from the fol-
lowing formula for , [32]: vx(p,q) = || [y &(-, z)dp(x)—
[ (-, 2)dg(x)||2, . This formula also gives us the lifting
map P, since we can write ®(p) = [ £(-, z)dp(z).

The transportation metric. Let D : X x
X — R be a metric over X. The transporta-
tion distance between p and ¢ is then defined as
dT(p7Q) = inff:XxX—>[O,1] fX fX f(:C,y)D(I,y)dl‘dy,
such that [y f(z,y)de = q(y) and [ f(z,y)dy = p(x).
Intuitively, f(z,y)D(x,y) measures the work in trans-
porting f(x,y) mass from p(z) to q(y).

2.2 An RKHS Distance Between Clusters. We
use v, to construct a metric on clusters. Let C' C P be
a cluster. We associate with C' the distribution p(C) =
Y. P(Clr)w(x)d,(-), where 0,(-) is the Kronecker ¢-
function and w : P — [0,1] is a weight function.
Given two clusters C,C’ C P, we define d(C,C") =
¥:(p(C), p(C")).

An example. A simple example illustrates how
this distance generalizes pure partition-based distances
between clusters. Suppose we fix the kernel k(x,y) to be
the discrete kernel: w(xz,x) = 1, k(z,y) = 0 Vo # y.
Then it is easy to wverify that d(C,C") = +/|CAC’|
18 the square root of the cardinality of the symmetric
difference CAC’, which is a well known set-theoretic
measure of dissimilarity between clusters. Since this
kernel treats all distinct points as equidistant from
each other, the only information remaining is the set-
theoretic difference between the clusters. As k acquires
more spatial information, d(C, C") incorporates this into
the distance calculation.

2.2.1 Representations in H,,. There is an elegant
way to represent points, clusters and partitions in the
RKHS H,,. Define the lifting map ®(z) = (-, z). This
takes a point z € P to a vector ®(z) in H,. A cluster
C C P can now be expressed as a weighted sum of
these vectors: ®(C) = > ., w(x)®(x). Note that
for clarity, in what follows we will assume without loss
of generality that all partitions are hard; to construct
the corresponding soft partition-based expression, we



merely replace terms of the form {z € C'} = 1,¢¢ by
the probability p(C|z).

®(C) is also a vector in H,,, and we can now rewrite
d(C,C") as d(C, C") = [&(C) — B(C")]|x,

Finally, a partition P = {C}, Cs,...Cy} of P can be
represented by the set of vectors ®(P) = {®(C;)} in Hy.
We note that as long as the kernel is chosen correctly
[32], this mapping is isometric, which implies that the
representation ®(C) is a lossless representation of C.

The linearity of representation is a crucial feature
of how clusters are represented. While in the original
space, a cluster might describe an unusually shaped
collection of points, the same cluster in H, is merely
the weighted sum of the corresponding vectors ®(x).
As a consequence, it is easy to represent soft partitions
as well. A cluster C' can be represented by the vector

O(C) =>, w(@)p(Clz)P(x).

2.2.2 An RHKS-based Clustering. Jegelka et
al [19] used the RKHS-based representation of clusters
to formulate a new cost function for computing a single
clustering. In particular, they considered the optimiza-
tion problem of finding the partition P = {Cy,Cs} of
two clusters to maximize

C(P) =IC1 - [Ca| - [2(C1) = B(Co) 5,
+ A @(C 5, + Al ®(Ca) 5, .

for various choices of kernel k and regularization terms
A1 and Ao. They mention that this could then be gen-
eralized to find an arbitrary k-partition by introducing
more regularizing terms. Their paper focuses primarily
on the generality of this approach and how it connects
to other clustering frameworks, and they do not discuss
algorithmic issues in any great detail.

3 Approximate Normalized Cluster

Representation

We adapt the RKHS-based representation of clusters
®(C) in two ways to make it more amenable to our
meta-clustering goals. First, we approximate ®(C) to a
finite dimensional (p-dimensional) vector. This provides
a finite representation of each cluster in R” (as opposed
to a vector in the infinite dimensional H,), it retains
linearity properties, and it allows for fast computation
of distance between two clusters. Second, we normalize
®(C) to remove any information about the size of
the cluster; retaining only spatial information. This
property becomes critical for consensus clustering.

3.1 Approximate Lifting Map ®. The lifted rep-
resentation ®(x) is the key to the representation of clus-
ters and partitions, and its computation plays a critical
role in the overall complexity of the distance computa-

tion. For kernels of interest (like the Gaussian kernel),
®(x) cannot be computed explicitly, since the induced
RKHS is an infinite-dimensional function space.

However, we can take advantage of the shift-
invariance of commonly occurring kernels?. For these
kernels a random projection technique in Euclidean
space defines an approximate lifting map d:X x X —
R? with the property that for any =,y € P,

1©(z) — 2(W)ll2 — |®(z) = 2(1) 20, | < e,

where € > 0 is an arbitrary user defined parameter, and
p = p(e). Notice that the approximate lifting map takes
points to ¢4 with the standard inner product, rather
than a general Hilbert space. The specific construction
is due to Rahimi and Recht [28] and analyzed by Joshi
et al [20], to yield the following result:

THEOREM 3.1. ([20]) Given a set of n points P C
X, shift-invariant kernel k : X x X — R and any
e > 0, there exists a map P X x X — Re,
p =

O((1/e?*)logn), such that for any x,y € P,
‘H‘i)(w) —®(y)2 — [P(2) = P(y)ln.| <€

The actual construction is randomized and yields
a ® as above with probability 1 — 8, where p =
O((1/€%)log(n/8)). For any z, constructing the vector
d(x) takes O(p) time.

3.2 Normalizing ®(C). The lifting map @ is lin-
ear with respect to the weights of the data points,
while being nonlinear in their location. Since ®(C) =
> e w(z)®(x), this means that any scaling of the vec-
tors ®(x) translates directly into a uniform scaling of
the weights of the data, and does not affect the spatial
positioning of the points. This implies that we are free
to normalize the cluster vectors ®(C'), so as to remove
the scale information, retaining only, and exactly, the
spatial information. In practice, we will normalize the
cluster vectors to have unit length; let

o(C) = (C)/[12(C)llx..

Figure 4 shows an example of why it is important
to compare RKHS representations of vectors using
only their spatial information. In particular, without
normalizing, small clusters C' will have small norms
|2(C)|ls¢,, and the distance between two small vectors
|B(C1) = @(C2)llsc, is at most [ @(C2)llsc, +[|D(C2)ac, -
Thus all small clusters will likely have similar unnormal-
ized RKHS vectors, irrespective of spatial location.

2A kernel x(z,y) defined on a vector space is shift-invariant if

it can be written as k(z,y) = g(x — y).
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Figure 4: Two partitions P; = {4;,B1} and Py =
{As, By, Cs} of the same dataset, and a 2-d visualization
of all of their representations in an RKHS. Note that the
unnormalized vectors (on the left) have ®(By) far from
®(B3) and ®(C>) even though the second two are subsets
of the first. The normalized vectors (on the right) have
®(By) close to both ®(By) and ®(C3). In particular,
®(Cy) is closer to ®(A;) than ®(By), but &(C2) is much
closer to ®(B1) than ®(A4,).

3.3 Computing the Distance Between Clusters.
For two clusters C, C’, we defined the distance between
them as d(C,C") = ~,(p(C),p(C")). Since the two
distributions p(C) and p(C’) are discrete (defined over
|C| and |C'| elements respectively), we can use (2.1)
to compute d(C,C") in time O(|C| - |C’]). While this
may be suitable for small clusters, it rapidly becomes
expensive as the cluster sizes increase.

If we are willing to approximate d(C,C”), we can
use Theorem 3.1 combined with the implicit definition
of d(C,C") as ||®(C) — ®(C")||#,. Each cluster C is
represented as a sum of |C| p-dimensional vectors, and
then the ¢y distance between the resulting vectors can be
computed in O(p) time. The following approximation
guarantee on d(C,C’) then follows from the triangle
inequality and an appropriate choice of €.

THEOREM 3.2. For any two clusters C,C’ and any
e > 0, d(C,C") can be approzimated to within an
additive error ¢ in time O((|C] + |C'|)p) time, where

p=0((1/e*)logn).

4 New Distances between Partitions

Let P = {Cy,Cy...} and P = {C},C5, ...}
be two different partitions of P with associated
representations ®(P) = {®(Cy),P(Cy),...} and
(P = {®(C),®(Ch),...}. Similarly, ®(P) =
{®(C4),®(Cy),...} and ®(P") = {®(C}),®(CY),...}.
Since the two representations are sets of points in a
Hilbert space, we can draw on a number of techniques
for comparing point sets from the world of shape match-
ing and pattern analysis.

We can apply the transportation distance dr on
these vectors to compare the partitions, treating the
partitions as distributions. In particular, the partition
P is represented by the distribution

3 Cl

B(C)eD(P)
where dg(¢) is a Dirac delta function at ®(C) € H,,
with H, as the underlying metric. We will refer to this
metric on partitions as

o LIFTEMD(P, ') = dp(B(P), B(P')).

An example, continued. Once again, we can
simulate the loss of spatial information by using the
discrete kernel as in Section 2.2. The transportation
metric is computed (see Section 2.1) by minimizing
a functional over all partial assignments f(x,y). If
we set f(C,C") = |C N C'|/n to be the fraction of
points overlapping between clusters, then the resulting
transportation cost is precisely the Rand distance [29]
between the two partitions! This observation has two
implications. First, that standard distance measures
between partitions appear as special cases of this general
framework. Second, LIFTEMD(P, P") will always be at
most the Rand distance between P and P'.

We can also use other measures. Let

dp (®(P), (P)) = i
1 (®(P), 2(P)) e i

Then the Hausdorff distance [6] is defined as
du(2(P), (P")) =
max (di; (2(P), () dir (B(P'), &(P))

[ = wlln,

We refer to this application of the Hausdorff distance to
partitions as

o LIrTH(P,P') = dy (B(P), B(P')).

We could also use our lifting map again. Since
we can view the collection of points ®(P) as a spatial
distribution in H, (see (4.1)), we can define 7, in this
space as well, with ¥’ again given by any appropriate
kernel (for example, x/(v, w) = exp(—|v — w3, ,). We
refer to this metric as i



o LIFTKD(P,P') = 7./ (®(P), ®(P)).

4.1 Computing the distance between partitions
The lifting map ® (and its approximation <i>) create ef-
ficiency in two ways. First, it is fast to generate a rep-
resentation of a cluster C' (O(|C|p) time), and second,
it is easy to estimate the distance between two clusters
(O(p) time). This implies that after a linear amount
of processing, all distance computations between par-
titions depend only on the number of clusters in each
partition, rather than the size of the input data. Since
the number of clusters is usually orders of magnitude
smaller than the size of the input, this allows us to
use asymptotically inefficient algorithms on é(fP) and
@(T' ) that have small overhead, rather than requiring
more expensive (but asymptotically cheaper in k) pro-
cedures. Assume that we are comparing two partitions
P, P’ with k and k" clusters respectively. LIFTEMD is
computed in general using a min-cost flow formulation
of the problem, which is then solved using the Hungar-
ian algorithm. This algorithm takes time O((k + k')3).
While various approximations of dr exist [30, 18], the
exact method suffices for our setting for the reasons
mentioned above.

It is immediate from the definition of LIFTH that
it can be computed in time O(k - k') by a brute
force calculation. A similar bound holds for exact
computation of LIFTKD. While approximations exist
for both of these distances, they incur overhead that
makes them inefficient for small k.

5 Computing Consensus Partitions

As an application of our proposed distance between par-
titions, we describe how to construct a spatially-aware
consensus from a collection of partitions. This method
reduces the consensus problem to a standard clustering
problem, allowing us to leverage the extensive body of
work on standard clustering techniques. Furthermore,
the representations of clusters as vectors in R? allows
for very concise representation of the data, making our
algorithms extremely fast and scalable.

5.1 A Reduction from Consensus Finding to
Clustering. Our approach exploits the linearity of
cluster representations in H,, and works as follows. Let
P1,Pa, ... Py be the input (hard or soft) partitions of
P. Under the lifting map ®, each partition can be
represented by a set of points {®(P;)} in H,. Let
Q =, ©(P;) be the collection of these points.

DEFINITION 5.1. A (soft) consensus k-partition of
P1,Pay .. Pry is a partition Peop of U, P into k clus-
ters {C7,...,C;} that minimizes the sum of squared

distances from each ®(C;;) € ®(P;) to its associ-
ated ©(C}) € Peon. Formally, for a set of k vectors
V =Av1,...,0p} C Hy define

1Cijl . = 2
Z 771] mlnH@(C’iJ)—UHHN

LIFTSSD({®;},V) =
C;,;€U;P; veV

and then define P o, as the minimum such set

Peon = LIFTSSD ({P;}:, V™).

argmin
Vri={v},. .. vi}eH,

How do we interpret P.,,? Observe that each
element in @ is the lifted representation of some cluster
C};,; in some partition P;, and therefore corresponds to
some subset of P. Consider now a single cluster in
Peon. Since H,, is linear and P, minimizes distance to
some set of cluster representatives, it must be in their
linear combination. Hence it can be associated with a
weighted subset of elements of ®(P), and is hence a soft
partition. It can be made hard by voting each point
x € P to the representative C] € Pgon for which it has
the largest weight.

Figure 5.1 shows an example of three partitions,
their normalized RKHS representative vectors, and two
clusters of those vectors.

5.2 Algorithm. We will use the approximate lifting
map @ in our procedure. This allows us to operate
in a p-dimensional Euclidean space, in which there
are many clustering procedures we can use. For our
experiments, we will use both k-means and hierarchical
agglomerative clustering (HAC). That is, let LIFTKM
be the algorithm of running k-means on |J; ®(%;), and
let LIFTHAC be the algorithm of running HAC on
U, ®(P:). For both algorithms, the output is the (soft)
clusters represented by the vectors in ®(Peon). Our
results will show that the particular choice of clustering
algorithm (e.g. LIFTKM or LIFTHAC) is not crucial.
There are multiple methods to choose the right number
of clusters and we can employ one of them to fix k for
our consensus technique. Algorithm 1 summarizes our
consensus procedure.

Cost analysis. Computing @ takes O(mnp) =
O(mnlogn) time. Let |Q] = s. Computing Peon
is a single call to any standard Euclidean algorithm
like k-means that takes time O(skp) per iteration, and
computing the final soft partition takes time linear in
n(p + k) + s. Note that in general we expect that
k,s < n. In particular, when s < n and m is assumed
constant, then the runtime is O(n(k + logn)).

6 Experimental Evaluation

In this section we empirically show the effectiveness
of our distance between partitions, LIFTEMD and
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Figure 5:

Three partitions Py
{Ag2, B2,Cs}, P35 = {As, B3,C3} of the same dataset,
and a 2-d visualization of all of their representations in
an RKHS. These vectors are then clustered into k = 2

{A1,B1}, P2 =

D(As)}

consensus clusters consisting of {®(4;), ®(As),
and {‘I)(Bl),@(Bg),‘b(Cg),(I)(Bg),@(03)}

LirTKD, and the consensus clustering algorithms that
conceptually follow, LIFTKM and LIFTHAC.

Data. We created two synthetic datasets in R2
namely, 2D2C for which data is drawn from 2 Gaussians
to produce 2 visibly separate clusters and 2D3C for
which the points are arbitrarily chosen to produce 3 vis-
ibly separate clusters. We also use 5 different datasets
from the UCI repository [11] (Wine, Ionosphere, Glass,
Iris, Soybean) with various numbers of dimensions and
labeled data classes. To show the ability of our con-
sensus procedure and the distance metric to handle
large data, we use both the training and test data of
MNIST [22] database of handwritten digits which has
60,000 and 10,000 examples respectively in R734,

Methodology. We will compare our approach
with the partition-based measures namely, Rand Dis-
tance and Jaccard distance and information-theoretic
measures namely, Normalized Mutual Information and
Normalized Variation of Information [37], as well as
the spatially-aware measures Dapco [3] and CDis-

Algorithm 1 Consensus finding

Input: (soft) Partitions P1,Pa,... P, of P, kernel
function &

Output: Consensus (soft) partition
:PCOH

1: Set Q = U;®(P;)

2: Compute V* = {vf,...
LIFTSSD(Q, V*).
(Via k-means for LIFTKM or HAC for LIrTHAC)

3: Assign each p € P to the cluster C; € Peon
associated with the vector v} € V*

vk} C H, to minimizes

e for which (®(p),v;) is maximized for a hard
partition, or
e with weight proportional to (®(p), v;) for a soft

partition.

4: Output Peon.

TANCE [7]. We ran k-means, single-linkage, average-
linkage, complete-linkage and Ward’s method [35] on
the datasets to generate input partitions to the con-
sensus clustering methods. We use accuracy [8] and
Rand distance [29] to measure the effectiveness of the
consensus clustering algorithms by comparing the re-
turned consensus partitions to the original class la-
beling. We compare our consensus technique against
few hypergraph partitioning based consensus methods
CSPA, HGPA and MCLA [34]. For the MNIST data we
also visualize the cluster centroids of each of the input
and consensus partitions in a 28x28 grayscale image.

Accuracy studies the one-to-one relationship be-
tween clusters and classes; it measures the extent to
which each cluster contains data points from the corre-
sponding class. Given a set P of n elements, consider
a set of k clusters P = {C4,...,Ci} and m > k classes
L ={L,...,L;} denoting the ground truth partition.
Accuracy is expressed as

P10 N Ly
Z

=1

AP L) = m

where p assigns each cluster to a distinct class. The
Rand distance counts the fraction of pairs which are
assigned consistently in both partitions as in the same
or in different classes. Let Rg(P,L) be the number of
pairs of points that are in the same cluster in both P and
L, and let Rp(P,L) be the number of pairs of points
that are in different clusters in both P and L. Now we
can define the Rand distance as

Rs(fp, L) + RD(‘.P,L).

(5)

R(P,L)=1—




Code. We implement ® as the Random Projection
feature map [20] in C to lift each data point into R”.
We set p = 200 for the two synthetic datasets 2D2C
and 2D3C and all the UCI datasets. We set p = 4000
for the larger datasets, MNIST training and MNIST
test. The same lifting is applied to all data points, and
thus all clusters.

The LiIrTEMD, LiIrTKD, and LirTH distances be-
tween two partitions P and P’ are computed by invok-
ing brute-force transportation distance, kernel distance,
and Hausdorff distance on ®(P), ®(P') C R” represent-
ing the lifted clusters.

To compute the consensus clustering in the lifted
space, we apply k-means (for LiIrTKM) or HAC (for
LirTHAC) (with the appropriate numbers of clusters)
on the set @ C R? of all lifted clusters from all parti-
tions. The only parameters required by the procedure
is the error term € (needed in our choice of p) associated
with @, and any clustering-related parameters.

We used the cluster analysis functions in MATLAB
with the default settings to generate the input parti-
tions to the consensus methods and the given number of
classes as the number of clusters. We implemented the
algorithm provided by the authors [3] in MATLAB to
compute Dapco. To compute CDISTANCE, we used the
code provided by the authors [7]. We used the Cluster-
Pack MATLAB toolbox [33] to run the hypergraph par-
titioning based consensus methods CSPA, HGPA and
MCLA.

6.1 Spatial Sensitivity. We start by evaluating the
sensitivity of our method. We consider three partitions—
the ground truth (or) reference partition (RP), and
manually constructed first and second partitions (FP
and SP) for the datasets 2D2C (see Figure 1) and
2D3C (see Figure 6). For both the datasets the
reference partition is by construction spatially closer
to the first partition than the second partition, but
each of the two partitions are equidistant from the
reference under any partition-based and information-
theoretic measures. Table 1 shows that in each example,
our measures correctly conclude that RP is closer to F'P
than it is to SP.

6.2 Efficiency. We compare our distance computa-
tion procedure to CDISTANCE. We do not compare
against Dapco and CC because they are not well-
founded. Both LIFTEMD and CDISTANCE compute
dp between clusters after an initial step of either lifting
to a feature space or computing dr between all pairs of
clusters. Thus the proper comparison, and runtime bot-
tleneck, is the initial phase of the algorithms; LIFTEMD
takes O(nlogn) time whereas CDISTANCE takes O(n®)

g
&

¥

(a) Reference Par- (b) First Partition (¢) Second Parti-
tition (RP) (FP) tion (SP)

Figure 6: Different partitions of 2D3C dataset.

time. Table 2 summarizes our results. For instance,
on the 2D3C data set with n = 24, our initial phase
takes 1.02 milliseconds, and CDISTANCE’s initial phase
takes 2.03 milliseconds. On the Wine data set with
n = 178, our initial phase takes 6.9 milliseconds, while
CDISTANCE’s initial phase takes 18.8 milliseconds. As
the dataset size increases, the advantage of LIFTEMD
over CDISTANCE becomes even larger. On the MNIST
training data with n = 60,000, our initial phase takes
a little less than 30 minutes, while CDISTANCE’s initial
phase takes more than 56 hours.

6.3 Consensus Clustering. We now evaluate our
spatially-aware consensus clustering method. We do
this first by comparing our consensus partition to the
reference solution based on using the Rand distance (i.e
a partition-based measure) in Table 3. Note that for all
data sets, our consensus clustering methods (LIFTKM
and LIFTHAC) return answers that are almost always
as close as the best answer returned by any of the hy-
pergraph partitioning based consensus methods CSPA,
HGPA, or MCLA. We get very similar results using the
accuracy [8] measure in place of Rand.

In Table 4, we then run the same comparisons,
but this time using LIFTEMD (i.e a spatially-aware
measure). Here, it is interesting to note that in all
cases (with the slight exception of Ionosphere) the
distance we get is smaller than the distance reported by
the hypergraph partitioning based consensus methods,
indicating that our method is returning a consensus
partition that is spatially closer to the true answer. The
two tables also illustrate the flexibility of our framework,
since the results using LIFTKM and LIFTHAC are
mostly identical (with one exception being IRIS under
LirFTEMD).

To summarize, our method provides results that
are comparable or better on partition-based measures of
consensus, and are superior using spatially-aware mea-
sures. The running time of our approach is comparable
to the best hypergraph partitioning based approaches,



Dataset 2D2C Dataset 2D3C
Technique d(RP,FP) [ d(RP,SP) || d(RP,FP) [ d(RP,SP)
Dabco 1.710 1.780 1.790 1.820
CDISTANCE || 0.240 0.350 0.092 0.407
LirFTEMD 0.430 0.512 0.256 0.310
LirTKD 0.290 0.325 0.243 0.325
LirTH 0.410 0.490 1.227 1.291

Table 1: Comparing Partitions. Each cell indicates the distance returned under the methods along the rows for the
dataset in the column. Spatially, the left column of each data set (2D2C or 2D3C) should be smaller than the right
column; this holds for all 5 spatial measures/algorithms tested. In all cases, the two partition-based measures and the

two information-theoretic measures yield the same values fo

r d(RP, FP) and d(RP, SP), but are not shown.

| Dataset | Number of points | Number of dimensions | CDistance [ LIFTEMD |
2D8C 24 2 2.03 ms 1.02 ms
2D2C 45 2 4.10 ms 1.95 ms
Wine 178 13 18.80 ms 6.90 ms
MNIST test data 10,000 784 1360.20 s 303.90 s
MNIST training data | 60,000 784 202681 s 1774.20 s

Table 2: Comparison of runtimes: Distance between

so using our consensus procedure yields the best overall
result.

We also run consensus experiments on the MNIST
test data and compare against CSPA and MCLA. We
do not compare against HGPA since it runs very slow
for the large MNIST datasets (n 10,000); it has
quadratic complexity in the input size, and in fact, the
authors do not recommend this for large data. Figure 7
provides a visualization of the cluster centroids of input
partitions generated using k-means, complete linkage
HAC and average linkage HAC and the consensus
partitions generated by CSPA and LiFTKM. From the
k-means input, only 5 clusters can be easily associated
with digits (0, 3, 6, 8, 9); from the complete linkage
HAC input, only 7 clusters can be easily associated with
digits (0, 1, 3, 6, 7, 8, 9); and from the average linkage
HAC output, only 6 clusters can be easily associated
with digits (0, 1, 2, 8, 7, 9). The partition that we
obtain from running CSPA also lets us identify up to 6
digits (0, 1, 2, 3, 8, 9). In all the above three partitions,
there occurs cases where two clusters seem to represent
the same digit. In contrast, we can identify 9 digits (0,
1, 2,8, 4,5, 7, 8, 9) with only the digit 6 being noisy
from our LIFTKM output.

6.4 Error in ®. There is a tradeoff between the
desired error ¢ in computing LIFTEMD and the number
of dimensions p needed for ®. Figure 8 shows the error
as a function of p on the 2D2C dataset (n = 45). From
the chart, we can see that p = 100 dimensions suffice to

true partition and partition generated by k-means)

R0 1289¢6789
£0083806839
013398560301

£0323966599
R0 12348567819

Figure 7: 28x28 pixel representation of the cluster cen-
troids for MNIST test input partitions generated using (a)
k-means, (b) complete linkage HAC, and (c) average link-
age HAC, and the consensus partitions generated by (d)
CSPA and (e) LirTKMm.

input

consensus

yield a very accurate approximation for the distances.
Figure 9 shows the error as a function of p on the MNIST
training dataset that has n = 60,000 points. From the
chart, we can see that p = 4,000 dimensions suffice to
yield a very accurate approximation for the distances.

7 Conclusions

We provide a spatially-aware metric between partitions
based on a RKHS representation of clusters. We also
provide a spatially-aware consensus clustering formula-
tion using this representation that reduces to Euclidean
clustering. We demonstrate that our algorithms are
efficient and are comparable to or better than prior
spatially-aware and non-spatially-aware methods.



Dataset | CSPA HGPA MCLA | LirtKM  LirTHAC |

IRIS 0.088 0.270 0.115 0.114 0.125
Glass 0.277 0.305 0.428 0.425 0.430
Tonosphere 0.422 0.502 0.410 0.420 0.410
Soybean 0.188 0.150 0.163 0.150 0.154
Wine 0.296 0.374 0.330 0.320 0.310
MNIST test data | 0.149 - 0.163 0.091 0.110

Table 3: Comparison of LIFTKM and LIFTHAC with hypergraph partitioning based consensus methods under the
Rand distance (with respect to ground truth). The numbers are comparable across each row corresponding to a different
dataset, and smaller numbers indicate better accuracy. The top two methods for each dataset are highlighted.

| Dataset | CSPA HGPA MCLA | LirtKM  LirTHAC |
IRIS 0.113 0295 0812 [0.106  0.210
Glass 0573 0.519 0.731 [ 0.531  0.540
Tonosphere 0.729 0.767 0.993 0.731 0.720
Soybean 0510 0495 0.951 [ 0.277  0.290
Wine 0.873  0.875 0917 [ 0.831  0.842
MNIST test data | 0.182 - 0344 [0.106  0.112

Table 4: Comparison of LIFTKM and LIFTHAC with hypergraph partitioning based consensus methods under
LIFTEMD (with respect to ground truth). The numbers are comparable across each row corresponding to a different
dataset, and smaller numbers indicate better accuracy. The top two methods for each dataset are highlighted.
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Figure 8: Error in LIFTEMD on 2D2C dataset (45 Figure 9: Error in LIFTEMD on MNIST training data
samples) as a function of p. (60,000 samples) as a function of p.
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