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ABSTRACT 

 
Detecting the background galaxies within the spectrum of the foreground galaxy 

is one of the most effective ways to identify strong lensing phenomenon. However, it is 

very hard and time consuming for astronomers to apply this search method manually (i.e., 

one by one) to huge cosmological data sets. This study attempts to predict the 

background galaxies and discover the potential lensed candidates by using classification 

methods. To achieve this, the most important step is to leverage cosmological data by 

extracting potentially useful features for the classification methods.   

 In this study, after extracting the potentially useful features from two different 

astronomy datasets, chi square weighting feature selection was applied on them to find 

the final set of the useful features. Then, various state-of-art classification methods were 

applied on the datasets to predict lens candidates. Classifier performance was measured 

in terms of accuracy, AUC, and F-measure. The results showed that 85 features chosen 

by chi square weighting are the most useful features. Logistic Regression outperformed 

all other classification methods for the prediction task. Finally, the prediction method 

using classifiers is significantly more efficient than manual inspection. The proposed 

method in this study is generalizable for detecting background galaxy and potential lenses 

in any cosmological data. This can significantly improve the efficiency for astronomers 

to apply their search methods.  
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CHAPTER 1 

 

INTRODUCTION 

 

Mass warps the space around it, of which gravitational lensing can be detected 

when light is bent in this warped space (i.e. lens) between the source and the viewer. 

Typically, the light is only bent a tiny bit such as 1/3600 of 1 degree. The path of the light 

from a source, for instance galaxy, can be bent significantly when it passes near a heavy 

mass, such as another galaxy. If the initial light path is near enough to a massive enough 

object(s), multiple images of the source can be bent towards the viewer, which is called 

strong gravitational lensing. In strong gravitational lensing, the lens (also known as the 

foreground object or deflector) produces either several stretched images of the source 

(also known as the background object) into the shape of an arc, or stretches the source 

into a ring around the lens. Since the background galaxy maintains its brightness, more 

light can be collected from the larger and magnified image(s) (1). From the lensing 

geometry, astronomers can compute the total mass enclosed within the strong lensing 

regime. This provides astronomers a powerful probe into detecting the contribution of 

dark matter within the enclosed lensing radius (i.e. the strong lensing regime). 

 An example of lensed features can be simulated by looking through the bottom of 

a wine glass at a lit candle (i.e. similar to the lens), and observe several arc-like images of 

the flame (i.e. similar to the source images observed). Most lens candidates have been 
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found by detecting gas emission lines from the source galaxy within the spectra of the 

lens galaxy. Since the source is farther away (i.e. higher cosmological redshift), its gas 

emission lines are observed at a redder bias than the spectra of the lens galaxy. Follow-up 

high-resolution imaging with the lens subtracted, can reveal the lensed features of the 

source, and thus confirm these candidates (2).   

To stumble on a gravitational lens by observing just a photo is extremely rare, and 

many source galaxies can be faint relative to the flooding light of the lens galaxy, which 

can wash any sight of the source away.  Many lensed features can only be seen after 

subtracting the bright lens galaxy from the image. Thus, the lens galaxy has to be 

modeled to extreme precision to prevent over/under subtraction features from affecting 

the quality of the observed lensed features. Lens light removal is a crucial step in 

gravitational lens modeling when the emission from the lens is high enough to hinder the 

correct interpretation of the lensed emission (3).  

Although discovering the background galaxies within the spectrum of a 

foreground galaxy is very hard and time consuming, it is the most effective way to detect 

the faint background galaxy (4). Out of 250 lenses that have been discovered and 

examined by photo, 150 come from spectroscopic discovery using the SDSS data alone 

(5). 

Many high yield surveys are using computational search methods to find potential 

background galaxies in huge datasets. Often this results in a large set of potential 

background galaxy spectra to manually inspect. For example, in the Spectroscopic 

Identification of Lensing Objects (SILO) survey, 1.5 million spectra were 

computationally scanned for high S/N emission lines from the background galaxy. They 
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report manually inspecting at least 11,421 spectra with good indications of emission lines 

from ~700 background galaxies(6). However, by using their domain knowledge, 

extracting related features and applying data mining methods the whole process can be 

automated with even a higher accuracy and time saving efficiency.  

To the best of our knowledge, there has been no work on applying data mining 

methods on predicting and identifying the background galaxy. Therefore, in this paper we 

aim at predicting background galaxies by using state-of-art machine learning methods. 

This prediction could directly or indirectly result in finding potential lens candidates. 

To achieve this, we use two dataset including the Extended Baryon Oscillation 

Spectroscopic Survey (eBOSS) (7), and the Mapping Nearby Galaxies at APO (MaNGA) 

(8) which are projects of the Sloan Digital Sky Survey (SDSS).  

 For eBOSS detections, detection of a background galaxy typically results in 

finding a lens by default since each fiber is focused on a distant galaxy, with a coverage 

as wide (about 2 arc seconds) as the typical strong lensing regime (i.e. you spot a 

background galaxy in eBOSS, it is likely strongly lensed). However, the spectra of 

MaNGA galaxies are recorded from bundles of fibers. Each fiber covers a 1 arc second 

radius, and is distributed within a field of view up to about 14 arc seconds in radius. 

However the strong lensing features are located within the first few arc seconds of the 

galaxy center. As a result, a detected background galaxy in MaNGA does not yet assure it 

is being strongly lensed until it can be shown that it is either near enough to the strong 

lensing regime, or there are multiple images observed from the source. 

 Therefore, for eBOSS, astronomers can use the machine learning method to 

isolate and increase assurance of potential gas emission lines of the background galaxy, 
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and then inspect them, of which good signals of background galaxies become strong 

lensing candidates. For MaNGA, they can also use the machine learning methods to 

isolate potential gas emission lines of the background galaxy, and inspect them. 

However, they need to compare the good signals of the background galaxies to see how 

close they are to the strong lensing regime derived from prior foreground galaxy 

information. 

At the end, the results show that machine learning methods can make the 

prediction with a high accuracy of 94.66 and AUC of 97.50. The outcome of this paper 

can be used by astronomy researchers to facilitate their manual inspection and detection 

of background galaxies and strong gravitational lensing.  

 

 



 

 

 

 

CHAPTER 2 

 

BACKGROUND 

 

2.1 Astronomy Background  

Gravitational lensing occurs when a distribution of mass (i.e. Mass from one 

foreground star, one foreground galaxy, or multiple foreground galaxies in a cluster 

warping space) is between a distant light source and the observer that is capable of 

bending the light from the source onto a path that reaches the observer. This phenomenon 

is known as gravitational lensing, and the amount of bending is one of the predictions of 

Albert Einstein's general theory of relativity (9). 

Normal lenses such as the ones in a magnifying glass work by bending light rays 

that pass through them in a process known as refraction, in order to focus the light 

somewhere such as in your eye. Strong galaxy-galaxy scale gravitational lensing happens 

when we have two galaxies aligned just right (i.e. about only arc seconds apart) on the 

sky, in which both their relative distances, and the mass of the foreground galaxy plays a 

huge role in the creating strong gravitational features. When detected, Astronomers often 

look at them with the Hubble space telescope (10). Consider that we have a massive 

elliptical galaxy and right behind it in a far distance there is a little galaxy. If the 

alignment is just right, we can have the situation where the light from the background 

object can bend around and refocus somewhere else and we can see multiple images or 
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distorted rings from the telescope. More massive foreground galaxies have a stronger 

gravitational lens and as a result will bend the passing light rays at a greater angle 

towards the lens.  

There are three types of gravitational lensing including strong lensing, weak 

lensing  and microlensing (11). In this paper, we focus on the first type of gravitational 

lensing. Strong lensing happens where there are easily visible distortions such as the 

formation of Einstein rings, arcs, and multiple images (12). It means that the strength of 

the gravitational potential is sufficient that an image passing on the opposite side of the 

foreground galaxy is bent enough to be seen as a counter image or contributes to the ring. 

Depending on the alignment of the observer on Earth with a distant background object 

such as a galaxy and a massive foreground object, which is often a galaxy or cluster of 

galaxies, all sorts of distorted images can be observed: rings, arcs, or even multiple 

images of the same background object. Figure 2.1 shows that how gravitational lensing 

works.  

Strong gravitational lensing offers lots of research into the astrophysical 

distribution of dark matter such as measurements of foreground galaxy surface mass 

densities form lens models of multiple images (13). Strong lensing can also allow us to 

calculate the mass of the galaxy clusters which can give us intuition into the construction 

history of these massive galaxy clusters. This can also help to find objects far beyond the 

resolution or detection ability of earth and space telescopes, revealing more redshift 

samples about the expansion history of the universe.  

Telescopes and instruments can only see details on objects up to a certain distance 

due to resolution limits (for example, not even the Hubble Space Telescope can observe 
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the NASA landing sites on the moon due to the resolution limit, a problem that rises due 

to the wave property of light, the diameter of the telescope, and the wavelength of the 

light).  

 

 

 

         
 
  
 
 

 

 

 

Figure 2.1 Gravity from a foreground object bends light from a more distant object 
 
 

Also, the object might be too faint to see without gravitational lensing, and would 

require an excessive amount of exposure time to begin to see them. Strong gravitational 

lensing both stretches the background galaxy image, and thus effectively magnifies it, so 

we can see more features. Since the surface brightness density of the object stays the 

same, the amount of flux per magnified image is increased.  

The most productive resource of detecting strong galaxy-galaxy lens candidates is 

spectroscopic discovery from different survey methods. This method provides evidence 

for background galaxy behind foreground galaxy along with accurate measurements of 

the lens and source red shift (14). Then high resolution images can confirm the lensing 

features and make precise measurements of the angular distance between the background 

Focus  
Position of source 

Apparent position  

Apparent position  

Massive Object  
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galaxy images. 

 It is important to note that the redshift is caused by the expansion of space on a 

cosmological scale. This cosmological expansion rate is known as ‘Hubble’s constant’ 

that correlates to about 73.8 km/sec/Mpc (i.e. for every distance of 1 mega parsec from 

us, objects in any sky direction is moving away from us at 73.8kilometers per second 

(15). This means the wave pattern of the light reaching us is stretched out, similar to 

hearing a firetruck rush past you. Thus a ‘cosmological distance’ results in a redshift that 

makes it easier to see the background galaxy gas emission lines from the foreground 

galaxy gas emission lines, since the background galaxy is redshifted more than the 

foreground.  

In this search method, the foreground galaxies work as a gravitational lens for any 

object behind it. Therefore, the spectra of the foreground galaxies should contain the 

emission features of background galaxies and so, such lensed objects can be discovered 

in the spectra of foreground galaxies. Spectroscopic discovery searches for these 

background galaxy gas emission features (4).  

The Figure 2.2 shows the example plot of Spectroscopic discovery searches. The 

black line shows the observed emission lines plot as a flux and wavelengths. In fact it 

consists of both background and foreground galaxy emission lines and there is no way to 

completely separate the emission lines from background and foreground galaxies. The 

blue line shows the model fitted to the continuum of the foreground galaxy.  For each 

spectra, astronomers constructed a best fit model to the galaxy continuum using a basis of 

7 principle component analysis (PCA) eigenspectra. The red line known as Resflux shows 

the subtraction of two previous plots and contains the background emission lines. (16) 
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Figure 2.2 Observed emission line, best-fit model and background emission line plots 

 
 

There are two different search methods for the emission lines. Oneline searches 

for the two OII emission lines that are close enough together that the OII doublet looks 

like a double peaked spike in the data. We search for potential OII doublets with Signal-

to-Noise > 6. Multiline searches for 2 or more emission lines from a set of ten known 

emission line types with (signal-to-noise > 4).  We include both search methods in the 

data set to help us predict the lenses.  

The Figure 2.3 shows example plots of typical multiline and oneline detections in 

the ideal case when we do not have the noisy dataset. Right plot shows oneline search 

and left one shows the multiline search. The black solid-line shows the observed emission 

line, the blue dashed-line shows the model fitted to the continuum of the foreground 

galaxy, and the red vertical dashed-line shows the wavelength of the discovered 

background emission lines. The green dashed-dotted line shows the Gaussian fitted to the 

background emission lines. 
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Figure 2.3 Example plots of typical multiline and oneline detections 

 
When we have a noisy data set, it is very hard to inspect the emission line and 

perform the search methods. Figure 2.4 shows the example of oneline search when we 

found the hits. In order to perform the search method, we need to calculate the 

wavelength index of the desired emission line. The black rectangular shows the index for 

OII emission line. Figure 2.5 shows the picture of the OII emission line when we zoom 

into that specific index. As you can see in Figure 2.5, all requirements of the oneline 

search were satisfied and so, we can conclude that it is a hit. 

 
Figure 2.4 Example plot of oneline search when hits is found 
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Figure 2.5 Zoomed picture of OII double emission when hit is found 

 
Figure 2.6 shows the example of oneline search when we did not find the hits. We 

again calculate the wavelength index of the desired emission line for this example. The 

black rectangular shows the index for OII emission line and Figure 2.6 shows the picture 

of the OII emission line when we zoom into that specific index. As you can see in Figure 

2.7, the requirements of the oneline search were not satisfied and so, we can conclude 

that it is a not hit. 

 

 
Figure 2.6 Example plot of oneline search when hits is not found 
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Figure 2.7 Zoomed picture of OII double emission when hit is found 

 
 

 

2.2 Computer Science Background 

 

2.2.1 Data mining 

Over the past decade computational power of computer has significantly 

increased. Moreover, large amount of observed data have been recorded in datasets (17). 

As a result, extracting useful and valuable information from such datasets is becoming 

essential in a variety of areas such as astronomy with thousands of data record per day 

(18). To achieve this, data mining aims at discovering knowledge and finding important 

information, patterns and trends from data. More specifically, data mining analyzes large 

data sets in order to extract valuable information using methods in different fields such 

statistics, databases and data science (19).  

Although, data mining experts are focused on the technical aspects of problem, 

they need to know the domain knowledge associated with that in order to better 
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understand the problem and propose a solution. Therefore, data mining of a problem 

(e.g., astronomy) needs a close collaboration between data mining experts and the 

scientists of the related field.   

Data mining consists of several different tasks such as classification, clustering, 

association mining and etc. However, in this study we are focused on one the 

classification task because of the problem (20). Classification methods attempt to assign a 

generalized known structure (e.g., labels) to a new data.  As an example, classification 

methods classify an e-mail as “spam” or “legitimate” according the similar previous 

email with known labels (21). 

Classification methods get a set of features, as input to predict a feature as output 

for data instances (17).  There are different names for these inputs and output in the 

literature. Input variables are also called independent features or predictors and output 

feature is also called dependent variable or target variable. The task of a classification 

method is to build a model on a specific partition of the input dataset (consisting of data 

instances) and apply that on the other partition to label (i.e., classify or predict) its data 

instances. The building model partition is called training dataset and the evaluation 

partition is called testing dataset (18). Some classification methods are designed for 

binary classification tasks where the dependent variable is binary or dichotomous and 

some method can handle categorical dependent variables as well (22). Binary 

classification means that there are only two values for output, “0” and “1”, showing the 

target outcomes (e.g., pass or fail, alive or dead). Categorical (or nominal) classification 

means there are more than two values for dependent variables (23). 
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The internal process of various classification methods to build the data mining 

model is different. The rest of this section gives an overview of the internal process of the 

widely used classification methods.   

2.2.2 Decision Tree 

Using statistical analysis on the relationship between each input variable and the 

target variable decision tress predict the target variable (24). Decision tree is a popular 

classification method which can be explained as a combination of mathematical and 

computational techniques to aid the description, categorization and generalization of a 

given set of data (25). 

In the tree structures, at the first layer (i.e., top of the tree) there is a root node 

which contains all of the input variables describing data instances in the training set. In 

the next layers (branches) this tree is split into child nodes using the criterion that 

minimizes the classification error. This process repeats iteratively and stops when 

specific user defined criteria are reached. At the last layer class labels are represented by 

leaves of the tree and conjunction of the input features are represented by branches of the 

tree (25).  

 

2.2.3 Logistic Regression 

Logistic regression is one of the most popular methods for classification. It is 

most widely used where the dependent variable is binary (22). When there are more than 

two values for dependent variables multinomial logistic regression should be employed 

(23).  
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Binary logistic regression estimates the probability of a binary target variable 

based on the input variables. In other words, the goal of logistic regression is to find the 

best fitting model to describe the relationship between a binary target variable and a set 

of input variables (26). Logistic regression generates the coefficients and its standard 

errors and significance levels of a formula to predict a logit transformation of the 

probability of presence of the characteristic of interest (27). 

2.2.4 K Nearest Neighbor 

K Nearest Neighbor algorithm (k-NN) is one of simplest techniques to build a 

classification method. The basic idea is to classify an instance based on its similar 

neighbors (28). In other words, when there is an unlabeled data instances, the class label 

for that instance is determined by looking at the label of its neighbors. The underlying 

idea is that instances with similar input variables are most likely to belong to the same 

class and should be labeled with the same target label. Therefore, the classification of a 

instance is dependent on a target label of its neighboring instances (29). 

Given a new sample, the method looks for the k instances in the training data that 

are the closest neighbor to this instance. Using voting over the labels of the k nearest 

neighbors the label of the new instance is assigned. As a result, a similarity measure is 

required to determine the closeness of different instances to the new instance. Variety of 

similarity measures such Manhattan Euclidean or Hamming distance function can be 

employed to fulfil the task (30). 
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2.2.5 Naïve Bayes 

Naïve Bayes algorithm uses probabilistic approach for classification where the 

probabilities show the relationship between input variables and output variable (31). 

Given an input variable, the probability of each class is estimated and then the class with 

the high probability determined as a label of an unseen instance. This method is primarily 

based on applying Bayes’ theorem (32) with independent assumption between input 

variables.  

2.2.6 Artificial Neural Network 

Artificial Neural Network (ANN) is a well-known classification method in 

various fields of study. ANN attempts to make computers model the brain and simulate 

the collection of neuron. This method comprised of a series of branching nodes that 

operate like the neuron in the body and then information is given to the nodes and 

transmits it across the entire complex. The network processes the information and 

generates the desire output (33).  

ANN takes input features and maps them on to the output variable. When the 

network is trained, it can be used to label unseen test instances. It also uses an algorithm 

to minimize a cost function. (34) 

 

2.2.7 Bayes Network 

This method is a probabilistic graphical model that shows a set of input variables 

and their conditional dependencies via a directed acyclic graph. Bayes network tackle the 

problem of independency assumption of independence in Naïve Bayes method and 

improve the performance. Directed acyclic graph allow efficient representation of the join 
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probability distribution. Each vertex in the graph represents a random variable, and edges 

represent direct correlations between the variables (35). 

Each input variable is independent of its non-descendants in the graph given the 

state of its parents. These independencies are then exploited to reduce the number of 

parameters needed to characterize a probability distribution, and to efficiently compute 

posterior probabilities given evidence. Probabilistic parameters are encoded in a set of 

tables, one for each input variable, in the form of local conditional distributions of a 

variable given its parents. Using the independence statements encoded in the network, the 

joint distribution is uniquely determined by these local conditional distributions. (36) 

 

 2.2.8 Support Vector Machine 

Support Vector Machine (SVM) attempts to find the hyperplane that best splits 

two classes of data. This algorithm creates the decision boundary instead of creating a 

model of the data. The input data is considered as set of vectors and the data point (i.e., 

data instances) closes to the boundary are support vectors. Other than performing linear 

classification, SVM can achieve a non-linear classification using kernels. The input 

features are mapped into a higher dimensional space using a kernel in order to make the 

non-linear relationships in the data linear. (37) 

 

2.2.9 Classification Evaluation 

To evaluate classification methods various measures can be employed. This 

section briefly elaborates the measures used in this study as the most popular 

classification measures. More details about these measures can be found elsewhere (38). 
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Before starting with the classification performance measure, it is important to 

understand the confusion matrix. It is a table that is used to summarize and describe the 

performance of a classification model. Each column shows the instances in an actual 

class label and each row shows the instances in a predicted class label (or vice versa) 

(39).  

Table 2.1 Confusion Matrix 

Actual 
+ 

Actual 
- 

Predicted 
+ 

True Positive 
(TP) 

False Positive 
(FP) 

Predicted 
- 

False Negative 
(FN) 

True Negative 
(TN) 

 
 
 

As shown in Table 2.1, confusion matrix consists of four values including True 

Positive (TP), True Negative (TN), False Positive (FP) and True Negative (TN). Here is 

the explanation of each value in the case that we predicted the presence of a disease. In 

this case there are two possible predicted classes: "yes" and "no". 

• TP: The cases we predicted yes (they have the disease), and they do 

actually have the disease. 

• TN: The cases we predicted no and they don't have the disease. 

• FP: The cases we predicted yes, but they don't actually have the disease. 

• FN: The cases we predicted no, but they actually have the disease. 

Several standard performance measures have been defined from the confusion 

matrix. The most popular classification measures for binary classifiers are elaborated in 

the following.  

• Accuracy: Accuracy is the number of instances predicted correctly divided 



19 

 

by total number of instances (in the test set). 

Accuracy =
TP + TN

TP + TN+ FN + FN 

• Precision: Precision of a class label is the number of true positives (i.e. the 

number of instances correctly labeled as belonging to the positive class) 

divided by the total number of instances labeled as belonging to the 

positive class (i.e. the sum of true positives and false positives), which are 

instances incorrectly labeled as belonging to the class.  

Precision	Yes = 	
TP

TP + FP 
 

Precision	No = 	
TN

TN + FN 
 
 

• Recall: Recall is the number of true positives divided by the total number 

of instances that actually belong to the positive class (i.e. the sum of true 

positives and false negatives), which are the instances which were not 

labeled as belonging to the positive class but should have been. 

Recall	Yes =
TP

TP + TN 
 

Recall	No =
TN

TN+ FP 
 
 

• F-measure: This is a weighted average of recall and precision where it 

reaches its best value at 1 and worst at 0.  

F −measure	Yes = 2 ×
precision	yes	 × 	recall	yes
Precision	yes	 + 	recall	yes 

 

F − measure	No = 2 ×
precision	no	 × 	recall	no
Precision	no	 + 	recall	no 
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• Area Under the Curve (AUC): AUC is a graphical plot that illustrates the 

diagnostic ability of a binary classifier system as its discrimination 

threshold is varied. AUC is calculated by finding the area under the curve 

of coordinate system of True Positive Rate (TPR) and False Positive Rate 

(FPR). Any binary classifier has a threshold for classifying an instance as 

“Yes” or “No”. Changing the threshold, results in different values of FPR 

and TPR. Building a curve using these values, AUC is calculated as the 

area under that curve:     

FPR =	
FP

FP + TN 
     

TPR =	
TP

TP + FN 

  



21 

 

 

 

CHAPTER 3 

 

METHOD 

 

As mentioned, this study attempts to predict and detect gravitational lens and 

background galaxy candidates. To achieve this, we apply the classification methods 

(described above) on the data of galaxies observed by Extended Baryon Oscillation 

Spectroscopic Survey (eBOSS) and the Mapping Nearby Galaxies at APO (MaNGA). To 

best of our knowledge, this is the first research to study the effect of data mining methods 

on prediction of lenses, which can be counted as the first contribution of this study. 

The main obstacle in applying classification methods for the prediction of 

background galaxies is that the only available data from galaxies are the data gathered for 

astronomy purposes. This data manly consists of human manual inspection in the format 

of fits files which is not meaningful for classification methods. As a result, there is a need 

to find a decent set of features that can best describe the data and fed into the 

classification methods. This needs collaboration of both data mining and astronomy 

experts. As a result, the second contribution of this paper is to provide such features sets 

after long runs of collaborations with astronomy experts. These features can be used as a 

benchmark for the future data mining studies on the prediction of gravitational lens 

candidates and sequentially background galaxies.  
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3.1. Input Features Extraction 

To find the best set of features from the dataset and extracting such features, we 

first tried to learn the manual inspection done by humans to examine the potential 

background galaxies in the astronomy field.  Then, we selected different features from 

the manual inspection which are useful for classification methods. These features were 

extracted from the fits files and prepared for feeding into the classification methods. 

Table 3.1 shows the final set of extracted features: 

Table 3.1 Input features 

Feature Description Feature Description 

RedShift 

Redshift describes how light shifts 
toward shorter or longer wavelengths 
as objects in space such as stars or 
galaxies move closer or farther away 
from us. 

EMLINE 

Required number of emission 
lines a signal-to-noise threshold 
in order to be recorded as a ‘hit’ 
(i.e. detection). 

o2sn 

These are the signal-to-noise of the 
background emission-lines identified 
by row aligned column to the right. 
 
 

O IIB 
 
 
 
 
These features are gas emission 
lines from the background 
galaxy caused by stars heating 
the gas nearby and causing it to 
glow at specific wavelengths 
characteristic to the elements 
atomic structure, abundance in 
the gas, and probability of 
emission. 

emsn1 O IIA 

emsn2 Hδ 
emsn3 Hα 

emsn4 H𝛽 

emsn5 O IIIB 
emsn6 O IIIA 
emsn7 N IIB 
emsn8 Hγ 
emsn9 N IIA 

emsn10 
S IIB 
S IIA 

HIT_PAR1 Gaussian fits wavelength position HIT_PAR2 Initial model fitting base height 

HIT_PAR3 Amplitude of gauss (i.e. how large it 
is) 

HIT_PAR4 Sigma used (i.e. how wide is 
the gauss) 

HIT_CHI2 Reduced Chi squared of the Gaussian 
model fit to the residual flux. HIT_FWHM Full Width at Half Maximum of 

the Gaussian model. 

G_FAIL 

The emission line feature can be too 
faint to fit a Gaussian model. Thus 
the header of the fits file specifies if a 
1 or 0 means the model could or 
could not be fitted.  
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3.2. Gaussian Model Fitting 

To create the Gaussian model, python is used to fit either a single or double 

Gaussian model to the residual flux where detection is believed to be located. The 

residual flux is the flux – model continuum, which mostly leaves behind emission line 

flux or other false flux spikes. After the fit, the reduced chi square (i.e. goodness of fit) 

and the full width at half maximum (FWHM) is measured. Other information such as best 

fit model position, height, size and sigma (gauss width) is collected.  This information 

can then be used to filter the more likely emission lines from the random flux spikes (for 

example, a double Gaussian model will fit a true OII doublet emission line feature better 

than a single Gaussian fit. The FWHM can be used to realize if the flux spike is skinnier 

than the doublet emission lines positions, which indicates this is a bad flux spike if the 

FWHM is skinnier than the emissions separation.  

3.3. Parameter Tuning   

To find the best classification algorithm, we compare different classification 

methods including Decision Tree, Logistic Regression, k-Nearest Neighbor, Bayesian 

Network, Naïve Bayes, Support Vector Machine and ANN. Optimizing each of these 

algorithms we tune different parameters for each algorithm. This parameter tuning 

includes depth of the tree, leaf size and confidence for Decision Tree, kernel type, kernel 

catch and maximum iteration for Logistic Regression, k (number of nearest neighbors) 

and measure type for k-Nearest Neighbor, learning rate and momentum for ANN, for 

Bayesian Network, minimum bandwidth and number of kernel for Naïve Bayes, kernel 

type, catch size, gamma and epsilon for Support Vector Machine. The best set of 

parameters for each algorithm is chosen for the final evaluation. 
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CHAPTER 4 

 

EXPERIMENTS 

 
4.1. Data 

In this paper, we use two different datasets for our prediction task. The first one is 

from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) and the second one 

is from Mapping Nearby Galaxies at APO (MaNGA). Both data sets record the spectra 

from a galaxy and they have been collected from one or many fibers that transfer the light 

to a spectrograph. For example, imagine someone can point a transparent optical fiber 

towards a light source, and then connect a spectrograph on the other side of the fiber. The 

light will travel down the fiber and reach the spectrograph. The spectrograph then splits 

the light into a rainbow that is spread across a camera. The camera then records the 

intensity of light per part of the rainbow, which is the ‘Flux’ per wavelength (called 

spectra) that is in each fits file. 

eBOSS places a single fiber on each galaxy to record overall the galaxy 

spectra. However, MaNGA uses an Integral-Field-Unit (which means they point many 

fibers bundled into a large cord) at one galaxy, and record many spectra all over the 

galaxy. 

Therefore, the BOSS and SDSS-I galaxies were observed with one fiber yielding 

a single spectrum containing all of the light from the galaxy, each MaNGA galaxy was 

observed with a fiber bundle, in which each fiber yielded multiple spectra from multiple 
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exposures. This allows the candidate background emission-lines to be spatially 

correlated, increasing our confidence that the background emission-lines are real. 

 Then, the fiber spectra can be used to create a finely spaced grid of spectra over 

the galaxy. For example, 127 fibers could be used from all over the galaxy to create a 74 

X 74 grid of special interpolated spectra.  

     eBoss maps the distribution of galaxies and quasars from when the Universe 

was 3 to 8 billion years old, a critical time when dark energy started to affect the 

expansion of the Universe. We use the sample of galaxies in eBoss to predict the strong 

lensing and background galaxies.  This sample gives 2,670 plates where each of them 

contains several galaxies information.  Out of all these galaxies, we only have 141 known 

galaxies labeled as either good hits or bad hits. Since, we have two distinct ways of 

measuring the hits (i.e. Oneline or Multiline), 282 records in total remained at the end.  

 MaNGA obtains spectra across the entire face of target galaxies using custom 

designed fiber bundles. Our sample of this dataset contains 192,650 fiber spectra 

including oneline and multiline search results. We have the target variable for 10,000 

spectra and we know the hits type for them. After extracting the features from both 

oneline and multiline, there are 20,000 records in total for this sample.  

For each spectra in both datasets, there are two corresponding .fits files. We need 

to process .fits files to filter out and extract the proper and necessary features.  The first 

type of the fits file consist of the basic information of the potential background galaxy 

emission lines, the foreground galaxy spectra, and the foreground galaxy model of the 

spectra, while the second type include the information of the Gaussian model fits to the 

background emission lines.  
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After processing the data, we extract the variables shown in Table 4.1 form either 

oneline or multiline fits file for each spectra. Moreover, we extracted other features from 

the Gaussian model .fits files for each emission line of each galaxy shown in table 4.2. In 

total, we have 24 features from oneline or multiline fits file and 96 features from 

Gaussian model. More elaborations on the meaning of each feature in Table 4.1 and 

Table 4.2 can be found on Table 3.1. 

As we mentioned above there are two types of fits files: oneline/multiline fits file 

and onelineGuess/multilineGuess fits file. The information of each record (i.e. galaxy 

spectra) in our data corresponds to two fits files. This is either multiline and 

multilineGuess or oneline and onelineGuess. The format of oneline is the same as 

multiline fits file. Similarly, the format of onelineGuess is the same as multilineGuess fits 

files. Here we show that how each format of fits file stores the information of the 

potential background emission lines and the corresponding foreground spectra they were 

detected in.  

 Figure 4.1 shows the info part of oneline/multiline fits files. It consists of the 

information of the data stores in this file. As seen in Figure 4.1, there are 10 types of 

different data in oneline/multiline fits files with different dimension, type and format. We 

did not need all these data to inspect the emission lines of the background galaxies and so, 

we just extracted those data that was useful to detect the target variable.  

Figure 4.2 shows the info part of onelineGuess/multilineGuess fits file. There are 

several different types of data extracted from the Gaussian model filling and stored in 

these kinds of fits files. We also did not use all these information for our prediction and 

choose the necessary data. 
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Figure 4.1 Info part of oneline/multiline fits file 

 
 
 
 
 
 
 
 

 

Figure 4.2 Info part of onelineGuess/multilineGuess fits file 
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Figure 4.3 Header part of oneline/multiline fits file 

 
 

 
Figure 4.4 Header part of onelineGuess/multilineGuess fits file 

 
 
 

We should also comment that there are headers for all data in both types of fits 

file. The headers explain the data and it has some helpful structure of the data.  Figure 4.3 

and Figure 4.4 shows just two headers as an example for oneline/multiline fits file and 

onelineGuess/ multilineGuess fits file respectively.  
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We developed a python code and used the astropy.io.fits package to handle, read 

and access the data in the fits files. This library provides access to fits files. Fits (Flexible 

Image Transport System) is a portable file standard widely used in the astronomy 

community to store images and tables. Then we collected all data from fits files and 

created the proper dataset for data mining methods. 

The target variable is a binary feature showing whether or not the record is a good 

hit. The problem we analyze in this study is the prediction of good hits, which can help 

inspect the background galaxies and strong lensing. Our sample of eBOSS has an 

imbalanced distribution of 25% bad hits and 75% good hits as shown in Table 4.3. The 

sample of MaNGA also has an imbalanced distribution of 25% good hits and 75% bad 

hits as shown in Table 4.4. 

Table 4.1 Numeric features extracted from oneline and multiline fits files 

RedShift Emsn3 Emsn7 OIIB HIB HIA 
o2sn Emsn4 Emsn8 OIIA OIIIB NIIA 

Emsn1 Emsn5 Emsn9 HID OIIIA SIIB 
Emsn2 Emsn6 Emsn10 HIC NIIB SIIA 

 
Table 4.2 Numeric features extracted from Gaussian model fits files 

EMLINE HIT_PAR3 HIT_CHI2 EMLINE G_FAIL 
HIT_PAR2 HIT_PAR5 HIT_FWHM HIT_PAR2  

 
Table 4.3 Data distribution over the target variable (hit) for eBOSS sample 

Nominal Value Absolute Count  Fraction  
Bad 68 25% 

Good 213 75% 
 

Table 4.4 Data distribution over the target variable (hit) for MaNGA sample 

Nominal Value Absolute Count  Percentage  
Bad 15598 75% 

Good 5194 25% 
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4.2. Manual Labeling  

Every time the search code detects either a potential OII doublet of the 

background galaxy (with S/N > 6 or oneline hit), or at least 2 potential emission lines of 

the background galaxy (with S/N > 4 or multiline hit), a ‘hit’ is recorded to a database, 

and also saved in hit fits files, along with the Gauss fitting of the emission lines, and the 

spectra that the hit was found in. 

Before manually inspect any of these hits, astronomers used the Gauss fitting 

parameters (such as FWHM, chi2, etc.) to identify fits that make more sense to be real 

emission lines of the background galaxy. They then manually inspect the hits with more 

sensible Gauss fits (or even multiple emission lines) to identify background emission line 

patterns. As an example they check if they can see a tall HIa and adjacent and smaller 

NIIa and NIIb emission lines and how well formed is the OII doublet (both spikes should 

be roughly the same height), and the OIIIb/OIIIa ratio should be 3:1. How well do these 

features stand out of the continuum, and how many of these emission lines can be seen at 

the expected redshift position, also help assure they are real. They also check if there are 

any signs that they may be bad, such as a nearby mask creating a false OII doublet, or a 

poorly subtracted part of the continuum results in an elevated residual flux region instead 

of a definitive emission line spike.  

Hits with assuring emission line patterns of the background galaxy are manually 

labeled as ‘good’. Hits identified as more likely to be random fake spikes or caused by 

affects such as masking are manually labeled as ‘bad’. 

‘Good’ hits are assuring emission lines of the background galaxy seen in the 

spectra recorded from a fiber. Since eBOSS fibers are foreground galaxy centered (one 
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fiber per galaxy), and their arc second coverage (about 2”) is pretty much where the 

strong lensing regime is (eBOSS lenses have up to ~1” Einstein radius (i.e. strong lensing 

regime), but strong lensing happens when the main image is within twice the Einstein 

radius, or about 2” for eBOSS, i.e. its fiber coverage range), these automatically become 

lensing candidates. Good hits from MaNGA just assure they are emission lines from 

background galaxies. To determine if a MaNGA hit might be strongly lensed, 

astronomers use FIREFLY stellar density maps times a dark matter fraction to 

approximate the strong lensing regime of the foreground galaxy, and then see if the 

background galaxy is within twice the upper limit of our estimate of the strong lensing 

regime from the foreground galaxy center (if so, the background galaxy becomes a lens 

candidate if they can see its emission lines within twice this region). 

 
4.3. Implementation 

RapidMiner (40) is used to implement all experiments in this study. RapidMiner 

is data mining software which is capable of performing several different tasks such as 

data preparation, data analysis and reporting. RapidMiner is a java based open source 

software which has pre-built libraries for many data mining methods including the binary 

classification methods used in this study. Therefore, all the data manipulation (e.g., 

missing value imputation), model application and evaluation have been done using this 

powerful software.  

Weka (41) is also used to implement some experiments that take more times to 

run. Weka is a machine learning software written in Java, and has the collection of 

machine learning algorithms for data mining tasks. The algorithms can either be applied 

directly to a dataset or called from the Java code.  
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4.4. Evaluation 

The whole dataset is split to have 30 percent for parameter tuning and 70 percent 

for evaluation. For evaluation, 10-fold cross validation is used to evaluate the 

performance of different methods in terms of their Precision, Recall, Accuracy, AUC and 

F_measure. More specifically, after getting the evaluation results of each fold, the above 

measures are averaged over the 10 folds. The final 10 average values are reported in the 

results section. 

 

4.5. Results 

4.5.1. Base model application 

In the first experiment we attempted to evaluate the effectiveness of different 

classification methods on the data we prepared from the eBOSS and MaNGA survey. 

Table 4.5 shows the results of this experiment for eBoss data and the results for MaNGA 

data is shown in table 4.6.  

As seen in table 4.5 and table 4.6, for eBOSS data, Bayesian Network and 

Logistic Regression methods and for MaNGA data, Logistic Regression and ANN 

methods have the best performance outperforming all other methods in terms of 

accuracy, AUC, F_measure, precision and recall. 

The reason for the poor performance of SVM is that they are not designed for 

imbalance dataset. Instead, they are more appropriate for balanced dataset. Moreover, the 

reason that Logistic Regression, Bayesian Network and ANN outperformed is that they 

can easily handle this problem for imbalance dataset. 
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Table 4.5 Performance of machine learning method on eBOSS dataset 

Model Precision 
(No) 

Precision 
(Yes) 

Recall 
(No) 

Recall 
(Yes) Accuracy AUC F_Measure 

Bayes Net 83.82 94.84 83.82 94.84 92.17 98.10 94.53 

Logistic 
Regression 90.48 94.95 83.82 97.18 93.93 97.30 95.89 

Naïve Bayes 70.00 85.71 51.47 92.96 82.91 83.70 88.86 

Decision Tree 80.36 89.78 66.18 94.84 87.91 79.40 92.19 

ANN 81.97 91.82 73.53 94.84 89.67 79.40 93.00 

k-NN 39.73 81.25 42.65 79.34 70.50 62.90 79.50 

SVM 0.00 75.80 0.00 100.00 75.80 0.00 86.23 

 
Table 4.6 Performance of machine learning method on MaNGA dataset 

Model Precision 
(No) 

Precision 
(Yes) 

Recall 
(No) 

Recall 
(Yes) Accuracy AUC F_Measure 

Logistic 
Regression 86.4 83.00 96.30 54.44 85.82 88.10 83.00 

ANN 88.30 72.70 92.10 63.40 84.90 86.4 84.60 

Bayes Net 85 58.5 87.3 53.6 78.9 80.2 78.6 

Naïve Bayes 89.27 31.25 36.37 86.87 48.99 74.7 46.09 

Decision Tree 82.61 94.89 99.33 37.2 83.81 69.7 53.43 

k-NN 68.57 24.73 3.39 95.34 26.36 41.5 39.26 

SVM 0 24.2 0 100 24.19 0 38.94 

 
 

4.5.2. Missing value imputation 

The second experiment applied the missing value imputation by using the average 

value in order to analyze the effect of imputing the missing value. Table 4.7 and table 4.8 

show the results of this experiment for eBOSS and MaNGA data set respectively.  
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As seen in Table 4.7 and Table 4.8, this imputation was not able to improve the 

performance of our best methods and decreased the performance measures of some 

methods. However, Bayesian Network and Logistic Regression methods still have the 

best performance for eBOSS and Logistic Regression and ANN have the best 

performance for MaNGA dataset. 

 This experiment shows that astronomy is different from many areas where such 

imputation could work. In other words, domain knowledge is required to impute the 

missing values and automated imputation may produce errors.  

 
Table 4.7 Effectiveness of missing value imputation on eBOSS dataset 

Model Precision 
(No) 

Precision 
(Yes) 

Recall 
(No) 

Recall 
(Yes) Accuracy AUC F_Measure 

Logistic 
Regression 91.80 94.55 82.35 97.65 93.94 97.10 95.93 

Bayes Net 70.67 92.72 77.94 89.67 86.85 95.2 90.84 
SVM 92.31 82.75 35.29 99.06 83.65 92.9 89.89 

Naïve Bayes 65.45 85.84 52.94 91.08 81.83 84.2 88.21 
ANN 81.54 93.06 77.94 94.37 90.39 81.8 93.58 

Decision 
Tree 79.25 88.60 61.76 94.84 86.83 80.90 91.26 

k-NN 71.19 88.29 61.76 92.02 84.7 74.7 89.97 
 

Table 4.8 Effectiveness of missing value imputation on MaNGA dataset 

 

Model Precision 
(No) 

Precision 
(Yes) 

Recall 
(No) 

Recall 
(Yes) Accuracy AUC F_Measure 

Logistic 
Regression 86.4 84 96.6 54.3 85.98 88.4 84.9 

ANN 86.7 75.2 93.7 57 84.54 82.3 83.8 

SVM 82.30 81.00 97.09 37.27 82.15 81.20 51.01 

Bayes Net 85.6 57.4 86.1 56.5 78.67 76.6 78.6 

k-NN 87.24 62.21 87.24 62.21 80.99 75.1 62.03 

Naïve Bayes 88.51 38.72 59.53 76.8 63.85 74.6 51.69 
Decision 

Tree 82.2 94.17 99.27 35.46 83.33 67.3 51.43 
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4.5.3. Feature Weighting Effect 

The third experiment is designed to evaluate the effect of feature selection on both 

dataset. We used several feature weighting method including chi square, information 

gain, Gini index and correlation to select the proper features. Since chi square has the 

best performance, we report the result of this feature weighting method. 

 

4.5.3.1. Chi Square weighting for eBOSS  

 Table 4.9 shows the results of this experiment for eBOSS dataset when we select 

top 85 features out of all features form chi square weights. As you can see in the table, 

same as the missing value imputation, feature selection does not have significant effect 

on the performance. 

 However, this selection of top 85 features shows that we can reduce the number 

of features to 85 and still have the same performance and so, all individual features is not 

important for the prediction task. Table 4.10 shows the top 5 features and bottom 5 

features which removed for this experiment.  

Table 4.9 Effectiveness of feature selection on eBoss dataset (top 85 features) 

Model Precision  
No 

Precision 
Yes 

Recall 
No 

Recall 
Yes Accuracy AUC F_Measure 

Logistic Regression 90.48 94.95 83.82 97.18 93.93 98.10 97.04 

Bayes Net 80.82 95.67 86.76 93.43 91.81 97.90 94.34 

Naïve Bayes 68.42 82.72 38.24 94.37 80.79 82.10 87.78 

ANN 75.00 90.78 70.59 92.49 87.17 80.60 91.44 

Decision Tree 84.91 89.91 66.18 96.24 88.98 80.00 92.83 

k-NN 40.28 81.34 42.65 79.81 70.86 63.10 79.88 

SVM 0.00 75.80 0.00 100.00 75.83 0.00 85.94 
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Table 4.10 Weight of top 5 features and bottom 5 features 

Top 5  Bottom 5 

Feature Normalized 
Weight Feature Normalized 

Weight 
HIT_PAR4_data11 1 G_FAIL_data0 0 

HIT_PAR3_data11 0.95 G_FAIL_data2 0.0009 

HIT_FWHM_data11 0.91 G_FAIL_data5 0.001 

HIT_FWHM_data10 0.80 G_FAIL_data3 0.006 

HIT_PAR2_data10 0.70 G_FAIL_data4 0.0096 

 

We decided to show the effect of other feature selection methods to see the least 

number of features that are required in order to have a reasonable performance for 

eBOSS dataset. Table 4.11 and Table 4.12 show the performance for selection of the top 

50 and the top 20 features respectively.   

Table 4.11 Effectiveness of feature selection on eBoss dataset (top 50 features) 

Model Precision  
No 

Precision 
Yes 

Recall 
No 

Recall 
Yes Accuracy AUC F_Measure 

Logistic Regression 87.30 94.04 80.88 96.24 92.5 97.50 94.93 

Bayes Net 71.95 95.48 86.76 89.20 88.62 96.10 91.74 

Naïve Bayes 76.19 90.83 70.59 92.96 87.55 91.40 91.52 

Decision Tree 61.54 93.68 82.35 83.57 83.26 80.50 86.79 

k-NN 70.59 78.79 17.65 97.65 78.33 66.90 97.65 

ANN 86.89 93.18 77.94 96.24 91.81 50.30 94.42 

SVM 0.00 75.80 0.00 100.00 75.83 0.00 85.94 
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Table 4.12 Effectiveness of feature selection on eBoss dataset (top 20 features) 

Model Precision  
No 

Precision 
Yes 

Recall 
No 

Recall 
Yes Accuracy AUC F_Measure 

Logistic Regression 91.94 94.98 83.82 97.65 94.3 97.80 96.12 

Bayes Net 74.39 96.48 89.71 90.14 90.02 96.1 92.85 

Naïve Bayes 77.03 94.69 83.82 92.02 90.02 95.2 93.03 

Decision Tree 76.47 92.49 76.47 92.49 88.58 85.3 92.23 

ANN 93.1 93.72 79.41 98.12 93.6 61.1 95.68 

k-NN 34.86 82.56 55.88 66.67 64.03 61.00 72.62 

SVM 0.00 78.20 0.00 100.00 74.83 0.00 86.76 

 
As seen in Table 4.11 and Table 4.12, we improved the performance of some 

methods including the best method by reducing the features to the top 20 features.  It 

should be mentioned that the performance decreases significantly when there are less 

than 20 features in the data set. Therefore, 20 features are required to have a good 

performance.  

 
4.5.3.2. Chi Square weighting for MaNGA  

 Table 4.13 shows the results of selecting features based on Chi Square weighting 

on MaNGA dataset when we select top 85 features out of all features. As shown in the 

table, we can have fewer features and still keep the same performance. Table 4.14 shows 

the top 5 features and bottom 5 features for this experiment.  
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Table 4.13 Effectiveness of feature selection on MaNGA dataset (top 85 features) 

Model Precision  
No 

Precision 
Yes 

Recall 
No 

Recall 
Yes Accuracy AUC F_Measure 

Logistic Regression 85.90 83.90 96.70 52.20 85.56 87.50 84.30 

ANN 88.30 75.30 93.10 62.90 85.57 86.40 85.10 

Bayes Net 84.6 58.8 87.9 52 78.92 79.8 78.5 

Decision Tree 82.73 93.14 99.07 37.91 78.92 79.80 78.50 

Naïve Bayes 86.50 45.20 73.60 65.50 71.54 76.00 73.00 

SVM 84.10 91.30 98.60 44.20 85.00 71.40 83.00 

k-NN 69.7 24.8 3.50 95.40 26.46 38.30 14.80 

 

Table 4.14 Weight of top 5 features and bottom 5 features 

Top 5  Bottom 5 

Feature Normalized 
Weight Feature Normalized 

Weight 
emsn7 1 HIT_PAR4_data0 0 

HIT_PAR1_data5 0.93368728 HIT_CHI2_data0 0 

z 0.92430251 HIT_CHI2_data1 0 

HIT_PAR1_data11 0.90424746 HIT_CHI2_data2 7.42E-05 

emsn5 0.89018862 HIT_CHI2_data11 7.42E-05 

 
 
 

4.5.4. Feature selection and missing value replacement effect 

Experiment 4 shows the effect of feature selection and missing value imputation 

together on both dataset. Table 4.17 and Table 4.19 compares the performance of 

different data mining methods when we select top 85 features by chi square weighting 

and impute the missing values by average for those features in eBOSS and MaNGA 

respectively.  
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Table 4.15 Effectiveness of both feature selection and missing value imputation on eBoss 

dataset (top 85 features) 

Model Precision  
No 

Precision 
Yes 

Recall 
No 

Recall 
Yes Accuracy AUC F_Measure 

Logistic 
Regression 92.06 95.41 85.29 97.65 94.66 97.50 96.48 

Bayes Net 70.51 93.60 80.88 89.20 87.20 94.90 91.12 

SVM 96.15 83.14 36.76 99.53 84.35 93.90 90.31 

Naïve Bayes 68.52 86.34 54.41 92.02 82.92 83.70 88.81 

Decision Tree 83.02 89.47 64.71 95.77 88.26 82.50 92.17 

k-NN 72.41 88.34 61.76 92.49 85.06 74.60 90.36 

ANN 81.67 91.40 72.06 94.84 89.31 68.50 93.04 

 

Table 4.16 Weight of top 5 features and bottom 5 features for eBOSS 

Top 5  Bottom 5 

Feature Normalized 
Weight Feature Normalized 

Weight 
HIT_PAR4_data11 1 G_FAIL_data0 0 

HIT_PAR3_data11 0.93 G_FAIL_data2 0.0009 

HIT_FWHM_data10 0.84 G_FAIL_data5 0.001 

HIT_PAR2_data10 0.74 G_FAIL_data3 0.007 

HIT_FWHM_data11 0.74 G_FAIL_data4 0.009 

 

As seen in the table 4.17 the performance improved a little more in this 

experiment in comparison of when we apply feature selection and missing value 

replacement separately for eBOSS dataset. Table 4.18 shows the weight of top 5 and 

bottom 5 features.  

Table 4.19 shows the effect of this experiment for MaNGA dataset. Table 4.20 
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shows the weight of top 5 and bottom 5 features for this experiment.  

Table 4.17 Effectiveness of both feature selection and missing value imputation on 

MaNGA dataset (top 85 features) 

Model Precision  
No 

Precision 
Yes 

Recall 
No 

Recall 
Yes Accuracy AUC F_Measure 

Logistic Regression 85.90 84.30 96.80 52.20 85.63 87.70 84.40 

ANN 88.10 76.00 93.50 62.00 85.61 86.00 85.10 

Decision Tree 89.60 75.10 92.50 67.60 86.30 82.10 86.10 

Bayes Net 85.10 57.80 86.80 54.20 78.67 77.60 78.40 

Naïve Bayes 84.42 60.21 88.83 50.75 79.32 74.80 55.06 

k-NN 87.17 61.24 87.04 61.51 80.66 74.70 61.38 

SVM 84.10 92.00 98.70 43.90 85.03 71.30 83.00 

 
 

Table 4.18 Weight of top 5 features and bottom 5 features for MaNGA 

Top 5  Bottom 5 

Feature Normalized 
Weight Feature Normalized 

Weight 
emsn7 1.0 HIT_PAR4_data3 0.0 

HIT_PAR1_data11 0.92 HIT_PAR4_data0 5.942E-5 
z 0.92 HIT_CHI2_data0 5.942E-5 

emsn5 0.8934 HIT_CHI2_data1 5.942E-5 
HIT_PAR1_data5 0.88 HIT_CHI2_data2 1.33E-4 

 

4.5.5. Adding binary features for emission lines effect 

For experiment 6, we decided to add a set of binary variables to the data using the 

domain knowledge. There are several zeros for the emission lines features. Some of those 

zeros are real and they measured as zero. Since some galaxies were very far from the 

earth, zero was used for the emission line of those galaxies and so they are not real. We 

have done the specific calculation to detect the fake zeros. Then, we added new binary 
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features for each emission line. If it is real, we make it as 1, otherwise it is 0. In the 

original emission lines variables, we consider those fake zeroes as missing values.   

Table 4.21 shows the result of this experiment for eBOSS dataset and Table 4.22 

shows the result for MaNGA dataset. As seen below, this experiment improved the 

performance measures a little for both data sets. The best methods still are Logistic 

Regression and Bays Net for eBOSS and are Logistic Regression and ANN for MaNGA 

dataset.  

Table 4.19 Effectiveness of adding binary features on eBOSS dataset  

Model Precision 
No 

Precision 
Yes 

Recall 
No 

Recall 
Yes Accuracy AUC F_Measure 

Logistic 
Regression 95.83 90.77 97.18 86.76 94.66 98.60 88.10 

Bayes Net 93.87 79.71 93.43 80.88 90.38 97 80.02 

k-NN 79.48 100.00 100.00 19.12 80.44 82.40 32.10 

ANN 92.34 86.44 96.24 75.00 91.10 75.20 78.29 

Naïve Bayes 85.44 78.95 97.78 33.33 84.97 68.80 46.88 

Decision Tree 86.36 89.74 98.12 51.47 86.83 22.30 64.54 

SVM 0.00 24.20 0.00 100.00 24.20 0.00 38.95 

 

Table 4.20 Effectiveness of adding binary features on MaNGA dataset  

Model Precision  
No 

Precision 
Yes 

Recall 
No 

Recall 
Yes Accuracy AUC F_Measure 

Logistic 
Regression 86.30 83.90 96.60 54.10 85.94 88.50 84.80 

ANN 87.50 72.40 92.40 60.20 84.34 85.00 83.80 

SVM 82.36 81.50 97.17 37.49 82.26 81.10 51.28 

Bayes Net 85.2 58.6 87.2 54.4 78.99 79.5 42.6 

Naïve Bayes 88.25 40.32 63.15 74.76 66.05 74.60 52.37 

Decision Tree 82.68 94.93 99.33 37.50 83.89 69.80 53.71 

k-NN 80.05 32.96 65.42 51.04 61.83 59.90 40.41 
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CHAPTER 5 

 

CONCLUSION 

 
This paper was an attempt to predict and detect gravitational lens candidates using 

data mining methods. The goal was to automate and replace this detection process 

performed by human. To achieve this, the first task was to find a decent set of features by 

collaborating with astronomy experts. The second task was to apply different 

classification methods on the extracted datasets. Our results show Logistic Regression 

has the highest accuracy for the prediction task for both dataset that we used. The third 

task was to evaluation the impact of the feature selection. Chi square weighting feature 

selection was applied to find the best set of the useful features. The results showed that 

85 features chosen by chi square weighting are the most useful features.  
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