
L6 -- LSH
[Jeff Phillips - Utah - Data Mining]

Consider a set of n (= 1 million items)
 Q1: Which items are similar?
 Q2: Given an query item, which others are similar?

For Q1: we don't want to check all O(n^2) distance (no matter how fast)
For Q2: we don't want to check against all O(n) items (only ones that might be
close)

Consider n points in the plane. How do we quickly answer Q1 and Q2
efficiently.
 - hierarchical models (range trees, kd-trees, B-trees) don't work in high
dimensions
 - lay down grid:
 + close points in same grid cell.
 + some across boundary
 + some further than 1 grid cell, but still "similar"
 + randomize grid, and check again

Abstract Ideas:
 Hash (like a grid) so
 Pr[h(a) = h(b)] > alpha if d(a,b) < gamma
 Pr[h(a) = h(b)] < beta if d(a,b) > phi

Need alpha > beta for gamma < phi
 Want (alpha-beta) large and (phi-gamma) small
 Then: repeat *random* hash to "amplify"
 -> make (alpha-beta) smaller for fixed (phi-gamma)
 (works for many phi-gamma simultaneously)

"(gamma,phi, alpha,beta)-sensitive"

MinHashing as LSH:

 t hash functions {h1, h2, ... ht}
 hi = [m] -> [m] (at random)

 Documents: D1 D2 D3 D4 D5 D6 ... Dn
 h1 1 2 0 4 0 1
 h2 2 0 1 3 1 2
 h3 5 3 3 0 3 1

 h4 1 2 3 0 2 1

 ht

Jac(D1,D2) = E[(1/t) # rows hi(D1) = hi(D2)]

b bands of r = t/b rows each
 Let s = Jac(D1,D2) = probability hashes collide
 s^r = prob all collide in 1 band
 (1-s^r) = prob not all collide in 1 band
 (1-s^r)^b = prob in no bands, all collide
f= 1-(1-s^r)^b = prob all collide in at least 1 band

f is an S-curve:
 x-axis : s = Jac(D1,D2)
 y-axis : probably being a candidate

threshold tau = where f has largest slope (about (1/b)^(1/r))

r = 3, b = 5, t = 15

s 1 - (1-s^r)^b

.1 .005
.2 .04
.3 .13
.4 .28
.5 .48
.6 .70
.7 .88
.8 .97
.9 .998

As r and b increase, the S curve gets sharper.

s > tau, we want to almost always check true distance
s < tau, we rarely want to check true distance

Any distance where there is a family of hash functions such that
 d(a,b) = Pr[h(a)=h(b)]
this techniques works directly.

tau = gamma = phi
alpha = Jac(a,b)
beta = 1-Jac(a,b)

In general, if hash so
 Pr[h(a) = h(b)] > alpha if d(a,b) < gamma

 Pr[h(a) = h(b)] < beta if d(a,b) > phi
then same approach works as well...

LSH for Euclidean Distance

a,b in R^d for large d. How to LSH?

take random unit vector v in R^d
 "project" all a,b onto v
 a_v = <a,v> = sum_{i=1}^d a_i * v_i
 * L_2(a_v, b_v) <= L_2(a,b) "contractive"

 create bins of size gamma on v (in R^1)
 * if L_2(a,b) < gamma/2
 Pr[a,b same bin] > 1/2
 * if L_2(a,b) > 2gamma = phi
 Pr[a,b same bin] < 2/3
 (need cos(a-b,v) < pi/3 out of [0,pi])
 otherwise L_2(a,b) > 2 L_2(a_v,a_v) & -> different bins

 "(gamma/2, 2gamma, 1/2, 1/3)-sensitive"

 Can also take <a,v> mod (t gamma)
 for large enough t, and probably of collision is low

Essentially the best choice for *high* dimensional Euclidean data

