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Through a New Looking Glass*:
Mathematically Precise Visualization
By Kirk E. Jordan, Robert M. Kirby, Claudio Silva, and Thomas J. Peters

Alice gazes through her looking glass at a perplexing world that confuses her [3], as vividly depicted in the recently released 3D movie Alice in 
Wonderland. Scientists, peering through their new looking glass of scientific visualization, derive illuminating insights from otherwise impenetrable 
petabytes of simulation data.

Scientific visualization, however, presents some mathematical challenges of which the general mathematical community should be aware. Most 
important is a delicate computational balance that must be attained between exact topological properties and their computational approximations 
[9]. The driving imperative is to prevent visual artifacts that would cloud the scientists’ interpretations, as happened to a confused Alice. The 
story of the integration of geometric modeling with computational fluid dynamics and other simulations offers guidance for the solution of similar 
mathematical problems in scientific visualization.

The final stage in the scientific method is the communication of results. This stage is often as important as hypothesis formulation or experi-
mental conclusions. Scientific visualization encompasses both the exploration and the explanation of scientific results. Issues of complexity 
and precision abound. In contrast to Alice’s world, scientific visualization should produce imagery that illuminates computational experiments. 
Much as 3D stereovision enriches the movie-viewing experience, mathematically precise visualization will enrich scientific discovery.

Scientific visualization relies on many of the same mathematical (numerical) tools used to build simulations, requiring that visualization scientists 
ask questions concerning model validation and numerical verification. The images in Figure 1, with their increasingly complex geometry and topol-
ogy, illustrate what’s required: Figure 1(a) has obviously discernible separation at its crossings; as such separations become progressively finer in (b) 
and (c), increasingly sophisticated approximation algorithms and numerical analyses are needed to guarantee graphics that will support unambiguous 
visual interpretation of the appropriate topology.

The preservation of topology is one property explored in “verifiable visualizations” [10], which
   

“will consider both the errors of the individual visualization component within the scientific pipeline and the interaction between and interpretation of the 
accumulated errors generated in the computational pipeline, including the visualization component.”

 
Strict error analysis and verification have been the norm in simulation science, but not in scientific visualization. Quantification of approximation 

errors is the critical component of verifiable visualization. Every visualization proceeds from an approximated model. It is important to understand not 
only the original errors of approximation in a model, but also how those errors can degrade engineering analyses that use the model.

Because approximated geometric models are used as input for sensitive engineering analyses of computational fluid dynamics, computational elec-
tromagnetics, and finite element analysis [4], the computer-aided geometric design community has long been extremely attentive to the magnitude of 
model approximation errors. Early methods were often purely ad hoc and consequently resulted in significant direct economic losses and lost produc-
tivity [2]. Some guiding mathematical abstractions have been proposed [6] (see Table 1); the values are not exact, but indicate the relative accuracy 
needed for different applications. The key point is that there is no one universal tolerance. The question of a computing tolerance is meaningful only 
in the context of a particular application.

The essence of the message from CAGD is that differing engineering analyses will typically require models created at differing levels of accu-
racy and precision [4]. In the much less mature field of visualization, we have opportunities to learn from and avoid those early CAGD mistakes 
[15]. Contemporary visualization presents challenges in scale, from the pharmacological design of macromolecules to the engineering fabrication of 
nanomechanisms, that extend far beyond past CAGD practice. These new challenges provide excellent opportunities for engagement by the applied 
mathematics community, across academia and industry.

Figure 1.  (a) Unknot [18], (b) complex knot [18], (c) molecular model [1].

(a) (b) (c) 

*With apologies to Lewis Carroll [3].



In considering how to proceed, we can find some 
guidance by examining responses in the CAGD lit-
erature. One spline surface intersection algorithm 
[8] incorporates precise determination of the starting 
points of intersection curves [17] and a topological 
sorting of intersection components to prove rigorous 
error bounds on the output intersection set. A straight-
forward application of Taylor’s method converts those 
parametric domain error bounds into error bounds in 
R3, which is the co-domain of each spline function 
[16]. This brief summary suggests the fundamental 
importance of the mathematics of splines, numerical 
analysis, topology, and real analysis in the develop-
ment of responsive surface intersection algorithms. Similar mathematical breadth will be required for the algorithms needed to achieve precise scien-
tific visualization.

Concern for accuracy in computational fluid dynamics was one of the problems that motivated the development of Table 1 [4]. The disparity 
between many contemporary visualizations and the CFD results visualized prompted the comment that CFD could stand equally well for “colorful 
faulty dynamics” [10]. In this article for the SIAM community, we present a visualization example from CFD, intended to be representative of a wide 
range of relevant disciplines, echoing the CAGD experience. The CFD visualization example typifies mathematical issues in verifiable visualization. 
Appropriate precision permits faithful representation of essential model characteristics. Following this introductory CFD example, this theme is con-
tinued with examples from recent research on preserving topological properties during visualization.

Our representative example, depicted in Figure 2, illustrates potentially incorrect conclusions that can be drawn from an ill-suited visualization. 
Solving the advection term in synthetic fluid flow in a Lagrangian fashion by bilinear interpolation is a common but flawed method for evaluating 
the velocity field: “Although this approach is unconditionally stable even with relatively long time-stepping, it is subject to numerical diffusion due 

to interpolation.”[10] The result, as shown in Figure 2, 
is a visual smearing artifact that is due entirely to the 
algorithm and not related to the physical process.

Early work on the verification of widely used 
visualization algorithms has generated surprises. For 
instance, recent results of Etiene et al. [5] on the verifi-
cation of topology determined by isosurface extraction 
techniques reveal either minor conceptual flaws or 
incorrect implementations of several existing codes. 
This group used techniques from digital topology and 
stratified Morse theory to develop systematic mecha-
nisms for testing the correctness of isosurface codes. 
These preliminary results provide initial diagnostic 
information. As isosurface extraction is foundational 
for many visualization techniques, the results suggest 
the need for greater emphasis on the use of a rigorous 

verification methodology for visualization tools. Figure 3 summarizes some of the errors that would impede correct visual interpretation.
Analysis of the region shown in detail in Figure 3(a) led to the conclusion that the output surface does not have the “closed-disc property”; the 

result is a topological artifact. In Figure 3(b), the middle image shows the expected output. The image on the left differs topologically from what was 
expected; the difference was traced to a conceptual issue. An orientation mismatch was not foreseen by the creators of this isosurface algorithm. The 
image on the right shows a trilinear surface that was constructed as part of the diagnostic process [5]. In Figure 3(c), the two models were both found 
to have the correct topology, but further analysis exposed geometric anomalies, the result of a coding error, in the image on the left.

Underscoring the timeliness of this topic, an article on mathematics for special effects appeared while we were preparing this article; that article 
additionally discussed applications to dynamic visualization for surgical simulations [14]. These concurrent articles share an emphasis on CFD and 
topology extraction from meshes [13], but differ in that the other article treats isosurfaces as applications of level set methods.

Scientific visualization also has considerations that extend beyond any mathematical theorem. Certainly, convergence rates are a common concern. 
Visualization also integrates human interaction that cannot be fully captured mathematically. Effects of errors in visualization can be as benign as 
things that “look wrong” (often discussed informally as the “eyeball metric”), but they can also be drastic, as in the case of researchers who draw 
incorrect conclusions or make incorrect deductions from their data. Visualization scientists will sometimes forgo further mathematical refinements in 
favor of more pragmatic interactivity when a quick, rough answer becomes a compelling catalyst for more penetrating questions.

In summary, the message to the SIAM community is that visualization science has been enriched by the mathematics of numerical analysis, splines, 
topology, and level sets and that the field is rich in opportunities for further mathematical contributions. A central issue is the integration of appropriate 
mathematics in visualization algorithms to facilitate enlightening abstractions from massive volumes of simulation data.
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Figure 3. Summary of errors discovered [5]. (a) A topo-
logical artifact. (b) The lefthand image has incorrect 
topology; the middle image has the correct topology, 
and the righthand image shows a surface that was 
created as a step in the topology-verification process. 
(c) The righthand image is both topologically and geo-
metrically correct; there are geometric flaws in the 
lefthand image.


