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The Effect of Data Transformations on Scalar Field Topological
Analysis of High-Order FEM Solutions

Ashok Jallepalli, Joshua A. Levine, and Robert M. Kirby

(a) Sampled vorticity. (b) Subdivided vorticity. (c) L-SIAC vorticity.

Fig. 1: Topological segmentation of counter-rotating vortex sampled using different methodologies discussed in the paper and by
filtering the contour tree for segments that resemble vortex-like structures. The number, shape, and boundaries of the segments are
different for the three techniques.

Abstract— High-order finite element methods (HO-FEM) are gaining popularity in the simulation community due to their success
in solving complex flow dynamics. There is an increasing need to analyze the data produced as output by these simulations.
Simultaneously, topological analysis tools are emerging as powerful methods for investigating simulation data. However, most of the
current approaches to topological analysis have had limited application to HO-FEM simulation data for two reasons. First, the current
topological tools are designed for linear data (polynomial degree one), but the polynomial degree of the data output by these simulations
is typically higher (routinely up to polynomial degree six). Second, the simulation data and derived quantities of the simulation data
have discontinuities at element boundaries, and these discontinuities do not match the input requirements for the topological tools. One
solution to both issues is to transform the high-order data to achieve low-order, continuous inputs for topological analysis. Nevertheless,
there has been little work evaluating the possible transformation choices and their downstream effect on the topological analysis. We
perform an empirical study to evaluate two commonly used data transformation methodologies along with the recently introduced
L-SIAC filter for processing high-order simulation data. Our results show diverse behaviors are possible. We offer some guidance
about how best to consider a pipeline of topological analysis of HO-FEM simulations with the currently available implementations of
topological analysis.

Index Terms—High-Order Finite Element Methods, Filtering Techniques, Scalar Field Visualization, Topological Analysis

1 INTRODUCTION

The development of robust, efficient solvers that utilize high-order finite
element methods (HO-FEM), also sometimes classified as spectral/hp
element methods, is an area of considerable interest to the simulation
community at present. The use of higher order polynomial expansions
within elements carries a number of benefits, as seen from two main
perspectives. 1) Numerically, these methods exhibit far lower levels
of numerical dispersion and dissipation at higher polynomial orders.
This makes them a particularly well-suited approximation choice in
areas such as computational fluid dynamics, where the accurate time-
advection of energetic structures such as vortices is a key concern
(e.g., [36,44]). 2) Given current hardware trends, the most appealing
property of these methods in recent years has been their computational
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performance. Although the cost per degree of freedom in terms of
algorithmic floating point operations (FLOPS) increases substantially
with polynomial order, the use of higher order expansions leads to
formulations of the underlying equations of state that involve dense,
compact kernels for key finite element operators, such as inner products
and derivatives. This is important from the perspective of modern
hardware, where increasingly the bottleneck in performance is memory
bandwidth as opposed to the clock speed of processors. The underlying
arithmetic intensity of the algorithm at hand (i.e., the number of floating-
point operations performed for each memory operation) is therefore key
to attaining optimal performance. This is where high-order methods
have a significant advantage over lower order methods (e.g., [27, 50]).

These trends indicate that there will continue to be an increasing
need for visualization of high-order finite element solutions. Topolog-
ical analysis has a rich history of providing methods to extract and
visualize structural properties in simulation data. For example, one can
use topology to study vortex breakdown patterns [69], vortex merg-
ing [3], and shedding patterns. These techniques are built with the
assumption of continuity in the data, but as presented in [37], one
of the challenges associated with the visualization, and in this case
the topological analysis, of HO-FEM fields (and their corresponding
derived fields) is their lack of continuity at element interfaces. Fun-
damentally, topological analysis is based on extracting properties in a
continuum: these properties are designed to be invariant to deformation
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but sensitive to topological events such as cutting or splitting. At first
glance, it seems an impossible task to analyze a discontinuous function
using standard topological properties, but we note that even if the solu-
tion is represented with a discontinuous approximation, the simulated
phenomena of interest are often assumed to be continuous (from the
physical modeling perspective).

Besides the issues with discontinuous data, a practical problem is
that most of the mathematics and implementations of topological anal-
ysis for scalar fields focus on piecewise linear interpolants. There
has been limited work in pushing the limits beyond piecewise linear
interpolants, and the typical extensions consider only a specific inter-
polant [1, 52, 55] as opposed to general methodologies for high-order
interpolants [9, 53]. Chen et al. considered the effects of interpolants
on Morse decompositions of vector fields, but did not explicitly use the
high-order, discontinuous methods we target [13]. This lack of prior art
is justifiable, as piecewise linear representations have the advantage that
they help to limit the space of combinatorial possibilities within a given
mesh (e.g., in a piecewise linear element, there may be only one critical
point). The typical assumption is that any more complex functions can
be represented by simply increasing mesh resolution. Nevertheless,
using increased mesh resolutions can require an infeasible amount of
storage overhead, and as we show in our work, they may not always
achieve an ideal characterization of the shape of topological features.

To bridge the gap between HO-FEM simulations and topological
methods, we need to either transform the data or redesign (and re-verify)
the topological techniques. In this work, we consider the first option.
Specifically, we explore three main methodologies for converting the
HO-FEM data to match the input requirements of topological tools. We
then conduct an empirical study to analyze the effect of these method-
ologies on downstream topological analyses. Two of the methodologies
we consider are sampling the data on a regular grid (avoiding disconti-
nuities) and subdividing the elements on the simulation mesh (avoiding
discontinuities and judiciously producing low-order elements). These
methodologies are commonly used due to their ease of implementation
and lower computational cost, but they have the disadvantage of creat-
ing undesirable artifacts [37]. We use these methodologies to provide
baselines to discuss the interplay between the sampling parameter and
its effect on the intensity of the discontinuities and interpolation arti-
facts. We also provide insight into selecting the sampling parameter to
help reduce the artifacts. Simultaneously, we consider using topological
analysis to filter out the artifacts as well as identifying what significant
features may be retained. The third methodology we consider is the
Line-SIAC (L-SIAC) filter, which is computationally expensive, but
has been successful in identifying a more extended range of features
compared to the other two techniques.

In this paper, we demonstrate that through the use of the L-SIAC
filtering methodology, we can transform HO-FEM data so as to take full
advantage of the suite of techniques and intuitions developed within the
topological analysis field. Furthermore, we provide a set of insights into
how these tools – L-SIAC and topological analysis – interact, which
helps show how they might be used together in the future.

Specifically, our contributions are
An empirical study to evaluate data transformations of high-order
scalar fields that enable the use of existing topological analysis tools;
Experimentation using three different data transformation methods
and two different datasets; and
Evaluation of the downstream effects in topological structures in-
cluding persistence diagrams and curves, the position and number of
critical points, and the segmentation based on the contour tree.

These contributions are the first step towards a better understanding
of existing issues between data interpolant and topological feature
extraction. Such a study may help motivate the development of new
topological techniques that can adapt to HO-FEM data without the need
to first transform it.

2 PREVIOUS WORK

In this section, we review the main concepts of topological analysis
in regard to scalar fields for linear and high-order polynomial data.
The current challenges are to extend these techniques to HO-FEM

data and to introduce the data transformation methodologies. These
methodologies transform the data into continuous piecewise linear data
to enable topological analysis.

2.1 Topological Analysis
We review the main concepts and structures of topological analysis that
we employ in our empirical study. For a more complete introduction
to the mathematics of computational topology, see Edelsbrunner and
Harer [24]. For details of their usage, Heine et al. provide a recent
survey of topology-based methods in visualization and analysis [35].

Topological analysis provides a collection of tools to extract features
from data that characterize its structure. Moreover, it also provides
mechanisms to rank and filter these features, thus offering an ana-
lyst the ability to summarize a scalar field at multiple scales. While
this general framework is applicable to a variety of data modalities,
a key area of focus in the visualization community is the analysis of
scalar fields. From scalar field data, one can visualize the structure
through collections of important feature points (i.e., critical points [4]),
graph structures that encode level sets (i.e., Reeb graphs [5, 56, 67]
and contour trees [10]), and segmentations of gradient flow behavior
(i.e., Morse-Smale complexes [19, 32]). The structures have seen di-
rect usage in visualization of scalar fields, for example in selecting
isosurfaces [70], topologically-guided simplification [68], feature track-
ing [61], transfer function design [73], isosurface simplification [11],
and similarity estimation [65]. Even though topological analysis is
a purely mathematical framework, a key reason for its success has
been the mapping of these mathematical abstractions to application-
specific features, as demonstrated by its use across a wide variety of
domains, including astrophysics [59, 62], battery design [33], combus-
tion [7, 18, 31], chemistry [12, 29], porous media [34], turbulence [42],
and vortex extraction [41].

In this paper, we focus on level set topology as our main tool of
interest. Let f : M → R be a continuous scalar field, defined on a
manifold M that is usually a subset of R2 or R3. Given a scalar value
i ∈ R, called the isovalue, we can study the structure of a scalar field
through its level sets, f−1(i) = {p ∈M | f (p) = i}. Level sets encode
the subset of M that is the preimage of the value i. They are also
called isosurfaces, and they are the generalization of contour lines on a
topographic map. Although individual level sets are often descriptive,
the relationships between level sets when i changes describe important
relationships.

The points of M where the gradient, ∇ f , is equal to zero are the
critical points of f [4]. Critical points are particularly important as
a building block for studying level sets, as they correspond to values
where level sets undergo topological changes. In particular, critical
points may be classified by their index I , which equals 0 for minima
and d for maxima points. Critical points with indices between 1 and
d−1 are called saddles.

If we imagine sweeping through all possible isovalues i, extremal
critical points (minima and maxima) are positions where level set
components are created and destroyed, and saddles indicate where
level set components merge and split. During such a sweep, we can
imbue critical points with a notion of scale. To compute this notion,
we apply Elder’s rule [24], which pairs critical points such that each
critical point appears in only one pair (ci,c j) with f (ci)< f (c j) and
I (ci) = I (c j)−1. The height of the pair p = f (c j)− f (ci), called
the persistence, encodes the life span of the level set created at f (ci)
and destroyed at f (c j) [16, 25]. Persistence introduces a measure that
is frequently used to distinguish topological “noise”—features that live
only at small scales—from more significant, highly persistent features.
More formally, the field of persistent homology studies the evolution
of the homology groups characterized by critical points.

A topological abstraction known as the persistence diagram offers a
view of the distribution of critical points of f . The persistence diagram
D( f ) embeds each pair (ci,c j) in the plane such that its horizontal
coordinate equals f (ci), and the vertical coordinates of ci and c j are
f (ci) and f (c j). In D( f ), there is a vertical bar for the pair, and the
height of these vertical bars is the persistence. We can also encode the
distribution of critical points as a simple curve known as the persistence
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curve, which shows how many pairs of critical points in f possess a
given persistence threshold or lower. Persistence diagrams and persis-
tence curves offer high-level building blocks to see the range of scales
at which features exist as well as to guide tools such as topological
simplification (Figure 3 shows an example of both).

Building further on critical points and persistence, the Reeb graph
is a topological abstraction that segments M into regions where the
connectivity of f−1(i) does not change, clustering points if they belong

to the same connected component of the level set. Let f−1( f (p))p be

the connected component of f−1( f (p)) containing p. The Reeb graph
R( f ) is a one-dimensional simplicial complex defined as the quotient
space R( f ) =M /∼ by the equivalence relation p1 ∼ p2, which holds

if p2 ∈ f−1( f (p1))p1
. The contour tree (the loop-free variant of R( f ))

is often preferred in the context of visualization as it is efficient to
compute [10, 64] when we can guarantee that M is simply connected.

Reeb graphs and contour trees have been well studied by the visual-
ization community, offering a number of approaches for their compu-
tation in two- and three-dimensional settings [5, 17, 22, 23, 30, 54, 56,
57, 67]. In our work, we construct segmentations of the input domain
based on the contour tree, and rely on the fact that these segmentations
correspond to regions of interest in the data (specifically, we consider
vortex identification). We rely on persistence to help us identify which
portions of this segmentation are significant by helping a user navigate
the space of interesting topological features.

Topological Analysis for Higher Order Data Thus far, topo-
logical analysis has been utilized for higher order data in only limited
settings because the recovery of topological structures for low-order rep-
resentations has presented significant computational challenges. Most
techniques assume piecewise linear interpolants or utilize Forman’s
discrete Morse theory [28]; in both cases the combinatorial complex-
ity of topological structures stays manageable. Notable exceptions
consider quadratic [20], bilinear [52], and piecewise trilinear inter-
polants [1, 55]. Carr and Snoeyink propose an abstract framework for
interpolants of arbitrary order [9]. In general, though, implementing
a complete topological analysis is challenging for higher order inter-
polants because finding critical points involves determining roots of
equations of degree greater than five which is analytically intractable.
A notable exception is the work of Nucha et al. that considers contour
tree computations for 2D piecewise polynomial functions [53]. This
work advances the state-of-the-art, but it still offers only one facet of
the analysis (contour trees). Most importantly, it does not consider
cases where higher order discontinuous functions are used, such as
HO-FEM derived fields and the discontinuous Galerkin method that
we consider here. Therefore, we see our work as offering a stopgap to
answer the question of how best to make use of the widely available
low-order tools as approximations for complex, high-order data that
suffer from the problems mentioned above. In such a setting, we cannot
expect a full, verifiably correct topological extraction [26], so instead
we focus on characterizing the behavior of these approximations and
their effects on downstream analysis.

2.2 Data Transformation Methodologies
We refer to the mapping from discontinuous high-order polynomial
data to continuous piecewise linear data as our data transformation
methodology. Due to their computational simplicity, two simple meth-
ods are commonly used as data transformations methods. The first
method is to resample the original (unstructured) data onto a regular
grid. This resampling can induce minor persistent features. The second
method is to subdivide the original simulation mesh hierarchically and
then evaluate it. In both cases, this sampling choice can be shown
mathematically to act as a filter that “removes” discontinuities from the
data. Although increasing the sampling rate improves the accuracy of
the filter, the effect of discontinuities in the original data also becomes
more pronounced in the resultant field as we continue to add more
sampling points. Therefore, we expect that it will be challenging to
pick an ideal sampling rate to balance these issues.

Recently, SIAC filters have gained popularity for post-processing
HO-FEM due to their ability to increase smoothness at element bound-

aries (i.e., remove discontinuities) while maintaining the order of accu-
racy, and in many cases they have been shown to improve the accuracy
of the solution. Extending the work done by Bramble and Schatz [6],
Cockburn et al. [14, 15] introduced SIAC filters for increasing the accu-
racy of discontinuous Galerkin methods with uniform spacing. Later
Mirzaee et al. [45–48] introduced techniques to apply the SIAC filter at
arbitrary points, thus extending its application to unstructured meshes.
In [51, 58, 71], variations of the SIAC filter, called one-sided filters,
are introduced to deal with boundaries and mathematical discontinu-
ities in the solution (e.g., shocks in supersonic compressible flows).
To improve accuracy on hexagonal meshes, Mirzargar et al. [49] pro-
posed hexagonal SIAC filters. Li et al. [43] discussed effective ways
to calculate the derivative quantities using SIAC and one-sided SIAC
filters.

SIAC filters are also frequently used to create visualization data.
Steffen et al. used SIAC filters for improving the streamline integra-
tion through the discontinuous field [63]. Walfisch et al. used 1D
SIAC filters on 2D discontinuous data to create continuous stream-
lines [72]. Later, Docampo-Sánchez et al. proved that the Line-SIAC
filter (L-SIAC), when applied to 2D and 3D simulation data, has all the
properties of the SIAC filter [21], but is more computationally efficient
than the traditional tensor-product-based SIAC filter in multiple dimen-
sions. Jallepalli et al. compared the commonly used data transformation
methodologies to the L-SIAC filter and showed that the L-SIAC filter is
a better tool for creating continuous visualization data [37]. This work,
in part, motivates us to study its effect on downstream analysis with
topological tools. Recently, Jallepalli and Kirby introduced algorithms
that significantly improve the computational speed of L-SIAC filter
when used to create data for visualization [39].

2.2.1 L-SIAC
A Line-SIAC filter (L-SIAC) is defined as a 1D SIAC filter rotated at
an angle (θ ), scaled with characteristic length (H), and convolved 2D
or 3D field data. Thus, the L-SIAC filter can be defined as

u∗(x) =
∞∫

−∞

KH(t)∗uh(x−Γ(t))dt

Γ(t) = (t cos(θ), t sin(θ)),θ is constant

where u∗ is the postprocessed solution, uh is the dG solution of degree
k, H is the characteristic length defined as h(cos(θ)+ sin(θ)), h is the
uniform element size, and the SIAC kernel is defined along Γ(t) by the
parameter t as
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For nonuniform meshes used in practical applications, dynamically
adapting the characteristic length [38] based on the neighborhood of
the filter produced a more accurate solution. The B-splines used in the
postprocess are well studied and can be computed using the recurrence
relation.

Ψ1 = X[−1/2,1/2],

Ψk+1 =
1

k
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t +
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2

)
Ψk(t +
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2
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2
)

)
,k ≥ 1.

The coefficients of the kernel, cλ , can be found by using the property
that the kernel must not destroy the accuracy of the approximation.
More specifically, the coefficients reproduce polynomials of degree 2k
by convolution. When using a symmetric B-spline kernel, we can solve
the coefficients and store them for reuse. All algorithms described in
this paper assume that a symmetric filter can be applied at the location
where the L-SIAC filter is enforced.

The result of applying the L-SIAC filter to either a continuous or
discontinuous Galerkin field uh(x) is an updated field u∗(x) that is
of higher degree within each element and that has higher levels of
continuity between elements (continuity as high as k−1 when using

a kth degree filter). We can now sample this more accurate and more
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continuous representation of the data for input to topological analysis
tools.

3 METHODS

For our empirical study, we use an analysis pipeline that transforms
higher order input data to linear data, which is then analyzed through
the lens of level set topology. Our pipeline has multiple parameters
that we discuss in this section. We experiment with three different
transformation filters in this analysis pipeline, each of which produces
linear representations of scalar fields. We refer to these methods as
“sampled” (for data sampled on a grid), “subdivided” (for data where we
subdivide the input mesh), and “L-SIAC” (for data transformed using
the L-SIAC filter). For each method, we manually select parameters
that help to provide the best possible transformation.

Next, we employ the Topology ToolKit (TTK) [66] to extract topo-
logical features of our filtered data using ParaView [2]. TTK requires
piecewise linear representations of the input data, encoded on a simpli-
cial mesh, and it can accept inputs as both unstructured input meshes
and implicit triangulations of data sampled on regular grids. As mesh
resolution is intimately related to analysis quality, we experiment with
multiple possible resolutions.

Finally, our analysis pipeline involves computing an overview of
features with TTK, in particular extracting critical points and comput-
ing their persistence, as well as visualizing persistence diagrams and
persistence curves. We use this information to guide a segmentation
of the data domain based on using the contour forests method for fast
extraction of contour trees [30]. We consider multiple scales of features,
based on a manual analysis of the persistence diagram to set persistence
thresholds. To restrict our analysis to features at a particular scale,
we perform topological simplification on the transformed data (i.e.,
continuous piecewise linear data), relying on the method of Tierny and
Pascucci [68] to simplify the underlying scalar field and reduce noise
while preserving topological features that are above a user-specified
persistence threshold.

As an example to describe our analysis pipeline, we consider a
simple, 2D function

f (x,y) = (sin(2πx)+
1

2
sin(4πx))(sin(2πy)+ sin(4πy))

which is asymmetric in the x and y directions. It also contains topologi-
cal features that persist at two different sets of scales. The first set of
features with maximum persistence (two maxima and two minima) is
located near the corners of the domain, and the second set of features
with lower persistence is located between the first set of features along
the x-axis as shown in Figure 2a. To create a ground truth comparison,
we sample f (x,y) at a sufficiently high resolution to capture its topo-
logical features using TTK, as shown in its persistence diagram, curve,
and segmentation using the contour tree in Figure 3. This decomposes
the domain into mainly 8 regions, each associated with a leaf of the
contour tree for the 8 extrema. The small flat region near the center
where the level sets merge at saddles accounts for the 3 small white
holes (since we exclude segments associated with interior arcs).

(a) Original function (b) Simulation mesh (c) Projected data

Fig. 2: The function f (x,y), simulation mesh, and the projected data.

To create a higher order representation of f (x,y), we project it on
an unstructured triangular element mesh (Figure 2b) over the domain
[0,1]× [0,1] with degree 2 polynomial expansions on each element
(hereafter referred to as the simulation mesh). With this simple example,
we can mimic the elementwise discontinuities we get when computing

(a) Persistence curve (b) Persistence diagram (c) Segmentation

Fig. 3: The persistence curve, the persistence diagram, and the segmen-
tation of the original function f (x,y) (Figure 2a).

derived fields from high-order FEM data. In the following subsections,
the projected data (shown in Figure 2c) is transformed using our three
different filtering methodologies to create low-order data suitable for
input to TTK.

3.1 Transformation by Sampling to a Grid
(Method: Sampled)

Our first transformation methodology is to sample the simulation data
on an equispaced grid and then implicitly triangulate this grid using
TTK. In this technique, sampling the projected data acts as a crude
filter with only one free parameter: the sampling rate itself. This trans-
formation thus applies no special considerations for the discontinuous
piecewise polynomial data; it simply overlays a continuous piecewise
linear mesh and interpolates the higher order data using the nearest
element.

Fig. 4: Persistence curves of the sampled data (at three resolutions) as
compared to the original function solution.

Figure 4 shows the persistence curves for the projected data sampled
using different resolutions (50×50, 200×200, and 500×500 referred
to as Samp50, Samp200, and Samp500, respectively). The average
time taken to compute vorticity at each location on a machine with a
2.4 GHz (Intel CPU E7-4870) processor is 25 microseconds. We were
surprised to discover that an increase in the sampling rate increased
the number of low persistence pairs, which is counterintuitive to the
idea that by simply using a higher resolution mesh we can approximate
data better. This increase of low-persistence pairs is a direct byproduct
of having additional resolution (which allows more critical points to
exist), and this added resolution near the discontinuities creates low-
persistence perturbation (resulting in the staircase artifacts on the left
side of Figure 4). Fortunately, using the persistence curve of the actual
solution as a guide, we can classify all the persistence pairs to the right
of the red arrow in Figure 4 as significant features in the solution.

Typically, one searches for plateau regions in persistence curves to
find stable ranges for topological simplification. For example, in the
actual solution (Figure 3a), there is a stable region of 8 critical pairs to
the left of 0.48, and another stable region between 0.48 and 2.29. In the
area isolated by the dotted box in Figure 4, we see that the sampled data
also have similar plateaus, but the plateaus persist through different
ranges of persistence. For the highest resolution, this gap is slightly
wider than it is for the less sampling rates, suggesting it may be easier
to identify the stable region. Notably, however, between 8 and 4 pairs,
all three sampled data do not drop instantaneously, but rather take four
small steps. This change in stable regions suggests that, in the sample
data, we have slightly perturbed the values of the minima and maxima



166  IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 1, JANUARY 2020

(a) Persistence Diagram:
Samp50

(b) Persistence Diagram:
Samp200

(c) Persistence Diagram:
Samp500

(d) Segmentation:
Samp50

(e) Segmentation:
Samp200

(f) Segmentation:
Samp500

Fig. 5: Visualizations of the persistence diagrams ((a), (b), and (c)) and
segments ((d), (e), and (f)) of the sampled data at different resolutions

that define these features. These observations are also highlighted in
the persistence diagrams for the sampled data in Figures 5a, 5b, and
5c. The persistence pairs below 0.4 threshold (visualized using orange
bars) increase with an increase in sampling resolution.

To segment the sampled data, we first simplify the data using the
persistence threshold 0.4 units (slightly left of the red arrow in Figure
4) and then segment the data using a contour tree. Visualizations for
the segmented data are shown in Figures 5d, 5e, and 5f. We observe
that the boundaries of the segmentation are affected by the element
boundaries of the simulation mesh, in particular in the flat region in the
center vertical strip. This effect is more pronounced in highly sampled
data (Samp500).

Hence, while sampling the projected data for topological analysis, it
is not always the case that the highest resolution is preferred. For our
experiments where ground truth is not known, we need to take care to
pick a sampling resolution sufficiently high to capture the underlying
features, but not too high lest we might start picking up the artifacts of
discontinuities in the simulation data as features.

3.2 Transformation by Subdividing the Input Mesh
(Method: Subdivided)

In practical applications, simulation meshes are usually designed to
capture the variation in the simulation output, and often utilize non-
uniform resolutions and unstructured alignments to better approximate
interesting behaviors. To take advantage of the properties of the sim-
ulation mesh, in this technique we subdivide each element into an
equal number of smaller elements to capture the underlying high-order
polynomial data. On the shared boundaries between elements (e.g.,
the edge that bounds multiple triangles, or a vertex that is adjacent to
multiple simplices), if there is a discontinuity in the higher order data,
we must choose which value we use for our piecewise linear approxi-
mation. In such cases, we choose to average between different values
at all adjacent elements to create continuous piecewise linear data. This
technique of subdividing the elements into smaller elements is a filter
that aims to both resolve the discontinuities by averaging and sample
sufficiently to represent the piecewise polynomial data as continuous,
piecewise linear data.

To capture the projected data on the simulation mesh, which consists
of triangular elements of polynomial degree two, we subdivide each
element into 9, 81, and 400 triangular elements and refer to them as
Subdiv-9, Subdiv-81, and Subdiv-400, respectively. The average time
taken to compute vorticity at each location on a machine with a 2.4
GHz (Intel CPU E7-4870) processor is 0.804 microseconds. Typically,
each element is subdivided based on the polynomial degree (k) and the

Fig. 6: Persistence curves of the subdivided data (at three resolutions)
compared to the original function solution.

dimension (d) of the element. Each element subdivides into (k+1)d

elements. Therefore, we consider Subdiv-9 (as (2+ 1)2 = 9) to be
the minimum amount required for subdivision. We also investigate
Subdiv-81 and Subdiv-400 to see how further refinement affects the
result. In all cases, we evaluate the values at new vertices internal to
the elements and average the boundaries when necessary.

(a) Persistence Diagram:
Subdiv-9

(b) Persistence Diagram:
Subdiv-81

(c) Persistence Diagram:
Subdiv-400

(d) Segmentation: Subdiv-
9

(e) Segmentation: Subdiv-
81

(f) Segmentation: Subdiv-
400

Fig. 7: Visualizations of the persistence diagrams ((a), (b), and (c)) and
segments ((d), (e), and (f)) of the subdivided data at different resolutions

Figure 6 shows the persistence curves for the projected data sampled
on Subdiv-9, Subdiv-81, and Subdiv-400. Observe that an increase in
the subdivisions again increases the initial number of persistence pairs,
caused by the discontinuities being mapped to averages. In this case,
however, the behavior appears to more smoothly vary with persistence
threshold and does not have the same “staircase” artifact. Using the
persistence curve of the actual solution as a guide, we examine the
region associated with the first major topological change at the red
arrow in Figure 6. We observe the gap between the persistence pairs due
to the features and the discontinuities gap decreases, with an increase
in subdivisions. Specifically, this plateau has a width of 0.26 units
for Subdiv-9, 0.18 units for Subdiv-81, and 0.06 units for Subdiv-400.
Similar observations are also highlighted in the persistence diagrams
for the sampled data in Figures 7a, 7b, and 7c. The persistence pairs
below 0.4 threshold (visualized using orange bars) increase with an
increase in sampling resolution.

To segment the sampled data, we first simplify the data using the
persistence threshold 0.4 units (red arrow in Figure 6) and then segment
using a contour tree. Visualizations for the segmented data are shown
in Figures 7d, 7e, and 7f. We observe that the boundaries of the
segmentation are affected by the element boundaries of the simulation
mesh, and this effect is more pronounced for the mesh with the most
subdivisions (Subdiv-400).
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For subdivided data as compared with sampled data, it turns out we
have a similar challenge: we need to take care in specifying the output
resolution as compared to the size of features we are interested in. For
our remaining experiments, which do not have ground truth, we use

the resolution of (k+1)d , which is the minimum resolution required to
capture the underlying features. We also remark that while averaging
appears to provide a mathematical fix for discontinuities, it comes with
the cost of potentially distorting the shapes of the segmentation.

3.3 Transformation by Applying the L-SIAC Filter
(Method: L-SIAC)

For our third transformation method, we use the L-SIAC filter to post-
process the solution and define new values across the domain. We can
then sample the resulting output to a regular grid, using resolutions h,
which are equivalent to the grid resolutions we used in the sampled data.
For applying the L-SIAC filter at a point, we first choose the parameters:
the characteristic length of the L-SIAC filter is adapted based on the
size on the element [38], the angle is chosen to be 0 degrees, the order
of B-splines equal to k+ 1 = 3 (k is degree of the element), and the
number of B-splines is 2k+1 = 5. To apply the L-SIAC filter at a point
in the mesh, we shift the filter to that point and then project the L-SIAC
filter onto the mesh to find the overlapping elements. We then use
Gaussian quadrature to integrate the L-SIAC kernel with the underlying
mesh. In this technique, the L-SIAC filter and sampling frequency work
together to control the conversion process.

Fig. 8: Persistence curves of the L-SIAC data (at three resolutions) as
compared to the original function solution.

Figure 8 shows the persistence curves for the projected data sampled
using different resolutions (50×50, 200×200, and 500×500 referred
to as LSIAC-Samp50, LSIAC-Samp200, and LSIAC-Samp500, respec-
tively). The average time taken to compute vorticity at each location
on a machine with a 2.4 GHz (Intel CPU E7-4870) processor is 334
microseconds. Although L-SIAC mitigates most of the effect of discon-
tinuities in the data, we still have some aberrant features that show up
at low persistence values due to its error compared to the actual solu-
tion. However, we observe that these features disappear significantly
early, creating a wider stable region that begins at far lower persistence
thresholds. Additionally, the sampling rate has a negligible influence on
when this region starts and ends, and the behavior at larger persistence
values almost matches the ground truth data. These observations are
also confirmed in the persistence diagrams in Figures 9a, 9b, and 9c.

To segment the sampled data, we first simplify the data using the
persistence threshold 0.4 units (red arrow in Figure 8) and then segment
it using a contour tree. Note, however, we could use a much lower
persistence threshold than before because L-SIAC appears to mitigate
topological noise that was present in the sampled and subdivided data.
Visualizations for the segmentation from the contour tree are shown
in Figures 9d, 9e, and 9f. Although we observe the same number of
persistent features at all resolutions, they differ at coarse resolutions, at
which the shapes of these regions can vary. In particular, we see more
boundary artifacts for coarser data at the nearly flat region in the center
of the domain. Higher resolutions help to recover these boundaries
more smoothly. This recovery suggests that for more complex data,
increasing the resolution of L-SIAC filter is helpful in terms of both

(a) Persistence Diagram:
LSIAC-Samp50

(b) Persistence Diagram:
LSIAC-Samp200

(c) Persistence Diagram:
LSIAC-Samp500

(d) Segmentation: LSIAC-
Samp50

(e) Segmentation: LSIAC-
Samp200

(f) Segmentation: LSIAC-
Samp500

Fig. 9: Visualizations of the persistence diagrams ((a), (b), and (c)) and
segments ((d), (e), and (f)) of the L-SIAC data at different resolutions

the number and shape of features, albeit only as shown for this simple
dataset.

4 RESULTS

In this section, we present both two-dimensional and three-dimensional
results. For our first example, we analyze the results of simulating flow
past a two-dimensional circular cylinder. In our second example, we
analyze a three-dimensional flow scenario that produces a collection of
co-rotating vortices.

4.1 Flow Over a 2D Cylinder
The Nektar++ [8] solver suite, and in particular the incompressible
Navier-Stokes solver, was used to generate the fluid flow results. Flow
past a circular cylinder at the viscosity examined is a transient problem,
but here we analyze only a single snapshot (in time) topologically.
The mesh used for this simulation is shown in Figure 10a, which
contains polynomial degree two (P(2)) elements: 500 triangles and
330 quadrilaterals found primarily in the wake region behind the circle.
A continuous Galerkin (FEM) methodology was used that has degree
2 inside the element and has C0 continuity at the element interfaces.
The Reynolds number was set at Re = 500, and the flow solver was
run until shedding behind the cylinder generated consistently shaped
vortices.

(a) Simulation mesh. (b) Vorticity.

Fig. 10: (a) Simulation mesh of the flow over a 2D cylinder. (b) Vorticity
calculated using element derivatives in the highlighted region of the
simulation mesh.

The simulation data from the highlighted region of the simulation
mesh (Figure 10) was chosen to be analyzed topologically. We analyze
the scalar field of vorticity. To calculate the vorticity, we need to apply
a derivative on the C0 vector field components (u,v); thus creating
discontinuity at the element boundaries as shown in Figure 10b. From
this dataset, we use the methods described in Section 3 to produce three
different low-order datasets for topological analysis.

To produce our “sampled” vorticity (Section 3.1), we sampled the
simulation output on a regular grid of resolution 145×80 and calculated
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partial derivatives (uy,vx) using a finite difference scheme. We then
used these derivatives to compute the vorticity defined as ωz = vx−uy.
To produce our “subdivided” vorticity (Section 3.2), we subdivided the
simulation mesh such that each triangle was divided into 9 triangles, and
each quadrilateral was divided into 18 triangles. The simulation data
(u,v) was sampled and stored at the vertices of the subdivided mesh.
To calculate the partial derivatives, we first calculated the derivatives
at the center of each triangle using the values at its vertices, and then
the derivatives were interpolated back to the vertices using a weighted
area of all the triangles connected to each vertex. To produce the
L-SIAC vorticity (Section 3.3), we used the derivative L-SIAC filter
(D(K(3,6)), where D stands for derivative) as presented in [37]. This
filter calculates the partial derivatives (uy,vx) at any point, and can be
evaluated on a regular grid of resolution 145×80. The average time
taken to compute vorticity at each location on a machine with a 2.4 GHz
(Intel CPU E7-4870) processor is 86, 0.496, and 560 microseconds for
the sampled, subdivided, and L-SIAC vorticities, respectively.

Fig. 11: Persistence curves for the sampled, subdivided, and L-SIAC
vorticity fields of the flow over a 2D cylinder.

Fig. 12: Zoom in on the region associated with Figure 11. For each of
datasets, we highlight two different stable regimes of critical features
(numbered 1-3).

Due to different approximation errors while calculating the vorticity,
each scalar field has a different range. Specifically, the range of values
is smallest for the L-SIAC ([−3.85,3.69]), and the subdivided vorticity
([−4.36,4.67]) has a smaller range than that of the sampled vorticity
([−4.80,5.22]). To enable comparison between the three datasets, we
normalized their ranges to [0,1]. The persistence curves for the vorticity
tests calculated above are shown in Figure 11. We observe that the
sampled vorticity and the subdivided vorticity have a large number of
persistence pairs compared to the L-SIAC vorticity. The function of
the persistence curve is to act as a guide to help choose the persistence
threshold required to identify the features and simplify (remove) the
noise. Key persistence thresholds are identified by detecting the plateau
regions in the persistence curve. From the persistence curves in Figure
12, we identified three regions of interest for the sampled and subdi-
vided (indicated by 1, 2, and 3), and two regions in case of L-SIAC
(indicated by 1 and 2). The regions indicated by 1, 2 and 3 have 7, 8,
and 9 persistence pairs. As it turns out, there are only 8 significant
features in the dataset (determined by inspecting the data). The plateau
corresponding to the 8 features indicated by region 2 is significantly
shorter in the case of sampled and subdivided vorticity compared to
that in the L-SIAC filter, and also shorter than its counterparts (regions
indicated by 1 and 3).

We pick a persistence value in the regions indicated by 2 in all the
datasets (i.e., 0.225 for the sampled, 0.23 for the subdivided, and 0.2

(a) Sampled vorticity. (b) Subdivided vorticity. (c) L-SIAC vorticity.

Fig. 13: The persistence diagrams of the vorticity for the fluid flow past
a circular cylinder described in Section 4.1. Thick gray lines are used
to show the persistence pairs above the threshold 2.0, and the lines in
orange are used to indicate the persistence pairs below the threshold.

in the case of the L-SIAC vorticity) to create the persistence diagrams
shown in Figure 13. The persistence pairs below the threshold are
shown by orange lines. Observe that in the case of subdivided and
sample vorticity, there exists a persistence pair (the tallest orange bar)
that is very close to the threshold but does not exist in the case of the
L-SIAC vorticity. This feature corresponds to a boundary artifact that
creates a spurious but high-persistence, feature that would be hard to
separate without additional knowledge.

(a) Sampled vorticity. (b) Subdivided vorticity.

(c) L-SIAC vorticity.

Fig. 14: Segmentation of the vorticity over a flow past a cylinder described
in Section 4.1. The segmentations are calculated using the contour tree
and a persistence threshold in region 2 of Figure 12. The critical points
denoted by saddle1 and saddle2 are the saddles corresponding the
merges and splits, respectively.

The segmentation of the datasets along with the location and type
of critical points are shown in Figure 14, created using the contour
tree and the persistence threshold in region 2 (the same ones used
to create the persistence diagrams in Figure 13). The segmentation
in all three cases captures and classifies the significant part of the
vortices. Observe the critical points of the max and mins lineup at
similar locations for the three datasets. The critical points, however, for
saddle1 and saddle2 appear more uniformly distributed in the case of
the L-SIAC vorticity. The nonuniformly distributed critical points for
saddle1 and saddle2 affects the boundaries of the segmented regions for
the sampled and subdivided vorticity, which are far more irregular and
exhibit resemblance to the orientations in the simulation mesh. In the
case of L-SIAC vorticity, the edges of the segmentations are smoother
and align only with the mesh boundaries.

In an attempt to segment the vortices more stringently without col-
lapsing features, we applied the contour tree using lower persistence
thresholds to oversegment the domain. We used persistence threshold
of 0.04 to the sampled and the subdivided vorticity, thus resulting in the
segmentation shown in Figures 15a and 15b, respectively. In the case
of the L-SIAC vorticity, we chose the persistence threshold of 0.001,
which contains all the persistence pairs (refer to Figure 11) and used it
for segmentation (Figure 15c). To select the segmentations containing
the vortices, we filtered them by thresholding based on their size and
checking if the segment is associated with a leaf (a minima or maxima)
in the contour tree. In the case of sampled vorticity (Figure 15a), a
portion of the vortex indicated by the red dotted box was filtered out. In
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(a) Sampled vorticity. (b) Subdivided vorticity.

(c) L-SIAC vorticity.

Fig. 15: Segmentation of the vorticity for the flow past a cylinder de-
scribed in Section 4.1. The segmentation for the sampled and the
subdivided vorticity are computed using the contour tree along with a
persistence threshold of 0.04. In the case of L-SIAC vorticity, the value of
persistence threshold used is 0.001.

this case also (referring to Figure 15), we observed that the boundaries
of segmentations for sampled and subdivided vorticity are irregular
compared to the boundaries of the segments in the L-SIAC vorticity.

4.2 Counter-Rotating Vortex

Fig. 16: Input simulation of the counter-rotating vortices. We focus on
analyzing data in the red cube. The counter-rotating vortices in green
are iso-surfaces of vorticity (magnitude) calculated using element-wise
derivatives.

We also consider a 3D example for our empirical study, again using
a Nektar++ simulation example. An incompressible Navier-Stokes
solver with cG discretization was used to generate a flow scenario
containing two primary vortices and their secondary counter-rotating
vortices shown in Figure 16. The simulation (input) parameters were
set to the following: for the advection term, the Velocity Correction
Scheme [40] with SVV de-aliasing was used, and the time integration
splitting scheme was set to IMEX order two. Further details on the
simulations are given in [60]. The simulation mesh was adaptively
refined at the location of the vortices and contains 223,837 polynomial
degree five (P(5)) tetrahedra.

The simulation data from the highlighted region in Figure 16 (indi-
cated by the red cube) was chosen to be analyzed topologically. We
analyzed the magnitude of vorticity as the scalar quantity to extract vor-
tices. We used the elementwise derivatives on the vector field quantities
(u,v,w) to calculate the magnitude of the vorticity vector (hereafter
referred to as the vorticity). To produce the “sampled” vorticity, elemen-
twise derivatives are sampled on a grid of resolution of 100×100×100
and used to calculate the magnitude of vorticity. To produce “subdi-
vided” vorticity, each tetrahedron of the input mesh, in the highlighted
region was subdivided into smaller tetrahedrons(216 = 63). The vor-
ticity was sampled at the vertices of the subdivided mesh and at the
vertices having a discontinuity, the values were averaged. To calcu-
late the L-SIAC vorticity, we use L-SIAC methodology proposed in
Jallepalli et al. [37]. All the required derivatives are calculated using
the L-SIAC filter. The parameters used for the L-SIAC filter are B-
splines of order 7 (specifically, we use the D1K(11,7) filter, where D1

represents the total derivative), the θ in direction of the derivative and

the characteristic length is adapted based on the element size [38]. The
average time taken to compute vorticity at each location on a machine
with a 2.5 GHz (Intel CPU E7-8890) processor is 0.34, 9.6e−4, and
334 milliseconds for the sampled, subdivided, and L-SIAC vorticities,
respectively.

Fig. 17: Persistence curves for the sampled, subdivided, and L-SIAC
vorticity fields of the counter-rotating vortex.

Fig. 18: Zoom in on the region associated with Figure 17. For each of
datasets, we highlight three different stable regimes of critical features
(numbered 1-3).

The datasets had vorticity ranging from [0,84], [0,88], and [0,176]
for sampled, subdivided and L-SIAC vorticity fields, respectively. To
enable comparisons of persistence curves and diagrams, we normal-
ized the vorticity to the same range of [0,1]. The persistence curves
are shown in Figure 17. We observe that the first stable regions indi-
cated by 1 in Figure 18, are have ranges of persistence at [0.32,0.76],
[0.11,0.44], and [0.08,0.34] for the sampled, subdivided, and L-SIAC
vorticity. The sampled vorticity has the most extended stable region,
followed by subdivided and then the L-SIAC filter. Note that the ranges
appear differently due to the log-scaled x-axis in Figure 18.

(a) Sampled vorticity at
persistence threshold 0.5.

(b) Subdivided vorticity at
persistence threshold 0.2.

(c) L-SIAC vorticity at per-
sistence threshold 0.2.

Fig. 19: Persistence diagrams for the vorticity of the counter-rotating
vortex dataset. Orange bars highlight what was removed by topological
filtering.

Consequently, we chose different ranges of persistence values for
topological simplification. We first considered a coarse simplification
into the stable region 1. The persistence diagrams simplified using
thresholds of 0.5 (sampled) and 0.2 (subdivided and L-SIAC) in the
respective stable regions are shown in Figures 19. To highlight what
was removed, the persistence pairs below the threshold are visualized



170  IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 1, JANUARY 2020

as orange bars. Unlike our other examples, we observed that sampled
vorticity has a substantial number of persistence pairs far from the
diagonal – suggesting that there was significant topological “noise” in
the data that makes it more difficult to separate even the most prominent
vortices of interest. By comparison, the subdivided and L-SIAC datasets
appear to have more separation between the persistent features.

(a) Sampled vorticity. (b) Subdivided vorticity. (c) L-SIAC vorticity.

Fig. 20: Segmentation corresponding to the topologically simplified vor-
ticity fields as the threshold used in Figure 19. These figures highlight
the two main rotating vortices, as best described by each dataset.

Using the persistence threshold in the stable region 1 (0.5 for sam-
pled, 0.2 subdivided and L-SIAC) to simplify the dataset, we used
the contour trees to segment the domain and visualized the segmented
vortex cores in Figure 20. We observed that all three methods had
segmented significant portions of the primary and secondary vortices.
The boundaries of the sampled and subdivided vorticity were slightly
irregular compared to the L-SIAC filter. However, at this coarse scale,
they were not significantly worse. The subdivided mesh is expected to
have irregularities due to the underlying nonuniform mesh. Thus, all
the methods have identified and segmented the first and second signif-
icant features of interest in the dataset. This result demonstrates that
for this dataset, topological simplification can tolerate a wide range of
transformation methodologies to capture the coarsest scale of features.

(a) Sampled vorticity at
persistence threshold
0.136

(b) Subdivided vorticity at
persistence threshold 0.06.

(c) L-SIAC vorticity at per-
sistence threshold 0.03.

Fig. 21: Persistence diagrams for the vorticity of the counter-rotating
vortex dataset after simplifying to capture fine-scale features.

To identify a second set of features from the data, we looked for
smaller persistence thresholds in the datasets. In Figure 18, among the
stable regions indicated by 2 and 3, the stable region indicated by 3
in all the datasets yielded the best possible segmentation of the data.
The persistence diagrams using the thresholds in the stable region 3
(0.136 for sampled, 0.06 for subdivided, 0.03 for L-SIAC) are shown
in Figure 21.

The lower threshold we selected to segment the data resulted in
numerous undesired segmentations of the data that we removed during
analysis. Specifically, we manually identified segments using their
level in the contour tree, size of the segment, and the segment IDs, for
segments that resembled vortex-like structures. The resulting segmen-
tations from the datasets are shown in Figure 1. We observe that the
sampled vorticity (Figure 1a) produced 4 of 45 segments resembling
vortex-like structures, but the vortex indicated by blue was divided into
smaller undesirable regions. In the case of subdivided vorticity (Figure
1b), we identified 3 of 23 segments that resembled vortices, but the
segmented region indicated in green has many gaps, meaning signifi-
cant parts of the vortex is segmented into smaller segments that have
been filtered out. This was particularly surprising given the structure

in the persistence diagram for subdivided vorticity, which appears to
have less topological noise. In the case of L-SIAC vorticity (Figure
1c), we identified 5 of 13 segments resembling vortices that segment
the vortices consistently, except for the segment represented by blue. A
portion of this vortex surrounds its neighboring vortices.

To summarize, the sampled, the subdivided, and the L-SIAC method-
ologies successfully identified the most significant features in the
dataset. To identify the fine-scale features, the L-SIAC methodol-
ogy performed best among the three, but we remark that it comes at a
significant computational cost relative to merely sampling [37]. The
sampled vorticity appeared to capture the shape of the vorticity features
better than the subdivided vorticity. Furthermore, it also identified an
extra vortex than the subdivided vorticity. However, the sampled data
has the disadvantage that filtering to capture the best set of segments
required removing a larger number of features.

5 DISCUSSION

The precise characterization of the effects of data transformations on
topological analysis can manifest in subtle ways, as small changes
in function values can affect the order in which features merge. In
this empirical study, we take a first step toward understanding the
relationships among element discontinuities, sampling artifacts, and
topological features. We analyzed three methodologies that can be used
to enable topological analysis of the HO-FEM data. For identifying
the most significant features in HO-FEM data, we used two simple
methodologies: sampling on a grid and subdividing the mesh. While
both have the advantage of simplicity, and both are successful at cap-
turing the coarsest features, they also tend to distort the size and shape
of the feature boundaries. In particular, subdivision appears to separate
features better, but sampling might do a better job of capturing the
shape of the feature. Interestingly, we discovered and demonstrated the
counterintuitive nature of these methodologies, since in certain ways
they perform adversely with the increase in sampling resolution.

We have also shown that an extended range of features can be iden-
tified in the dataset using the L-SIAC filter. Using the L-SIAC filter,
we can improve the resolution of the features with the increase in
sampling resolution. Although the L-SIAC filter may appear better
suited to this analysis task, it is also computationally expensive as its
cost of evaluation is roughly proportional to the sampling frequency.
In future work, it would be interesting to use topological analysis on
sampled or subdivided data as a guide to adaptively choose locations
to apply the L-SIAC filter and use the updated results to improve the
topological analysis iteratively. In particular, at regions that are far
from discontinuities, we expect all methodologies to perform better.

The current focus of this work has been on scalar fields and their
topological analysis through persistence diagrams and contour trees.
A limitation of this study is its scope. In the future, we would like to
broaden this study to include gradient field topology (through Morse-
Smale complexes) as well as the topology of vector and tensor data.
Nevertheless, the narrow scope we have employed has helped to isolate
specific issues with both interpolants and feature extraction techniques.
Long term, we think this study can help motivate a better set of design
constraints for directly extracting topological features from higher
order data without the need for data transformation. That said, even
current tools appear capable of extracting certain coarse features if data
transformation is used carefully.
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