Computer Physics Communications 249 (2020) 107110

N

Contents lists available at ScienceDirect COMPUTER PHYSICS

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

CPC 50th anniversary article

Check for
updates

Nektar++: Enhancing the capability and application of high-fidelity
spectral/hp element methods™ "~

David Moxey **, Chris D. Cantwell *, Yan Bao ¢, Andrea Cassinelli°, Giacomo Castiglioni ",
Sehun Chun ¢, Emilia Juda®, Ehsan Kazemi ¢, Kilian Lackhove ’, Julian Marcon®,
Gianmarco Mengaldo ¢, Douglas Serson”, Michael Turner®, Hui Xu ®", Joaquim Peir6®,
Robert M. Kirby ", Spencer J. Sherwin

2 College of Engineering, Mathematics and Physical Sciences, University of Exeter, United Kingdom
b Department of Aeronautics, Imperial College London, United Kingdom

¢ Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai, China

4 Underwood International College, Yonsei University, South Korea

€ School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China

f Department of Energy and Power Plant Technology, Technische Universitit Darmstadt, Germany
& Division of Engineering and Applied Science. California Institute of Technology, USA

h Scientific Computing and Imaging Institute, University of Utah, USA

ARTICLE INFO ABSTRACT

Article history: Nektar++ is an open-source framework that provides a flexible, high-performance and scalable platform
Received 4 June 2019 for the development of solvers for partial differential equations using the high-order spectral/hp element
Received in revised form 26 November 2019 method. In particular, Nektar++ aims to overcome the complex implementation challenges that are

Accepted 5 December 2019

- ; often associated with high-order methods, thereby allowing them to be more readily used in a wide
Available online 18 December 2019

range of application areas. In this paper, we present the algorithmic, implementation and application

Keywords: developments associated with our Nektar++ version 5.0 release. We describe some of the key software
Nektar++ and performance developments, including our strategies on parallel I/O, on in situ processing, the
Spectral/hp element methods use of collective operations for exploiting current and emerging hardware, and interfaces to enable
High-order finite element methods multi-solver coupling. Furthermore, we provide details on a newly developed Python interface that

enables a more rapid introduction for new users unfamiliar with spectral/hp element methods, C++
and/or Nektar++. This release also incorporates a number of numerical method developments - in
particular: the method of moving frames (MMF), which provides an additional approach for the
simulation of equations on embedded curvilinear manifolds and domains; a means of handling spatially
variable polynomial order; and a novel technique for quasi-3D simulations (which combine a 2D spectral
element and 1D Fourier spectral method) to permit spatially-varying perturbations to the geometry in
the homogeneous direction. Finally, we demonstrate the new application-level features provided in this
release, namely: a facility for generating high-order curvilinear meshes called NekMesh; a novel new
AcousticSolver for aeroacoustic problems; our development of a ‘thick’ strip model for the modelling
of fluid-structure interaction (FSI) problems in the context of vortex-induced vibrations (VIV). We
conclude by commenting on some lessons learned and by discussing some directions for future code
development and expansion.

Program summary

Program Title: Nektar++

Program Files doi: http://dx.doi.org/10.17632/9drxd9d8nx.1

Code Ocean Capsule: https://doi.org/10.24433/C0.9865757.v1

Licensing provisions: MIT

Programming language: C++

External routines/libraries: Boost, METIS, FFTW, MPI, Scotch, PETSc, TinyXML, HDF5, OpenCASCADE,
CWIPI

* This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
% The review of this paper was arranged by Prof. N.S. Scott.
* Corresponding author.
E-mail address: d.moxey@exeter.ac.uk (D. Moxey).

https://doi.org/10.1016/j.cpc.2019.107110
0010-4655/© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2019.107110
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2019.107110&domain=pdf
http://dx.doi.org/10.17632/9drxd9d8nx.1
https://doi.org/10.24433/CO.9865757.v1
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:d.moxey@exeter.ac.uk
https://doi.org/10.1016/j.cpc.2019.107110
http://creativecommons.org/licenses/by/4.0/

2 D. Moxey, C.D. Cantwell, Y. Bao et al. / Computer Physics Communications 249 (2020) 107110

Nature of problem: The Nektar++ framework is designed to enable the discretisation and solution of
time-independent or time-dependent partial differential equations.
Solution method: spectral/hp element method

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

High-order finite element methods are becoming increasingly
popular in both academia and industry, as scientists and tech-
nological innovators strive to increase the fidelity and accuracy
of their simulations whilst retaining computational efficiency.
The spectral/hp element method in particular, which combines
the geometric flexibility of classical low-order finite element
methods with the attractive convergence properties of spectral
discretisations, can yield a number of advantages in this re-
gard. From a numerical analysis perspective, their diffusion and
dispersion characteristics mean that they are ideally suited to
applications such as fluid dynamics, where flow structures must
be convected across long time- and length-scales without suffering
from artificial dissipation [1-5]. High-order methods are also
less computationally costly than traditional low-order numerical
schemes for a given number of degrees of freedom, owing to their
ability to exploit a more locally compact and dense elemental
operators when compared to sparse low-order discretisations
[6-8]. In addition, high-order methods in various formulations
can be seen to encapsulate other existing methods, such as finite
volume, finite difference (e.g. summation-by-parts finite differ-
ence [9]), finite element, and flux reconstruction approaches [10,
11]. All of these features make the spectral/hp element method
an extremely attractive tool to practitioners.

As the name suggests, the spectral/hp element method relies
on the tesselation of a computational domain into a collection
of elements of arbitrary size that form a mesh, where each
element is equipped with a polynomial expansion of arbitrary
and potentially spatially-variable order [12]. Within this definition,
we include continuous Galerkin (CG) and discontinuous Galerkin
(DG) methods, along with their variants. High-order methods have
been historically seen as complex to implement, and their adoption
has been consequently limited to academic groups and numerical
analysts. This mantra is rapidly being removed thanks to the
development of open-source numerical libraries that facilitate
the implementation of new high-fidelity solvers for the solution
of problems arising from a broad spectrum of research areas
including engineering, biomedicine, economics, numerical weather
and climate prediction. An additional challenge in the use of
high-order methods, particularly for problems involving complex
geometries, is the generation of a curvilinear mesh that conforms
to the underlying curves and surfaces. However, advances in
curvilinear mesh generation (such as [13]), combined with open-
source efforts to increase their prevalence, mean that simulations
across extremely complex geometries are now possible.

Nektar++ is a project initiated in 2005 (the first commit to
an online repository was made on 4th May 2006), with the aim
of facilitating the development of high-fidelity computationally-
efficient, and scalable spectral element solvers, thereby helping
close the gap between application-domain experts (or users), and
numerical-method experts (or developers). Along with Nektar++,
other packages that implement such high-order methods have
been developed in the past several years. Nek5000, developed
at Argonne National Laboratory, implements CG discretisations
mainly for solving incompressible and low-Mach number flow
problems on hexahedral meshes using the classical spectral ele-
ment method of collocated Lagrange interpolants [14]. Semtex [15,

16] is a fluid dynamics code that also uses the classical spec-
tral element method in two dimensions, with the use of a 1D
pseudospectral Fourier expansion for three dimensional problems
containing a homogeneous component of geometry. Nektar++ also
supports this joint discretisation in Cartesian coordinates; however
Semtex also includes support for cylindrical coordinate systems,
where the Fourier modes are used in the azimuthal direction,
which broadens the range of geometries that can be considered in
this setting. deal.ll [17] is a more generic finite element framework,
which likewise restricts its element choices to quadrilaterals and
hexahedra, but permits the solution of a wide array of problems,
alongside the use of adaptive mesh refinement. Flexi [18] and its
spinoff Fluxo [19], developed at the University of Stuttgart and
at the University of Cologne, implement discontinuous Galerkin
methods for flow problems on hexahedral meshes. GNuME, and
its NUMO and NUMA components developed at the Naval Post-
graduate School, implement both continuous and discontinuous
Galerkin methods mainly for weather and climate prediction
purposes [20,21]. PyFR [22], developed at Imperial College London,
implements the flux reconstruction approach [23] which shares
various numerical properties with DG in particular [10,24]. DUNE
implements a DG formulation, among a wide variety of other
numerical methods such as finite difference and finite volume
methods [25].

Nektar++ is a continuation of an earlier code Nektar, itself
developed at Brown University originally using the C programming
language, with some parts extended to use C++. Nektar++ is
instead written using the C++ language, and greatly exploits its
object-oriented capabilities. The aim of Nektar++ is to encapsu-
late many of the high-order discretisation strategies mentioned
previously, in a readily accessible framework. The current release
includes both CG and DG methods and, arguably, its distinguishing
feature is its inherent support for complex geometries through
various unstructured high-order element types; namely hexa-
hedra, tetrahedra, prisms and pyramids for three-dimensional
problems, and quadrilaterals and triangles for two-dimensional
problems. Both CG and DG can be used on meshes that contain
different element shapes (also referred to as hybrid meshes),
and allow for curvilinear element boundaries in proximity of
curved geometrical shapes. Along with these spatial discretisations,
Nektar++ supports so-called quasi-3D simulations in a manner
similar to Semtex, where a geometrically complex 2D spectral
element mesh is combined with a classical 1D Fourier expansion
in a third, geometrically homogeneous, direction. This mixed
formulation can significantly enhance computational efficiency
for problems of the appropriate geometry [15] and Nektar++
supports a number of different parallelisation strategies for this
approach [26]. The time discretisation is achieved using a gen-
eral linear method formulation for the encapsulation of implicit,
explicit and mixed implicit-explicit timestepping schemes [27].
While the main purpose of the library is to create an environment
under which users can develop novel solvers for the applications
of their interest, Nektar++ already includes fully-fledged solvers
for the solution of several common systems, including fluid flows
governed either by the compressible or incompressible Navier—
Stokes and Euler equations; advection-diffusion-reaction problems,
including on a manifold, with specific applications to cardiac
electrophysiology [28]; a solver for various forms of the acoustic
perturbation equations for aeroacoustic modelling; and others.
One of the main shortcomings of the spectral/hp element method

http://creativecommons.org/licenses/by/4.0/

D. Moxey, C.D. Cantwell, Y. Bao et al. / Computer Physics Communications 249 (2020) 107110 3

is related to a perceived lack of robustness, arising from low
dissipative properties, which can be a significant challenge for
industrial applications. Nektar++ implements several techniques to
address this problem, namely efficient dealiasing strategies [29,30]
and spectral vanishing viscosity [31], that have proved invaluable
for particularly challenging applications [32].

The scope of this review is to highlight the substantial number
of new developments in Nektar++ since the last publication related
to the software, released in 2015 and coinciding with the version
4 release of Nektar++ [33]. Since this release, over 7000 commits
have been added to the main code for the version 5 documented
here, with a key focus on expanding the capability of the code to
provide efficient high-fidelity simulations for challenging problems
in various scientific and engineering fields. To this end, the paper
is organised as follows. After a brief review of the formulation in
Section 2, in Section 3 we present our software and performance
developments. This includes our strategies on parallel I/O; in
situ processing; the use of collective linear algebra operations
for exploiting current and emerging hardware; and interfaces
for multi-solver coupling to enable multi-physics simulations
using Nektar++. Furthermore, we provide details on our new
Python interfaces that enable more rapid on-boarding of new
users unfamiliar with either spectral/hp element methods, C++ or
Nektar++. In Section 4, we then present recent numerical method
developments - in particular, the method of moving frames (MMF);
recently added support for spatially-variable polynomial order for
p-adaptive simulations; and new ways of incorporating global
mappings to enable spatially variable quasi-3D approaches. In
Section 5, we then demonstrate some of the new features provided
in our new release, namely: our new facility for generating high-
order (curvilinear) meshes called NekMesh; a new AcousticSolver
for aeroacoustic problems; and our development of a ‘thick’ strip
model for enabling the solution of fluid-structure interaction (FSI)
problems in the context of vortex-induced vibrations (VIV). We
conclude in Section 7 by commenting on some lessons learned
and by discussing some directions for future code development
and expansion.

Contributors. Nektar++ has been developed across more than
a decade, and we would like to acknowledge the many people
who have made contributions to the specific application codes
distributed with the libraries. In addition to the coauthors of the
previous publication [33] we would like to explicitly thank the
following for their contributions:

e Dr. Rheeda Ali (Department of Biomedical Engineering, Johns
Hopkins University, USA) and Dr. Caroline Roney (Biomedical
Engineering Department, King’s College London, UK) for their
work on the cardiac electrophysiology solver;

e Dr. Michael Barbour and Dr. Kurt Sansom (Department of
Mechanical Engineering, University of Washington, USA) for
developments related to biological flows;

e Mr. Filipe Buscariolo (Department of Aeronautics, Imperial

College London, UK) for contributions to the incompressible

Navier-Stokes solver;

Dr. Jeremy Cohen (Department of Aeronautics, Imperial

College London, UK) for work relating to cloud deployment

and the Nekkloud interface;

e Mr. Ryan Denny (Department of Aeronautics, Imperial College

London, UK) for enhancements in the 1D arterial pulse wave

model;

Mr. Jan Eichstddt (Department of Aeronautics, Imperial Col-

lege London, UK) for initial investigations towards using

many-core and GPU platforms;

e Dr. Stanistaw Gepner (Faculty of Power and Aeronautical
Engineering, Warsaw University of Technology, Poland) for
enhancements in the Navier-Stokes linear stability solver;

e Mr. Dav de St. Germain (SCI Institute, University of Utah,
USA) for enhancements of timestepping schemes;

e Mr. Ashok Jallepalli (SCI Institute, University of Utah, USA)
for initial efforts on the integration of SIAC filters into
post-processing routines;

o Prof. Dr. Johannes Janicka (Department of Energy and Power
Plant Technology), Technische Universitit Darmstadt, Ger-
many, for support and development of the acoustic solver
and solver coupling;

e Mr. Edward Laughton (College of Engineering, Mathematics
and Physical Sciences, University of Exeter, UK) for testing
enhancements and initial efforts on non-conformal grids;

e Dr. Rodrigo Moura (Divisdo de Engenharia Aeronautica, In-
stituto Tecnolégico de Aeronautica, Brasil) for numerical
developments related to spectral vanishing viscosity stabili-
sation;

e Dr. Rupert Nash and Dr. Michael Bareford (EPCC, University
of Edinburgh, UK) for their work on parallel 1/0; and

e Mr. Zhenguo Yan and Mr. Yu Pan (Department of Aeronau-
tics, Imperial College London, UK) for development of the
compressible flow solver;

2. Methods

In this first section, we outline the mathematical framework
that underpins Nektar++, as originally presented in [33,34]. Nek-
tar++ supports a variety of spatial discretisation choices, primarily
based around the continuous and discontinuous Galerkin methods
(CG and DG). However, in the majority of cases CG and DG use the
same generic numerical infrastructure. Here we therefore present
a brief overview and refer the reader to [12] for further details,
which contains a comprehensive description of the method and
its corresponding implementation choices. In the text below we
also highlight appropriate chapters and sections from [12] for the
material being discussed.

The broad goal of Nektar++ is to provide a framework for the
numerical solution of partial differential equations (PDEs) of the
form £u = 0 on a domain £2, which may be geometrically complex,
for some solution u. Practically, in order to carry out a spatial
discretisation of the PDE problem, §2 needs to be partitioned
into a finite number of d-dimensional non-overlapping elements
£2., where in Nektar++ we support 1 < d < 3, such that the
collection of all elements recovers the original region (£2 = | J §2,)
and for e; # e, 2, N §2., = 082, iS an empty set or an
interface of dimension d < d. The domain may be embedded
in a space of equal or higher dimension, d > d, as described
in [28]. One of the distinguishing features of Nektar++ is that it
supports a wide variety of elemental shapes: namely segments
in one dimension [12, §2]; triangles and quadrilaterals in two
dimensions, and; tetrahedra, pyramids, prisms and hexahedra in
three dimensions [12, §3 and §4]. This makes it broadly suitable
for the solution of problems in complex domains, in which hybrid
meshes of multiple elements are generally required.

Nektar++ supports the solution of PDE systems that are either
steady-state or time-dependent. In time-dependent cases, there is
subsequently a choice to use either explicit, implicit or implicit-
explicit timestepping. From an implementation and formulation
perspective, steady-state and implicit-type problems typically
require the efficient solution of a system of linear equations,
whereas explicit-type problems rely on the evaluation of the
spatially discretised mathematical operators. In the following
sections, we briefly outline the support in Nektar++ for these
regimes.

4 D. Moxey, C.D. Cantwell, Y. Bao et al. / Computer Physics Communications 249 (2020) 107110

X2
L» X1
xeQ, Ye@
m w7, &

—1
—

collapsed coordinates
nel-117

- gl
reference coordinates
EeT

Fig. 1. Coordinate systems and mappings between collapsed coordinates p,
reference coordinates & and Cartesian coordinates x for a high-order triangular
element £2,.

2.1. Implicit-type methods

In this approach we follow the standard finite element deriva-
tion as described in [12, §2.2], so that before establishing the spa-
tial discretisation, the abstract operator form £u = 0 is formulated
in the weak sense alongside appropriate test and trial spaces V and
U. In general, we require at least a first-order derivative and select,
for example, V = Hj(£2) == {v € H'(£2) | v(d52) = 0}, where

H'(2):= {v € [*(2) | D*u € [X(£2)V |a| < 1}.

Following the Galerkin approach, we select &/ = V. We note that
where problems involve Dirichlet boundary conditions on a bound-
ary 0§2p C 952 of the form uly,(X) = gp(x), we typically enforce
this by lifting gp as described in [12, §2.2.3 and §4.2.4]. For illus-
trative purposes, we assume that £ is linear and its corresponding
weak form can be expressed as: find u € U such that

a(u,v) =£€(v) Vv eu, (1)

where a(-, -) is a bilinear form and £(-) is a linear form.

To numerically solve the problem given in Eq. (1) with the
spatial partition of £2, we consider solutions in an appropriate
finite-dimensional subspace ¢y C . In a high-order setting, these
spaces correspond to the choice of spatial discretisation on the
mesh. For example, in the discontinuous setting we select

Uy = {u € 13(2) | ulg, € Pr(£2)},

where Pp($2.) represents the space of polynomials on §2, up to
total degree P, so that functions are permitted to be discontinuous
across elemental boundaries. In the continuous setting, we select
the same space intersected with C%(£2), so that expansions are
continuous across elemental boundaries. The solution to the weak
form in Eq. (1) can then be cast as: find u® € Uy such that

a(u®, v®) = ¢(v®) Vv e uy (2)

Assuming that the solution can be represented as u’(x) =
> 2 Un@y(x), a weighted sum of N trial functions @,(x) € Uy
defined on £2 [12, §2.1], the problem then becomes that of finding
the coefficients i1,, which in the Galerkin approach translates into
the solution of a system of linear equations.

To establish the global basis ®(£2) = {®(x), ..., On(X)}, we
first consider the contributions from each element in the domain.
To simplify the definition of basis functions on each element, we
follow the standard approach described in [12, §2.3.1.2 and §4.1.3]
where £2, is mapped from a reference element £ C [—1, 1]¢ by

Table 1

List of supported elemental reference regions.
Name Class Domain definition
Segment StdSeg S=1{& e[-1,1]}
Quadrilateral StdQuad o={te[-1,11%
Triangle StdTri T={e[-1,12|& +& <0}
Hexahedron StdHex H={Eec[-1,1P)}
Prism StdPrism R ={e[-1,1P|§ <1,&+& <0}
Pyramid StdPyr P={fc[-1,1P |6 +&<0,5+6 <0}
Tetrahedron StdTet A={Ee[-11P|&+6H+& < -1}

a parametric mapping x, : £ — 2., so that x = x,(&). Here,
& is one of the supported region shapes in Table 1 and & are
d-dimensional coordinates representing positions in a reference
element, distinguishing them from x which are d-dimensional
coordinates in the Cartesian coordinate space. On triangular,
tetrahedral, prismatic and pyramid elements, one or more of the
coordinate directions of a quadrilateral or hexahedral region are
collapsed to form the appropriate reference shape, creating one
or more singular vertices within these regions [35,36]. Operations,
such as calculating derivatives, map the tensor-product coordinate
system to these shapes through Duffy transformations [37] —
for example, @+ : 7 — Q maps the triangular region 7 to
the quadrilateral region Q — to allow these methods to be well-
defined. The relationship between these coordinates is depicted in
Fig. 1. Note that the singularity in the inverse mapping w}l does
not affect convergence order and can be mitigated in practice by
adopting an alternative choice of quadrature, such as Gauss-Radau
points, in order to omit the collapsed vertices [12, §4.1.1].

The mapping x, need not necessarily exhibit a constant Jaco-
bian, so that the resulting element is deformed as shown in Fig. 1.
Nektar++ represents the curvature of these elements by taking
a sub- or iso-parametric mapping for y,, so that the curvature
is defined using at least a subset of the basis functions used to
represent the solution field [12, §4.3.5]. The ability to use such
elements in high-order simulations is critical in the simulation of
complex geometries, as without curvilinear elements, one could
not accurately represent the underlying curves and surfaces of
the geometry, as demonstrated in [38]. The generation of meshes
involving curved elements is, however, a challenging problem. Our
efforts to generate such meshes, as well as to adapt linear meshes
for high-order simulations, are implemented in the NekMesh
generator tool described in Section 5.1, as well as a number of
recent publications (e.g. [13,39]).

With the mapping x, and the transformation @+ the discrete
approximation u° to the solution u on a single element 2, can
then be expressed as

wx) = > ien ([x] ')

where ¢, form a basis of Pp(&); i.e. a local polynomial basis
need only be constructed on each reference element. A one-
dimensional order-P basis is a set of polynomials ¢,(£),0 <p <P,
defined on the reference segment, S. The choice of basis is usually
made based on its mathematical or numerical properties and
may be modal or nodal in nature [12, §2.3]. For two- and three-
dimensional regions, a tensorial basis may be employed, where
the polynomial space is constructed as the tensor-product of
one-dimensional bases on segments, quadrilaterals or hexahedral
regions. In spectral/hp element methods, a common choice is
to use a modified hierarchical Legendre basis (a ‘bubble’-like
polynomial basis sometimes referred to as the ‘modal basis’), given
in [12, §3.2.3] as a function of one variable by

5 p=0,
) (5) B

1+£
2

(&) =

—_

O<p<P,
p=P,

D. Moxey, C.D. Cantwell, Y. Bao et al. / Computer Physics Communications 249 (2020) 107110 5

which supports boundary-interior decomposition and therefore
improves numerical efficiency when solving the globally assem-
bled system. Equivalently, ¢, could also be defined by the La-
grange polynomials through the Gauss-Lobatto-Legendre quadra-
ture points, which would lead to a traditional spectral element
method [12, §2.3.4]. In higher dimensions, a tensor product of
either basis can be used on quadrilateral and hexahedral elements
respectively. On the other hand, the use of a collapsed coordinate
system also permits the use of a tensor product modal basis for
the triangle, tetrahedron, prism and pyramid, which when com-
bined with tensor contraction techniques can yield performance
improvements. This aspect is considered further in Section 3.3
and [40,41].

Elemental contributions to the solution may be assembled to
form a global solution through an assembly operator
[12, §2.3.1 and §4.2.1]. In a continuous Galerkin setting, the assem-
bly operator sums contributions from neighbouring elements to
enforce the C°-continuity requirement. In a discontinuous Galerkin
formulation, such mappings transfer flux values from the element
interfaces into the global solution vector. For elliptic operators,
Nektar++ has a wide range of implementation choices available
to improve computational performance. A common choice is
the use of a (possibly multi-level) static condensation of the
assembled system [12, §4.1.6 and §4.2.3], where a global system
is formed only on elemental boundary degrees of freedom. This is
supported both for the classical continuous framework, as well as
in the DG method. In the latter, this gives rise to the hybridisable
discontinuous Galerkin (HDG) approach [42], in which a global
system is solved on the trace or skeleton of the overall mesh.

2.2. Explicit-type methods

Nektar++ has extensive support for the solution of problems in a
time-explicit manner, which requires the evaluation of discretised
spatial operators alongside projection into the appropriate space.
As the construction of the implicit operators requires these same
operator evaluations, most of the formulation previously discussed
directly translates to this approach. We do note however that
there is a particular focus on the discontinuous Galerkin method
as shown in [12, §6.2] for multi-dimensional hyperbolic systems
of the form

du

i + V - F(u) = G(u).

This includes the acoustic perturbation equations that we discuss
in Section 5.2 and the compressible Navier-Stokes system used
for aerodynamics simulations in Section 5.4. In this setting, on a
single element, and further assuming G is zero for simplicity of
presentation as in [12, §6.2.2], we multiply the above equation
by an appropriate test function v € ¢/ and integrate by parts to
obtain

d ~
f —uvdx—i-/ vfe(u_,u+)-nds—f Vv - F(u)dx = 0.
2. dt 392 2

In the above, f e(u*, u™") denotes a numerically calculated bound-
ary flux, depending on the element-interior velocity u~ and
its neighbour’s velocity u*. The choice of such a flux is solver-
specific and may involve an upwinding approach or use of an
appropriate Riemann solver. Where second-order diffusive terms
are required, Nektar++ supports the use of a local discontinuous
Galerkin (LDG) approach to minimise the stencil required for
communication (see [43] and [12, §7.5.2]). From a solver perspec-
tive, the implementation of the above is fairly generic, requiring
only the evaluation of the flux term f, conservation law F(u) and
right-hand side source terms G(u).

2.3. Recap of Nektar++ implementation

In this section, we briefly outline the implementation of these
methods inside Nektar++. Further details on the overall design of
Nektar++, as well as examples of how to use it, can be found in
the previous publication [33].

The core of Nektar++ comprises six libraries which are designed
to emulate the general mathematical formulation expressed above.
They describe the problem in a hierarchical manner, by working
from elemental basis functions and shapes through to a C++
representation of a high-order field and complete systems of
partial differential equations on a complex computational domain.
Depending on the specific application, this then allows developers
to choose an appropriate level for their needs, balancing ease of
use at the highest level with fine-level implementation details at
the lowest. A summary of each library’s purpose is the following:

e LibUtilites: elemental basis functions v, quadrature
point distributions &; and basic building blocks such as I/O
handling;

e StdRegions: reference regions £ along with the defini-
tion of key finite element operations across them, such as
integration, differentiation and transformations;

e SpatialDomains: the geometric mappings x. and factors
g—g, as well as Jacobians of the mappings and the construction
of the topology of the mesh from the input geometry;

e LocalRegions: physical regions in the domain, composing
a reference region £ with a map x., extensions of core
operations onto these regions;

e MultiRegions: list of physical regions comprising 2, global
assembly maps which may optionally enforce continuity,
construction and solution of global linear systems, extension
of local core operations to domain-level operations; and

e SolverUtils: building blocks for developing complete
solvers.

In version 5.0, four additional libraries have been included. Each
of these can be seen as a non-core, in the sense that they provide
additional functionality to the core libraries above:

e Collections: encapsulates the implementation of key ker-
nels (such as inner products and transforms) with an empha-
sis on evaluating operators collectively for similar elements;

e GlobalMapping: implements a mapping technique that
allows quasi-3D simulations (i.e. those using a hybrid 2D
spectral element/1D Fourier spectral discretisation) to define
spatially-inhomogeneous deformations;

e NekMeshUtils: contains interfaces for CAD engines and key
mesh generation routines, to be used by the NekMesh mesh
generator; and

e FieldUtils: defines various post-processing modules that
can be used both by the post-processing utility FieldConvert,
as well as solvers for in-situ processing.

We describe the purpose of these libraries in greater detail in
Sections 3.3, 4.3, 5.1 and 3.2 respectively.

3. Software and performance developments

This section reviews the software and performance develop-
ments added to Nektar++ since our last major release. We note
that a significant change from previous releases is the use of
C++11-specific language features throughout the framework. A
brief summary of our changes in this area include:

e transitioning from various data structures offered in boost
to those now natively available in C++11: in particular, smart
pointers such as shared_ptr, unordered STL containers and
function bindings;

6 D. Moxey, C.D. Cantwell, Y. Bao et al. / Computer Physics Communications 249 (2020) 107110

e avoid the use of typedef aliases for complex data structure
types, in deference to the use of auto where appropriate;

e similarly, where appropriate we make use of range-based
for loops to avoid iterator typedef usage and simplify
syntax;

e use of variadic templates in core memory management and
data structures to avoid the use of syntax-dense preprocess-
ing macros at compile time.

Alongside the many developments outlined here, the major
change in the Nektar++ API resulting from this switch has further
motivated the release of a new major version of the code. The
developments described in this section are primarily geared
towards our continuing efforts to support our users on large-scale
high-performance computing (HPC) systems.

3.1. Parallel /O

Although the core of Nektar++ has offered efficient parallel
scaling for some time (as reported in previous work [33]), one
aspect that has been improved substantially in the latest release
is support for parallel I/O, both during the setup phase of the
simulation and when writing checkpoints of field data for unsteady
simulations. In both cases, we have added support for new, parallel-
friendly mesh input files and data checkpoint files that use the
HDF5 file format [44], in combination with Message Passing
Interface (MPI) I/O, to significantly reduce bottlenecks relating
to the use of parallel filesystems. This approach enables Nektar++
to either read or write a single file across all processes, as opposed
to a file-per-rank output scheme that can place significant pressure
on parallel filesystems, particularly during the partitioning phase
of the simulation. Here we discuss the implementation of the mesh
input file format; details regarding the field output can be found
in [45].

One of the key challenges identified in the use of Nektar++
within large-scale HPC environments is the use of an XML-based
input format used for defining the mesh topology. Although
XML is highly convenient from the perspective of readability and
portability, particularly for small simulations, the format does
pose a significant challenge at larger scales, since when running
in parallel there is no straightforward way to extract a part of
an XML file on each process. This means that in the initial phase
of the simulation, where the mesh is partitioned into smaller
chunks that run on each process, there is a need for at least
one process to read the entire XML file. Even at higher orders,
where meshes are typically coarse to reflect the additional degrees
of freedom in each element, detailed simulations of complex
geometries typically require large, unstructured meshes of millions
of high-order elements. Having only a single process read this file
therefore imposes a natural limit to the strong scaling of the setup
phase of simulations - that is, the maximum number of processes
that can be used - due to the large memory requirement and
processing time to produce partitioned meshes. It also imposes
potentially severe restrictions on start-up time of simulations
and/or the post-processing of data, hindering throughput for very
large cases.

Although various approaches have been used to partially miti-
gate this restriction, such as pre-partitioning the mesh before the
start of the simulation and utilising a compressed XML format that
reduces file sizes and the XML tree size, these do not themselves
cure the problem entirely. In the latest version of Nektar++ we
address this issue with a new Hierarchical Data Format v5 (HDF5)
file format. To design the layout of this file, we recall that the
structure of a basic Nektar++ mesh requires the following storage:

e Vertices of the mesh are defined using double-precision
floating point numbers for their three coordinates. Each
vertex has a unique ID.

o All other elements are defined using integer IDs in a hierar-
chical manner; for example in three dimensions edges are
formed from pairs of vertices, faces from 3 or 4 edges and
elements from a collection of faces.

This hierarchical definition clearly aligns with the HDF5 data
layout. To accommodate the ‘mapping’ of a given ID into a tuple of
IDs or vertex coordinates, we adopt the following basic structure:

e The mesh group contains multi-dimensional datasets that
define the elements of a given dimension. For example, given
N quadrilaterals, the quad dataset within the mesh group is
a N x 4 dataset of integers, where each row denotes the 4
integer IDs of edges that define that quadrilateral.

e The maps group contains one-dimensional datasets that
define the IDs of each row of the corresponding two-
dimensional dataset inside mesh.

An example of this structure for a simple quadrilateral mesh is
given in Fig. 2. We also define additional datasets to define element
curvature and other ancillary structures such as boundary regions.

When running in parallel, Nektar++ adopts a domain decom-
position strategy, whereby the mesh is partitioned into a subset
of the whole domain for each process. This can be done either at
the start of the simulation, or prior to running it. Parallelisation is
achieved using the standard MPI protocol, where each process is
independently executed and there is no explicit use of shared
memory in program code. Under the new HDF5 format, we
perform a parallel partitioning strategy at startup, which runs
as follows:

e Each process is initially assigned a roughly equal number
of elements to read. This is calculated by querying the size
of each elemental dataset to determine the total number of
elements, and then partitioned equally according to the rank
of the process and total number of processors.

e The dual graph corresponding to each process’ subdomain
is then constructed. Links to other process subdomains are
established by using ghost nodes to those process’ nodes.

e The dual graph is passed to the PT-Scotch library [46] to
perform partitioning in parallel on either the full system or
a subset of processes, depending on the size of the graph.

e Once the resulting graph is partitioned, the datasets are read
in parallel using a top-down process: i.e. in three dimensions,
we read the volumes, followed by faces, edges and finally
vertices. In the context of Fig. 2, this would consist of reading
the quad dataset, followed by the seg dataset, followed by
the vert dataset.

e Note that at each stage, each processor only reads the
geometric entities that are required for its own partition,
which is achieved through the use of HDF5 selection routines
when reading the datasets.

e The Nektar++ geometry objects are then constructed from
these data in a bottom-up manner: i.e. vertices, followed by
edges, followed by faces and finally volumes, as required by
each processor.

e This concludes the construction of the linear mesh: curvature
information is stored in separate datasets, and is also read
at this stage as required for each element.

e Finally, ancillary information such as composites and domain
definition are read from the remaining datasets.

The new HDF5 based format is typically significantly faster
than the existing XML format to perform the initial partitioning
phase of the simulation. Notably, whereas execution times for the
XML format increase with the number of nodes being used (likely
owing to the file that must be written for each rank by the root
processor), the HDF5 input time remains roughly constant. We

D. Moxey, C.D. Cantwell, Y. Bao et al. / Computer Physics Communications 249 (2020) 107110 7

vertex 3 vertex 2
@ L]
edge 2
edge 3 edge 1
edge 0
[L
vertex 0 vertex 1

(a) A simple two-dimensional quadrilateral mesh consisting of a single element.

] maps group

1 vert dataset: contains: 0, 1, 2, 3

1 seg dataset: contains: 0, 1, 2, 3

L[] quad dataset: contains: 0

L

L] mesh group
] vert dataset: (v0), (v1), (v2), (v3)

1 seg dataset: (0,1), (1,2), (2,3), (3,0)

L quad dataset: (0,1,2,3)

(b) Directory-dataset structure that is used for storage of the topological data in the left-
hand figure.

Fig. 2. An example of a single quadrilateral element grid. In (a), we show the topological decomposition of the element into its 4 edges and vertices. Figure (b)
shows a schematic of the filesystem-type structure implemented in HDF5 that is used for storage of this topological information.

note that the HDF5 format also provides benefits for the post-
processing of large simulation data, as the FieldConvert utility is
capable of using this format for parallel post-processing of data.

3.2. In-situ processing

The increasing capabilities of high-performance computing
facilities allow us to perform simulations with a large number
of degrees of freedom, which leads to challenges in terms of post-
processing. The first problem arises when we consider the storage
requirements of the complete solution of these simulations. Tasks
such as generating animations, where we need to consider the
solution at many time instances, may become infeasible if we
have to store the complete fields at each time instance. Another
difficulty occurs due to the memory requirements of loading
the solution for post-processing. Although this can be alleviated
by techniques such as subdividing the data and processing one
subdivision at a time, this is not possible for some operations
requiring global information, such as performing a C°-projection
that involves the inversion of a global mass matrix. In such cases,
the memory requirements might force the user to perform post-
processing using a number of processing nodes similar to that
used for the simulation.

To aid in dealing with this issue, Nektar++ now supports
processing the solution in situ during the simulation. The imple-
mentation of this feature was facilitated by the modular structure
of our post-processing tool, FieldConvert. This tool uses a pipeline
of modules, passing mesh and field data between them, to arrive
at a final output file. This comprises one or more input modules
(to read mesh and field data), zero or more processing modules
(to manipulate the data, such as calculating derived quantities
or extracting boundary information), and a single output module
(to write the data in one of a number of field and visualisation
formats). To achieve in situ processing, FieldConvert modules
were moved to a new library (FieldUtils), allowing them to
be executed during the simulation as well as shared with the
FieldConvert utility. The actual execution of the modules during in
situ processing is performed by a new subclass of the Filter class,
which is called periodically after a prescribed number of time-steps
to perform operations which do not modify the solution field. This
filter structure allows the user to choose which modules should
be used and to set configuration parameters. Multiple instances of
the filter can be used if more than one post-processing pipeline is
desired.

There are many example applications for this new feature.
The most obvious is to generate a field or derived quantity, such
as vorticity, as the simulation is running. An example of this is
given in the supplementary materials Example A.16, in which the
vorticity is calculated every 100 timesteps whilst removing the
velocity and pressure fields to save output file space, using the
following FILTER configuration in the session file:

1 <FILTER TYPE= >
2 <PARAM NAME= > vorticity.vtu </PARAM>
3 <PARAM NAME= > 100 </PARAM>

4 <PARAM NAME= >

5 vorticity

6 removefield:fieldname=u,v,p

7 </PARAM>

8 </FILTER>

This yields a number of parallel-format block-unstructured VTK
files (the VTU format), as described in [47], that can be visualised in
appropriate applications such as ParaView [48] and subsequently
assembled to form an animation. Other use cases include extract-
ing slices or isocontours of the solution at several time instants for
creating an animation. Since the resulting files are much smaller
than the complete solution, there are significant savings in terms
of storage when compared to the traditional approach of obtaining
checkpoints which are later post-processed. Another possibility is
to perform the post-processing operations after the last time-step,
but before the solver returns. This way, it is possible to avoid the
necessity of starting a new process which will have to load the
solution again, leading to savings in computing costs.

3.3. Collective linear algebra operations

One of the primary motivations for the use of high-order
methods is their ability to outperform standard linear methods
on modern computational architectures in terms of equivalent
error per degree of freedom. Although the cost in terms of floating
point operations (FLOPS) of calculating these degrees of freedom
increases with polynomial order, the dense, locally-compact struc-
ture of higher-order operators lends itself to the current hardware
environment, in which FLOPS are readily available but memory
bandwidth is highly limited. In this setting, the determining factor
in computational efficiency, or ability to reach peak performance
of hardware, is the arithmetic intensity of the method; that is,
the number of FLOPS performed for each byte of data transferred
over the memory bus. Algorithms need to have high arithmetic

8 D. Moxey, C.D. Cantwell, Y. Bao et al. / Computer Physics Communications 249 (2020) 107110

intensity in order to fully utilise the computing power of modern
computational hardware.

However, the increase in FLOPS at higher polynomial orders
must be balanced against the desired accuracy so that execution
times are not excessively high. An observation made early in
the development of spectral element methods is that operator
counts can be substantially reduced by using a combination of a
tensor product basis, together with a tensor contraction technique
referred to as sum-factorisation. This technique, exploited inside
of Nektar++ as well as other higher-order frameworks such as
deal.ll [17] and Nek5000, uses a small amount of temporary
storage to reduce operator counts from O(P2%) to O(P4t1) at a
given order P. For example, consider a polynomial interpolation
on a quadrilateral across a tensor product of quadrature points & =
(&1i, &), where the basis admits a tensor product decomposition
Opq(&) = Pp(£1)dq(&2). This expansion takes the form

P Q

W& &) =) Y lpgp(Eridpq(E)
p=0 g=0

P

Q
¢p(éli) Z ﬁqupq(&j)

p=0 q=0

By precomputing the bracketed term and storing it for each p and j,
we can reduce the number of floating point operations from O(P*)
to O(P?). One of the distinguishing features of Nektar++ is that
these types of basis functions are defined not only for tensor-
product quadrilaterals and hexahedra, but also unstructured
elements (triangles, tetrahedra, prisms and pyramids) through
the use of a collapsed coordinate system and appropriate basis
functions. For more details on this formulation, see [12].

The efficient implementation of the above techniques on
computational hardware still poses a significant challenge for
practitioners of higher-order methods. For example, Nektar++
was originally designed using a hierarchical, inheritance-based
approach, where memory associated with elemental degrees of
freedom is potentially scattered non-contiguously in memory.
Although this was appropriate at the initial time of development
a decade ago, in modern terms this does not align with the
requirements for optimal performance, in which large blocks of
memory should be transferred and as many operations acted
on sequentially across elements, so as to reduce memory access
and increase data locality and cache usage. The current efforts
of the development team are therefore focused on redesigns
to the library to accommodate this process. In particular, since
version 4.1, Nektar++ has included a library called Collections
which is designed to provide this optimisation. In the hierarchy
of Nektar++ libraries, Collections sits between LocalRegions,
which represent individual elements, and MultiRegions, which
represent their connection in either a C° or discontinuous Galerkin
setting. The purpose of the library, which is described fully in [40],
is to facilitate optimal linear algebra strategies for large groupings
of elements that are of the same shape and utilise the same basis.
To facilitate efficient execution across a broad range of polynomial
orders, we then consider a number of implementation strategies
including:

e StdMat: where a full-rank matrix of the operator on a
standard element is constructed, so that the operator can be
evaluated with a single matrix-matrix multiplication;

e IterPerExp: where the sum-factorisation technique is eval-
uated using an iteration over each element, but geometric
factors (e.g. dx/0&) are amalgamated between elements; and

e SumFac: where the sum-factorisation technique is evaluated
across multiple elements concurrently.

This is then combined with an autotuning strategy, run at simu-
lation startup, which attempts to identify the fastest evaluation
strategy depending on characteristics of the computational mesh
and basis parameters. Autotuning can be enabled in any simulation
through the definition of an appropriate tag inside the NEKTAR
block that defines a session file:

1 <COLLECTIONS DEFAULT= />

A finer-grained level of control over the Collections setup and
implementation strategies is documented in the user guide. Per-
formance improvements using collections are most readily seen in
fully-explicit codes such as the CompressibleFlowSolver and
AcousticSolver. The vortex pair example defined in Section 5.2
and provided in Example A.15 demonstrates the use of the
collections library.

3.4. Solver coupling

The Nektar++ framework was extended with a coupling inter-
face [49] that enables sending and receiving arbitrary variable
fields at run time. Using such a technique, a coupling-enabled
solver can exchange data with other applications to model multi-
physics problems in a co-simulation setup. Currently, two coupling
interfaces are available within Nektar++; a file-based system for
testing purposes, and an MPI-based implementation for large-
scale HPC implementations. The latter was designed to facilitate
coupling Nektar++ solvers with different software packages which
use other discretisation methods and operate on vastly different
time- and length-scales. To couple two incompatible discretisa-
tions, an intermediary expansion is used which can serve as a
projection between both sides of the field. Coupling is achieved
by introducing an intermediate expansion, which uses the same
polynomial order and basis definitions as the parent Nektar++
solver; however, a continuous projection and a larger number
of quadrature points than the original expansion of the Nektar++
solver are used. Based on this intermediate representation, the
coupling strategy is comprised of three major steps:

o Step 1: The field values are requested from the sending ap-
plication at the intermediate expansion’s quadrature points.
Here, aliasing can be effectively avoided by an appropriate
selection of quadrature order and distribution. Point values
that lie outside of the senders’ computational domain can be
either replaced by a default value or extrapolated from their
available nearest neighbour.

e Step 2: The physical values at the quadrature points are then
transformed into modal space. This is achieved by a modified
forward transform that involves the differential low-pass

filter [50]:
2
A\ ou™*
u — (2) VAT =, =0 (3)
T 8X,’ 90

where u* denotes the received field, u** the filtered field and
AM the user specified filter width. The filter removes small
scale features a priori and thus reduces the error associated
with the transform. Moreover, it does not add unwanted
discontinuities at the element boundaries and imposes a
global smoothing, due to the continuity of the intermediate
expansion.

e Step 3: A linear interpolation in time can be performed to
overcome larger time scales of the sending application. Due
to their identical expansion bases and orders, the resulting
coefficients can be directly used in the original expansion of
the solver.

D. Moxey, C.D. Cantwell, Y. Bao et al. / Computer Physics Communications 249 (2020) 107110 9

As is evident from the above strategy, sending fields to other
solvers only requires an application to provide discrete values
at the requested locations. In Nektar++, this can be achieved by
evaluating the expansions or by a simpler approximation from the
immediately available quadrature point values. All processing is
performed by the receiver. The complex handling of data transfers
is accomplished by the open-source CWIPI library [51], which
enables coupling of multiple applications by using decentralised
communication. It is based purely on MPI calls, has bindings for
C, Fortran and Python, handles detection of out-of-domain points
and has been shown to exhibit good performance [52]. With
only CWIPI as a dependency and a receiver-centric strategy that
can be adjusted to any numerical setup, the implementation of
compatible coupling interfaces is relatively straightforward.

An example result of a transferred field is given in Fig. 3.
For a hybrid noise simulation [49], the acoustic source term
depicted at the top was computed by a proprietary, finite volume
flow solver on a high-resolution mesh (Ah < 1.4 mm) and
transferred to the Nektar++ AcousticSolver, which we describe
in Section 5.2. After sampling, receiving, filtering, projection
and temporal interpolation, the extrema of the source term are
cancelled out and blurred by the spatial filter. Consequently, a
much coarser mesh (Ah = 20 mm) with a fourth order expansion
is sufficient for the correct representation of the resulting field,
which significantly reduces the computational cost of the simula-
tion. The corresponding loss of information is well defined by the
filter width AA and limited to the high-frequency range, which is
irrelevant for the given application.

3.5. Python interface

Although Nektar++ is designed to provide a modern C++ in-
terface to high-order methods, its use of complex hierarchies of
classes and inheritance, as well as the fairly complex syntax of C++
itself, can lead to a significant barrier to entry for new users of the
code. At the same time, the use of Python in general scientific
computing applications, and data science application areas in
particular, is continuing to grow, in part due to its relatively simple
syntax and ease of use. Additionally, the wider Python community
offers a multitude of packages and modules to end users, making it
an ideal language through which disparate software can be ‘glued’
to perform very complex tasks with relative ease. For the purposes
of scientific computing codes, the Python C API also enables the
use of higher-performance compiled code, making it suitable in
instances where interpreted pure Python would be inefficient and
impractical, as can be seen in packages such as NumPy and SciPy.
These factors therefore make Python an ideal language through
which to both introduce new users to a complex piece of software,
interact with other software packages and, at the same time, retain
a certain degree of performance that would not be possible from
a purely interpreted perspective.

The version 5.0 release of Nektar++ offers a set of high-level
bindings for a number of classes within the core Nektar++ libraries.
The purpose of these bindings is to significantly simplify the
interfaces to key Nektar++ libraries, offering both a teaching aid
for new users to the code, as well as a way to connect with other
software packages and expand the scope of the overall software.
To achieve this, we leverage the Boost.Python package [53], which
offers a route to handling many of the complexities and subtleties
of translating C++ functions and classes across to the Python C APIL.
A perceived drawback of this approach is the lack of automation.
As Boost.Python is essentially a wrapper around the Python C
API, any bindings must be handwritten, whereas other software
such as f2py [54] or SWIG [55] offer the ability to automatically
generate bindings from the C++ source. However, our experience
of this process has been that, other than implementation effort,

handwritten wrappers provide higher quality and more stabil-
ity, particularly when combined with an automated continuous
integration process as is adopted in Nektar++, as well as better
interoperability with key Python packages such as numpy. In our
particular case, heavy use of C++11 features such as shared_ptr
and the Nektar++ Array class for shared storage meant that many
automated solutions would not be well-suited to this particular
application.

An example of the Python bindings can be seen in Listing 1,
where we perform the Galerkin projection of the smooth function
f(x,y) = cos(x) cos(y) onto a standard quadrilateral expansion at
order P = 7, using P41 Gauss-Lobatto-Legendre quadrature points
to exactly integrate the mass matrix. We additionally perform an
integral of this function (whose exact value is 4 sin?(1)). As can be
seen in this example, the aim of the bindings is to closely mimic
the layout and structure of the C++ interface, so that they can
be used as a learning aid for to the full C++ API. Additionally,
the Python bindings make full use of Boost.Python’s automatic
datatype conversion facilities. In particular, significant effort has
been extended to facilitate seamless interaction between the
NumPy .ndarray class, which is almost universally used in Python
scientific computing applications for data storage, and the Nektar++
storage Array<OneD, *> classes. This allows an ndarray to be
passed into Nektar++ functions directly and vice versa. Moreover
this interaction uses the Boost.Python interface to NumPy to ensure
that instead of copying data (which could be rather inefficient for
large arrays), this interaction uses a shared memory space between
the two data structures. Reference counting is then used to ensure
data persistence and memory deallocation, depending on whether
memory was first allocated within the C++ environment or Python.

Listing 1: Using the Nektar++ 5.0 Python bindings to perform a
simple Galerkin projection and integral on a standard quadrilateral
element.

import NekPy.LibUtilities as LibUtil
import NekPy.StdRegions as StdReg
import numpy as np

Set P = 8 modes and Q = P + 1 quadrature points.
nModes = 8
nPts = nModes + 1

Create GLL-distributed quadrature points.
pType = LibUtil.PointsType.GaussLobattoLegendre
pKey = LibUtil.PointsKey(uPts, pType)

Create modified C"0 basis on these points.
bType = LibUtil.BasisType.Modified_A
bKey = LibUtil.BasisKey(bType, nModes, pKey)

Create quadrilateral expansion using this basis
in each coordinate direction (tensor product).
quad = StdReg.StdQuadExp(bKey, bKey)

L"2 projection of f(x,y) = cos(x)*cos(y) onto the

quadrilateral element. Note x,y are numpy ndarrays
and evaluation of cos() is performed using numpy.

X, y = quad.GetCoords()

fx np.cos(x) * np.cos(y)

proj quad.FwdTrans (fx)

Integrate function over the element.
print("Integral = {:.4f}".format(quad.Integral(fx)))

10 D. Moxey, C.D. Cantwell, Y. Bao et al. / Computer Physics Communications 249 (2020) 107110

— 1.5E8

SE7

(=)
[s/ed] %

-5E7

— -1.5E8

Fig. 3. Instantaneous acoustic source term as represented in CFD (proprietary finite volume flow solver with Ah < 1.4 mm mesh) and CAA (Nektar++ AcousticSolver
with Ah = 20 mm mesh and fourth order expansion). Slice through a three-dimensional domain.

(c) Shallow water equations

(d) Maxwell’s equations

Fig. 4. Numerical simulation of the MMF scheme in Nektar++ for several partial
differential equations solved on the sphere.

4. Developments in numerical methods

This section highlights our recent developments on numerical
methods contained with the Nektar++ release.

4.1. Method of moving frames

Modern scientific computation faces unprecedented demands
on computational simulation in multidimensional complex do-
mains composed of various materials. Examples of this include
solving shallow water equations on a rotating sphere for weather
prediction, incorporating biological anisotropic properties of car-
diac and neural tissue for clinical diagnosis, and simulating the
electromagnetic wave propagation on metamaterials for control-
ling electromagnetic nonlinear phenomena. All of these examples
require the ability to solve PDEs on manifolds embedded in
higher-dimensional domains. The method of moving frames (MMF)
implemented in Nektar++ is a novel numerical scheme for solv-
ing such computational simulations in geometrically-complex
domains.

Moving frames, principally developed by Elie Cartan in the
context of Lie groups in the early 20th century [56-58], are
orthonormal vector bases that are constructed at every grid point
in the discrete space of a domain £2. Moving frames are considered
as an ‘independent’ coordinate system at each grid point, and can
be viewed as a dimensional reduction because the number of
moving frames corresponds to dimensionality, independent of
the space dimension. In this sense, ‘moving’ does not mean that
the frames are time-dependent, but are different in a pointwise
sense: i.e. if a particle travels from one point to the other, then
it may undergo a different frame, which looks like a series of
‘moving’ frames. More recently this approach has been adapted
more practical and computational purposes, mostly in computer
vision [59-61] and medical sciences [62].

Building such moving frames is easily achieved by differentiat-
ing the parametric mapping x of a domain element £2, with respect
to each coordinate axis of a standard reference space, followed by a
Gram-Schmidt orthogonalisation process. We obtain orthonormal
vector bases, denoted as e', with the following properties:

e-&=45 Je=1 1<ij<3,
where §'; denotes the Kronecker delta. Moreover, the moving
frames are constructed such that they are differentiable within
each element and always lie on the tangent plane at each grid
point. These two intrinsic properties of frames implies that any
vector or the gradient can be expanded on moving frames as
follows:
v=vle' +v%e?, vu=ulel + 1’
Applying this expansion to a given PDE enables us to re-express
it with moving frames on any curved surface. Then, the weak
formulation of the PDE with moving frames, called the MMF
scheme, on a curved surface is similar to the scheme in the
Euclidean space, in the sense that it contains no metric tensor
or its derivatives and it does not require the construction of a
continuous curved axis in §£2 which often produces geometric
singularities. This is a direct result of the fact that moving frames
are locally Euclidean. However, the numerical scheme with moving
frames results in the accurate solutions of PDEs on any types
of surfaces such as spheres, irregular surfaces, or non-convex
surfaces. Some examples of simulations that can be achieved
under this approach include conservational laws [63], the diffusion
equation [64], shallow water equations (SWEs) [65], and Maxwell’s
equations [66]. Representative results from Nektar++ for these
equations on the surface of a sphere are shown in Fig. 4.
Moreover, moving frames have been proven to be efficient
for other geometrical realisations, such as the representation
of anisotropic properties of media on complex domains [64],
incorporating the rotational effect of any arbitrary shape [65],
and adapting isotropic upwind numerical flux in anisotropic
media [66]. The accuracy of the MMF scheme with the higher-
order curvilinear meshes produced by NekMesh, described in
Section 5.1, is reported to be significantly improved for a high
p and conservational properties such as mass and energy after
a long time integration, whereas the accuracy of the MMF-SWE
scheme on NekMesh is presented to be the best among all the
previous SWE numerical schemes [67]. Ongoing research topics
on moving frames are to construct the connections of frames, to
compute propagational curvature, and finally to build an Atlas (a
geometric map with connection and curvature) in order to provide
a quantitative measurement and analysis of a flow on complex
geometry. Examples of ongoing research topics in this area include
electrical activation in the heart [68] and fibre tracking of white
matter in the brain.

4.2. Spatially-variable polynomial order
An important difficulty in the simulation of flows of practical

interest is the wide range of length- and time-scales involved, es-
pecially in the presence of turbulence. This problem is aggravated

D. Moxey, C.D. Cantwell, Y. Bao et al. / Computer Physics Communications 249 (2020) 107110 11

=

z
5000+01

&

8

8

TR o oo g PR
&

500k +01

n
10

(a) Spanwise vorticity

(b) Polynomial order

Fig. 5. Polynomial order and vorticity distributions obtained with simulation using adaptive polynomial order for the flow around a NACA 0012 profile with

Re = 50,000 and « = 6°.
Source: Taken from [69].

by the fact that in many cases it is difficult to predict where in
the domain an increase in the spatial resolution is required before
conducting the simulation, while performing a uniform refinement
across the domain is computationally prohibitive. Therefore, in
dealing with these types of flows, it is advantageous to have an
adaptive approach which allows us to dynamically adjust the
spatial resolution of the discretisation both in time and in space.

Within the spectral/hp element framework, it is possible to
refine the solution following two different routes. h-refinement
consists of reducing the size of the elements as would be done in
low-order methods. This is the common approach for the initial
distribution of degrees of freedom over the domain, with the com-
putational mesh clustering more elements in regions where small
scales are expected to occur, such as boundary layers. The other
route is p-refinement (sometimes called p-enrichment), where the
spatial resolution is increased by using a higher polynomial order
to represent the solution. As discussed in [69], the polynomial
order can be easily varied across elements in the spectral/hp
element method if the expansion basis is chosen appropriately.
In particular if a basis admits a boundary-interior decomposition,
such as the modified C° basis described in Section 2 or the classical
Lagrange interpolant basis, then the variation in polynomial order
can be built into the assembly operation between interconnected
elements. This allows for a simple approach to performing local
refinement of the solution, requiring only the adjustment of the
polynomial order in each element.

With this in mind, an adaptive polynomial order procedure
has been implemented in Nektar++, with successful applications
to simulations of incompressible flows. The basic idea in this
approach is to adjust the polynomial order during the solution
based on an element-local error indicator. The approach we used is
similar to that demonstrated for shock capturing in [70], whereby
oscillatory behaviour in the solution field is detected by an error
sensor on each element £2, calculated as

llup — up_1l13
llupll3

where up is the solution obtained for the u velocity using the
current polynomial order P, up_ is the projection of this solution
to a polynomial of order P — 1 and || - ||» denotes the L?> norm.
After each ngeps time-steps, this estimate is evaluated for each
element. For elements where the estimate of the error is above a
chosen threshold, P is incremented by one, whereas in elements
with low error P is decremented by one, respecting minimum
and maximum values for P. The choice of ngeps is critical for the

e

efficiency of this scheme, since it has to be sufficiently large to
compensate for the costs of performing the refinement over a
large number of time-steps, yet small enough to adjust to changes
in the flow. More details on this adaptive procedure for adjusting
the polynomial order, as well as its implementation in both CG
and DG regimes, are found in [69].

An example of an application of the adaptive polynomial order
procedure is presented in Fig. 5, showing the spanwise vorticity
and polynomial order distributions for a quasi-3D simulation of
the incompressible flow around a NACA 0012 profile at Reynolds
number Re = 50,000 and angle of attack « = 6°. The session files
to generate this data can be found in Example A.17. It is clear that
the regions with transition to turbulence and the boundary layers
are resolved using the largest polynomial order allowed, while
regions far from the aerofoil use a low polynomial order. This way,
the scheme succeeds in refining the discretisation in the more
critical regions where small scales are present, without incurring in
the large computational costs that would be required to uniformly
increase the polynomial order. More simply stated, it is possible
to specify different polynomial order in the quadrilateral elements
(typically used in boundary layer discretisation) and the triangle
elements (typically used to fill the outer volume). As a final point,
we note that the use of variable polynomial order is not limited
to quasi-3D simulations; both CG and DG discretisations fully
support all element shape types in 2D and 3D, with parallel
implementations (including frequently used preconditioners) also
supporting this discretisation option.

4.3. Global mapping

Even though the spectral/hp element spatial discretisation
allows us to model complex geometries, in some cases it can
be advantageous to apply a coordinate transformation for solving
problems that lie in a coordinate system other than the Cartesian
frame of reference. This is typically the case when the trans-
formed domain possesses a symmetry; this allows us to solve
the equations more efficiently by compensating for the extra
cost of applying the coordinate transformation. Examples of this
occur when a transform can be used to map a non-homogeneous
geometry to a homogeneous geometry in one or more directions.
This makes it possible to use the cheaper quasi-3D approach,
where this direction is discretised using a Fourier expansion, and
also for problems with moving boundaries, where we can map
the true domain to a fixed computational domain, avoiding the
need for recomputing the system matrices after every time-step.

12 D. Moxey, C.D. Cantwell, Y. Bao et al. / Computer Physics Communications 249 (2020) 107110

<

<

Fig. 6. Time-averaged streamwise reversing regions for incompressible flow over
a wing with spanwise waviness with Re = 1000 and o = 12°.

The implementation of this method was achieved in two
parts. First, a new library called GlobalMapping was created,
implementing general tensor calculus operations for several types
of transformations. Even though it would be sufficient to consider
just a completely general transformation, specific implementations
for particular cases of simpler transformations are also included
in order to improve the computational efficiency, since in these
simpler cases many of the metric terms are trivial. In a second
stage, the incompressible Navier-Stokes solver was extended, us-
ing the functionality of the GlobalMapping library to implement
the methods presented in [71]. Some examples of applications are
given in [72,73]. Embedding these global mappings at the library
level allows similar techniques to be introduced in other solvers
in the future.

Fig. 6 presents an example of the application of this technique,
indicating the recirculation regions (i.e. regions where the stream-
wise velocity is negative) for the flow over a wing with spanwise
waviness. In this case, the coordinate transformation removes the
waviness from the wing, allowing us to treat the transformed
geometry with the quasi-3D formulation. It is important to note
that this technique becomes unstable as the waviness amplitude
becomes too large. The fully explicit mapping is more sensitive
to instability than the semi-implicit mapping as discussed in [71].
However, in cases where it can be successfully applied, it leads to
significant gains in terms of computational cost when compared
against a fully 3D implementation. The session files used in this
example can be found in Example A.18.

5. Applications

In this section, we demonstrate some of the new features
provided in our new release, with a focus on application areas.

5.1. NekMesh

In the previous publication [33], we briefly outlined the Mesh-
Convert utility, which was designed to read various external file
formats and perform basic processing and format conversion. In
the new release of Nektar++, MeshConvert has been transformed
into a new application, called NekMesh, which provides a series of
tools for both the generation of meshes from an underlying CAD
geometry, as well as the manipulation of linear meshes to make
them suitable for high-order simulations. While MeshConvert was
dedicated to the conversion of external mesh file formats, the
scope of NekMesh has been significantly broadened to become a
true stand-alone high-order mesh generator.

The generation of high-order meshes in NekMesh follows an
a posteriori approach proposed in [74]. We first generate a linear
mesh using traditional low-order mesh generation techniques.
We then add additional nodes along edges, faces and volumes
to achieve a high-order polynomial discretisation of our mesh.
In the text below, we refer to these additional nodes as ‘high-
order’ nodes, as they do not change the topology of the underlying
linear mesh, but instead deform it to fit a required geometry. In
this bottom-up procedure, these nodes are first added on edges,

Fig. 7. Example of split boundary layer mesh.

followed by faces and finally the volume-interior. At each step,
nodes are generated on boundaries to ensure a geometrically
accurate representation of the model.

A key issue in this process, however, is ensuring that elements
remain valid after the insertion of high-order nodes, as this process
is highly sensitive to boundary curvature. A common example of
this is in boundary layer mesh generation [75], where elements are
typically extremely thin in order to resolve the high-shear of the
flow near the wall. In this setting, naively introducing curvature
into the element will commonly push one face of the element
through another, leading a self-intersecting element and thus a
mesh that is invalid for computation.

An important contribution of NekMesh to the high-order mesh
generation community was presented in [75,76], where we alle-
viate this risk through the creation of a coarse, single element
boundary layer mesh with edges orthogonal to the boundary. The
thickness of the layer of elements gives enough room for a valid
curving of the ‘macro’-elements. After creation of the high-order
mesh, a splitting of these boundary elements can be performed
using the isoparametric mapping between the reference space
and the physical space. We then apply the original isoparametric
mapping to construct new elements within the ‘macro’ element,
thereby guaranteeing their validity. This ensures conservation of
the validity and quality of subdivided elements while achieving
very fine meshes. An example is shown in Fig. 7 where the coarse
boundary layer mesh of Fig. 8 was split into five layers, using a
geometric progression of growth rate r = 2 in the thickness of
each layer. The session files used to create the meshes for Figs. 8
and 9 can be found in Example A.20.

A complementary approach to avoid invalid or low quality high-
order elements is to optimise the location of high-order nodes
in the mesh. The approach proposed in [13,77] of a variational
framework for high-order mesh optimisation was implemented
in NekMesh. In this approach, we consider the mesh to be a solid
body, and define a functional based on the deformation of each
high-order element. This functional can correspond to physical
solid mechanics governing equations such as linear or non-linear
elasticity, but also provides the possibility to accommodate ar-
bitrary functional forms such as the Winslow equations within
the same framework. Minimising this functional is then achieved
through classical quasi-Newton optimisation methods with the
use of analytic gradient functions, alongside a Jacobian regular-
isation technique to accommodate initially-invalid elements. As
demonstrated in [13], the approach is scalable and allows the
possibility to implement advanced features, such as the ability to
slide nodes along a given constrained CAD curve or surface.

Along these lines, much of the development of NekMesh has
focused on the access to a robust CAD system for CAD queries
required for traditional meshing operations. Assuming that the

D. Moxey, C.D. Cantwell, Y. Bao et al. / Computer Physics Communications 249 (2020) 107110 13

Fig. 9. Example of mesh generated around a t106c¢ turbine blade.

CAD is watertight, we note that only a handful of CAD operations
are required for mesh generation purposes. NekMesh therefore
implements a lightweight wrapper around these CAD queries,
allowing it to be interfaced to a number of CAD systems. By
default, we provide an interface to the open-source OpenCASCADE
library [78]. OpenCASCADE is able to read the STEP CAD file
format, natively exported by most CAD design tools, and load
it into the system. At the same time, the use of a wrapper means
that users and developers of NekMesh are not exposed to the
extensive OpenCASCADE API. Although OpenCASCADE is freely
available and very well suited to simple geometries, it lacks many
of the CAD healing tools required for more complex geometries
of the type typically found in industrial CFD environments, which
can frequently contain many imperfections and inconsistencies.
However, the use of a lightweight wrapper means that other
commercial CAD packages can be interfaced to NekMesh if available.
To this end, we have implemented a second CAD interface to
the commercial CFI CAD engine, which provides a highly robust
interface and is described further in [39,77,79].

While users are recommended to create their CAD models in
a dedicated CAD software, export them in STEP format and load
them in NekMesh, they also have the possibility to create their
own simple two-dimensional models using one of two tools made
available to them. The first tool is an automatic NACA aerofoil
generator. With just three inputs — a NACA code, an angle of attack
and dimensions of the bounding box - a geometry is generated
and passed to the meshing software. An example is shown in Fig. 8
of a mesh generated around a NACA 0012 aerofoil at an angle of
attack of o = 15°.

The other tool is based on the GEO geometry file format of
the Gmsh [80] open source mesh generator. The GEO format is an
interpreter for the procedural generation of geometries. NekMesh
has been made capable to understand basic GEO commands,
which gives the possibility to generate simple two-dimensional
geometries. An example is shown in Fig. 9 of a mesh generated
around a T106C turbine blade: the geometry was created using a
GEO script of lines and splines.

5.2. Acoustic solver

Time-domain computational aeroacoustics simulations are com-
monly used to model noise emission over wide frequency ranges or
to augment flow simulations in hybrid setups. Compared with fully
compressible flow simulations, they require less computational
effort due to the reduced complexity of the governing equations
and larger length scales [81]. However, due to the small diffusive
terms, as well as the long integration times and distances required
for these simulations, highly accurate numerical schemes are
crucial for stability [82]. This numerical accuracy can be provided
by spectral/hp element methods, even on unstructured meshes
in complex geometries, and hence Nektar++ provides a good
candidate framework on which to build such an application code.

The Ilatest release of Nektar++ includes a new
AcousticSolver, which implements several variants of aeroa-
coustic models. These are formulated in a hyperbolic setting
and implemented in a similar fashion to the compressible Euler
and Navier-Stokes equations, encapsulated in Nektar++ inside
the CompressibleFlowSolver. Following this implementation
guideline, the AcousticSolver uses a discontinuous Galerkin
spatial discretisation with modal or nodal expansions to model
time-domain acoustic wave propagation in one, two or three
dimensions. It implements the operators of the linearised Euler
Equations (LEE) and the Acoustic Perturbation Equations 1 and 4
(APE-1/4) from [83], both of which describe the evolution of
perturbations around a base flow state. For the APE-1/4 operator,
the system is defined by the hyperbolic equations

8 d . . |

apt +c2V. (ﬁua + u%) = @, (4a)
ou? . a .

= —l—V(u-ua)—i—V(%) = o, (4b)

where u denotes the flow velocity, p its density, p its pressure and
¢ corresponds to the speed of sound. The quantities u® and p° refer
to the irrotational acoustic perturbation of the flow velocity and
its pressure, with overline quantities such as u denoting the time-
averaged mean. The right-hand-side acoustic source terms @, and
®n, are specified in the session file. This allows for the implementa-
tion of any acoustic source term formulation so that, for example,
the full APE-1 or APE-4 can be obtained. In addition to using
analytical expressions, the source terms and base flow quantities
can be read from disk or transferred from coupled applications,
enabling co-simulation with a driving flow solver. Both, LEE and
APE support non-quiescent base flows with inhomogeneous speed
of sounds. Accordingly, the Lax-Friedrichs and upwind Riemann
solvers used in the AcousticSolver employ a formulation which
is valid even for strong base flow gradients. The numerical stability
can be further improved by optional sponge layers and suitable
boundary conditions, such as rigid wall, farfield or white noise.
A recurring test case for APE implementations is the “spinning
vortex pair” [84]. It is defined using two opposing vortices, that
are each located at ry from the centre x; = x, = 0 of a square
domain with edge length —1007ry, < x;2 < 100ry. The vortices
have a circulation of I and rotate around the centre at the
angular frequency w = I /4nr§ and circumferential Mach number
Ma, = I' /4rryc. The resulting acoustic pressure distribution is
shown in Fig. 10a and was obtained on an unstructured mesh of
465 quadrilateral elements with a fifth order modal expansion
(P = 5). The session files used to generate this example can be
found in Example A.19. Along the black dashed line, the acoustic
pressure shown in Fig. 10b exhibits minor deviations from the
analytical solution defined in [84], but is in excellent agreement
with the results of the original simulation in [83]. The latter was
based on a structured mesh with 19,881 nodes and employed a

14 D. Moxey, C.D. Cantwell, Y. Bao et al. / Computer Physics Communications 249 (2020) 107110

5E-4

x2/ro [-]

-SE-4

(a) Normalized acoustic pressure distribution at # = 1s with the mesh shown in light gray
and the sampling line in a black dashed line.

1E-4

pt/p[-]
(<

27 — =+ Analytical
3 4 —— AcousticSolver
0 50 100
r/ro [-]

(b) Normalized acoustic pressure along sample line, obtained with the AcousticSolver and
analytical solution [84].

Fig. 10. Normalised acoustic pressure for I"/(crp) = 1.0 and Ma, = 0.0795 at
t=1s.

sponge layer boundary condition and spatial filtering to improve
the stability. Due to the flexibility and numerical accuracy of the
spectral/hp method, a discretisation with only 16,740 degrees of
freedom was sufficient for this simulation, and no stabilisation
measures (e.g. SVV or filtering) were necessary to reproduce this
result.

5.3. Fluid-structure interaction (FSI) and vortex-induced vibration
(VIV)

Fluid-structure interaction (FSI) modelling poses a great chal-
lenge for the accurate prediction of vortex-induced vibration (VIV)
of long flexible bodies, as the full resolution of turbulent flow along
their whole span requires considerable computational resources.
This is particularly true in the case of large aspect-ratio bodies.
Although 2D strip-theory-based modelling of such problems is
much more computationally efficient, this approach is unable to
resolve the effects of turbulent fluctuations on dynamic coupling
of FSI systems [85,86]. A novel strip model, which we refer to
as ‘thick’ strip modelling, has been developed using the Nektar++
framework in [87], whose implementation is supported within
the incompressible Navier-Stokes solver. In this approach, a three-
dimensional DNS model with a local spanwise scale is constructed
for each individual strip. Coupling between strips is modelled
implicitly through the structural dynamics of the flexible body.

In the ‘thick’ strip model, the flow dynamics are governed by a
series of incompressible Navier-Stokes equations. The governing

equations over a general local domain £2,, associated with the nth
strip are written as

ou 1

L (U Vg = —Vp, + —Vu, on £, (5)
at Re
V-u, =0 on £, (6)

where the vector u, = (u,, vy, wy,) denotes the fluid velocity inside
the nth strip, with p, being the corresponding dynamic pressure
and Re the Reynolds number, which we assume to be constant
across all strips. The governing equations are supplemented by
boundary conditions of either Dirichlet or Neumann type. In
particular, no-slip boundary conditions are applied to the wall
of the body, and the velocity of the moving wall is imposed and
determined from the transient solution of structural dynamics
equations of motion. A linearised tensioned beam model is used
to describe the structural dynamic behaviour of the flexible body,
which is expressed by the system

c— —T— +E— =f. 7)
y4 y4

In the above, p. is the structural mass per unit length, c is the
structural damping per unit length, T is the tension and EI is the
flexural rigidity. f denotes the vector of hydrodynamic force per
unit length exerted on the body’s wall and 7 is the structural
displacement vector.

Homogeneity is imposed in the spanwise direction to the
local flow within individual strips, under the assumption that the
width of the strips is much shorter with respect to the oscillation
wavelength of excited higher-order modes of the flexible body.
This therefore enables the use of the computationally-efficient
quasi-3D approach discussed in previous sections within each
strip domain, in which two-dimensional spectral elements with
piecewise polynomial expansions are used in the (x,y) plane
and Fourier expansions are used in the homogeneous z direction.
This also requires the assumption of a spanwise oscillation of
the flexible body with respect to its full-length scale. As a con-
sequence, the motion variables and fluid forces are expressed
as a complex Fourier series, and the tensioned beam model is
decoupled into a set of ordinary differential equations, which can
be solved simply by a second-order Newmark-g8 method [88]. A
partitioned approach is adopted to solve the coupled FSI system,
in which coordinate mapping technique discussed in Section 4.3
is implemented for the treatment of the moving wall [71].

To illustrate the application of this modelling approach, VIV
of a long flexible cylinder with an aspect ratio of 327 which is
pinned at both ends is simulated at Re = 3900, with 16 thick
strips allocated evenly along the axial line of the cylinder. The
instantaneous spanwise wake structure is visualised by the vortex-
identification of Q-criterion in Fig. 11. As the figure demonstrates,
the distribution of vortex shedding illustrates that a second
harmonic mode is excited along the spanwise length and the
turbulent structure is captured well in the local domain of the
strips. This emphasises the convincing advantage of providing
highly-resolved description of hydrodynamics involved in the FSI
process. The session files used to run this simulation can be found
in Example A.21.

5.4. Aeronautical applications

CFD is now an indispensable tool for the design of aircraft
engines, and it has become commonplace in the design guidance
of new technologies and products [89]. In order for CFD to
be effectively adopted in industry, validation and verification
is required over a broad design space. This is challenging for

D. Moxey, C.D. Cantwell, Y. Bao et al. / Computer Physics Communications 249 (2020) 107110 15

Fig. 11. Instantaneous vortex shedding visualised by the vortex-identification
of Q-criterion (iso-surfaces of the Q-value = [—5, 5]) in body-fitted coordinates:
(a) full domain view and zoom-in view of (b) first strip; (c) fourth strip and (d)
16th strip.

a number of reasons, including the range of operating condi-
tions (i.e. Reynolds numbers, Mach numbers, temperatures and
pressures), the complexity of industrial geometries (including
uncertainty due to manufacturing variations) and their relative
motion (i.e. rotor-stator interactions). Even though RANS continues
to be the backbone of CFD-based design, the recent development
of high-order unstructured solvers and high-order unstructured
meshing algorithms, combined with the lowering cost of HPC
infrastructures, has the potential to allow for the introduction
of high-fidelity transient simulations using large-eddy or direct
numerical simulations (LES/DNS) in the design loop, taking the
role of a virtual wind tunnel.

As part of our effort to bridge the gap between academia
and industry, we have been developing the expertise to analyse
turbomachinery cases of industrial interest using Nektar++. A key
problem to overcome in these cases is the sensitivity of these
simulations to variations in spatial resolution, which requires the
use of stabilisation techniques in order to improve robustness.
Nektar++ makes use of the spectral vanishing viscosity (SVV)
method, originally introduced for the Fourier spectral method by
Tadmor [90]. SVV is a model-free stabilisation technique that acts
at the subgrid-scale level and allows for exponential convergence
properties to be conserved in sufficiently resolved simulations.
Recent developments in this area have focused on a new SVV
kernel by Moura et al. [3], which replicates the desirable dispersion
and diffusion properties of DG schemes and does not require
the manual tuning of parameters found in the classical SVV
formulation. More specifically, the dissipation curves of the CG
scheme of order P were compared to those of DG order P — 2, and
the DG kernel was determined from minimisation of the point-
wise L, norm between these curves. SVV stabilisation is combined
with spectral/hp dealiasing [29] to eliminate errors arising from
the integration of non-linear terms.

A T106A low pressure turbine vane was investigated at moder-
ate regime (Re = 88,450), and the convergence properties of the
main flow statistics were extensively explored with the aim of
developing a set of best practices for the use of spectral/hp element
methods as a high-fidelity digital twin [91]. The velocity correction
scheme of [92] implemented in the IncNavierStokesSolver
is adopted, using the quasi-3D approach discussed in the pre-
vious sections and Taylor-Hood type elements in 2D (where
spaces of order P polynomials on each element are used for the
velocity components, and P — 1 for pressure). Uniform inflow
velocity is combined with pitchwise periodicity and high-order
outflow boundary conditions [93]. Numerical stability is ensured

Fig. 12. Instantaneous isosurfaces of Q-criterion (Q = 500) contoured by velocity
magnitude, showing the vortical structures evolving on the suction surface and
in the wake of a T106A cascade. The computational domain is replicated in the
spanwise and pitchwise directions for visual clarity.

by employing SVV with the DG kernel in the x-y planes, and the
traditional exponential kernel for the spanwise Fourier direction.
A representation of the vortical structures is shown in Fig. 12:
transition to turbulence takes place only in the final portion
of the suction surface, where the separated shear layer rolls
up due to Kelvin-Helmholtz instability. The separation bubble
remains open and merges into the trailing edge wake, giving
rise to large-scale vortical structures. This work was conducted
with clean inflow conditions to isolate the effect of the numerical
setup on the various flow statistics. However, turbomachinery
flows are highly turbulent: subsequent work focused on the
treatment of flow disturbances to reproduce more accurately a
realistic environment [94]. With this aim, a localised synthetic
momentum forcing was introduced in the leading edge region
to cause flow symmetry breakdown on the suction surface, and
promote anticipated transition to turbulence. This approach yields
an improvement in the agreement with experimental data, with
no increase in the computational cost.

With the intent of being able to tackle cases in which com-
pressibility effects are not negligible, there has been an effort
in validating the CompressibleFlowSolver for shock-wave
boundary layer interaction (SWBLI) configurations. This solver,
described in our previous publication [33], formulates the com-
pressible Navier-Stokes equations in their conservative form,
discretised using a DG scheme and explicit timestepping methods.
In order to regularise the solution in the presence of discon-
tinuities, the right hand side of the Navier-Stokes equations
is augmented with a Laplacian viscosity term of the form V -
(eVq), where q is the vector of conserved variables, and ¢ is a
spatially-dependent diffusion term that is defined on each element
as

& = 80— AmaxS.
p

Here, &g is a O(1) constant, A . is the maximum local characteris-
tic speed, h is a reference length of the element, p its polynomial
order, and S a discontinuity sensor value using the formulation
of [70]. To benchmark this approach in the context of SWBLI

16 D. Moxey, C.D. Cantwell, Y. Bao et al. / Computer Physics Communications 249 (2020) 107110

008400 05 1 15 2 220400
I

e ——

Fig. 13. Mach number field of SWBLI test case (60 x 40 quadrilateral elements,
p = 3); configuration based on [95].

0.004
0.003 A

0.002 A

Cy

0.001
0.000 A

—0.001 A

0.00 0.25

T T T T T T
0.50 0.75 1.00 1.25 1.50 1.75 2.00
x/xsh

Fig. 14. Skin friction coefficient for the SWBLI test case: blue line Nektar++
(60 x 40 quadrilateral elements, p = 3); triangles are from [96]; dotted line is
empirical solution by [99].

problems, we consider a laminar problem studied experimentally
and numerically in [95]. Several authors have studied this SWBLI
with slightly different free stream conditions; here we follow the
physical parameters used by [96], where we select a free-stream
Mach number Ma = 2.15, shock angle 8 = 30.8°, a stagnation
pressure po = 1.07 x 10* Pa, a stagnation temperature of Ty =
293 K, a Reynolds number Re = 10° (referred to the inviscid shock
impingement location x5, measured from the plate leading edge),
and a Prandtl number Pr = 0.72. Unlike [96], the leading edge is
not included in the simulations. The inflow boundary is located
at x = 0.3xs, where the analytical compressible boundary layer
solution of [97] is imposed. The session files used in this example
can be found in Example A.22. At the inlet, the Rankine-Hugoniot
relations that describe the incident shock are superimposed over
the compressible boundary layer solution. At the top boundary
we impose the constant states corresponding to inviscid post
incident shock wave state. At the outlet in the subsonic part of
the boundary layer a pressure outlet is imposed based on the
inviscid post reflected state conditions. All boundary conditions are
imposed in a weak sense through a Riemann solver, as described
in [98], and use a coarse grid of 60 x 40 quadrilateral elements
at order p = 3. For illustrative purposes, Fig. 13 shows a snapshot
of the Mach number field. For a more quantitative comparison,
Fig. 14 compares the skin friction coefficient with those from [99]
and [96], which is in fair agreement with the results of [96].

6. Availability

Nektar++ is open-source software, released under the MIT
license, and is freely available from the project website (https:
//lwww.nektar.info/). The git repository is freely accessible and
can be found at https://gitlab.nektar.info/. Discrete releases are
made at milestones in the project and are available to download as
compressed tar archives, or as binary packages for a range of op-
erating systems. These releases are considered to contain relatively

complete functionality compared to the repository master branch.
Docker container images are also available for these releases and
the latest build of master, as well as a Jupyter notebook that
contains the Python interface of Section 3.5. These can be found
on Docker Hub under the repositories nektarpp/nektar and
nektarpp/nektar-workbook respectively.

7. Conclusions

In this paper, we have reviewed the latest features and en-
hancements of the Nektar++ version 5.0 release. A key theme of
our work in this release has been to evolve the fundamental design
of the software detailed in our previous publication [33], towards
providing an enabling tool for efficient high-fidelity simulations
in various scientific areas. To this end, this latest version of Nek-
tar++ provides a complete pipeline of tools: from pre-processing
with NekMesh and a new parallel I/O interface for mesh and
field representations; new solvers and improvements to existing
ones through numerical developments such as spatially variable
polynomial order and the global mapping technique; to parallel
post-processing and in-situ processing with the FieldConvert utility
developments. This gives scientific end-users a tool to enable
efficient high-fidelity simulations in a number of fields, such as
the applications we discuss in Section 5.

Although this version represents a major milestone in the
development of Nektar++, there is still clear scope for future
work. A particular area of focus remains the efficient use of many-
core CPU and GPU systems, recognising that optimisation and
performance on an increasingly diverse range of hardware presents
a major challenge. Initial research in this area has investigated
the use of matrix-free methods as a potential route towards fully
utilising computational hardware even on unstructured grids, by
combining efficient sum factorisation techniques and the tensor-
product basis for unstructured elements presented in [36]. From
the perspective of code maintainability, we have also investigated
various performance-portable programming models in the context
of mesh generation [100] and implicit solvers [101]. Looking
towards the next major release of Nektar++, we envision the use
of these studies as a guideline to implementing efficient operators
for the spectral/hp element method, whilst retaining ease of use
for the development of increasingly efficient solvers.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

CRediT authorship contribution statement

David Moxey: Conceptualization, Methodology, Software, Writ-
ing - original draft, Supervision, Funding acquisition. Chris D.
Cantwell: Conceptualization, Methodology, Software, Validation,
Writing - review & editing, Supervision, Funding acquisition. Yan
Bao: Methodology, Software, Validation, Visualization, Writing -
original draft. Andrea Cassinelli: Investigation, Software, Valida-
tion, Visualization, Writing - original draft. Giacomo Castiglioni:
Methodology, Software, Validation, Visualization, Writing - orig-
inal draft. Sehun Chun: Software, Methodology, Investigation,
Supervision. Emilia Juda: Software. Ehsan Kazemi: Software.
Kilian Lackhove: Methodology, Software, Validation, Visualization,
Writing - original draft. Julian Marcon: Methodology, Software,
Validation, Visualization, Writing - original draft. Gianmarco
Mengaldo: Software, Writing - review & editing. Douglas Serson:
Methodology, Software, Writing - original draft. Michael Turner:
Software, Validation. Hui Xu: Investigation, Validation. Joaquim

https://www.nektar.info/
https://www.nektar.info/
https://www.nektar.info/
https://gitlab.nektar.info/

D. Moxey, C.D. Cantwell, Y. Bao et al. / Computer Physics Communications 249 (2020) 107110 17

Peir6: Conceptualization, Writing - review & editing, Supervision,
Funding acquisition. Robert M. Kirby: Conceptualization, Writing
- review & editing, Supervision, Funding acquisition. Spencer J.
Sherwin: Conceptualization, Software, Writing - review & editing,
Supervision, Funding acquisition.

Acknowledgments

The development of Nektar++ has been supported by a num-
ber of funding agencies including the Engineering and Physical
Sciences Research Council (grants EP/R029423/1, EP/R029326/1
EP/L000407/1, EP/K037536/1, EP/K038788/1, EP/L000261/1,
EP/1037946/1, EP/H000208/1, EP/1030239/1, EP/H050507/1,
EP/D044073/1, EP/C539834/1), the British Heart Foundation
(grants FS/11/22/28745 and RG/10/11/28457), the Royal Society of
Engineering, European Union FP7 and Horizon 2020 programmes
(grant nos. 265780, 671571 and 675008), McLaren Racing, the
National Science Foundation (1I1S-0914564, 1I1S-1212806 and DMS-
1521748), the Army Research Office (W911NF-15-1-0222), the
Air Force Office of Scientific Research and the Department of
Energy. HX acknowledges support from the NSFC Grants 91852106
and 91841303. SC acknowledges the support of the National
Research Foundation of Korea (No. 2016R1D1A1A02937255). KL
acknowledges the Seventh Framework Programme FP7 Grant No.
312444 and German Research Foundation (DFG) Grant No. JA
544/37-2.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.cpc.2019.107110.

References

[1] R.C. Moura, G. Mengaldo,]J. Peir6, S. Sherwin,]J. Comput. Phys. 330 (2017)
615-623.

[2] R.C. Moura, G. Mengaldo,]. Peird, SJ. Sherwin, Spectral and High Order
Methods for Partial Differential Equations ICOSAHOM 2016, Springer, 2017,
pp. 161-173.

[3] G. Mengaldo, R. Moura, B. Giralda,]. Peiré, S. Sherwin, Comput. & Fluids
169 (2018) 349-364.
[4] G. Mengaldo, D. De Grazia, R.C. Moura, S.J. Sherwin,]J. Comput. Phys. 358

(2018) 1-20.

P. Fernandez, R.C. Moura, G. Mengaldo,]. Peraire, Comput. Methods Appl.

Mech. Engrg. 346 (2019) 43-62.

P.E. Vos, SJ. Sherwin, RM. Kirby, J. Comput. Phys. 229 (13) (2010)

5161-5181.

C.D. Cantwell, SJ. Sherwin, R.M. Kirby, P.H.]. Kelly, Comput. & Fluids 43

(2011) 23-28.

C.D. Cantwell, SJ. Sherwin, R.M. Kirby, P.H]. Kelly, Math. Mod. Nat. Phenom.

6 (2011) 84-96.

[9] G.J. Gassner, SIAM]. Sci. Comput. 35 (3) (2013) A1233-A1253.

[10] G. Mengaldo, D. De Grazia, P.E. Vincent, S.J. Sherwin, J. Sci. Comput. 67
(3) (2016) 1272-1292.

[11] G. Mengaldo, Discontinuous Spectral/hp Element Methods: Development,
Analysis and Applications to Compressible Flows (Ph.D. dissertation),
Imperial College London, 2015.

[12] G.E. Karniadakis, S.J. Sherwin, Spectral/hp Element Methods for CFD, Oxford
University Press, 2005.

[13] M. Turner,]. Peiré, D. Moxey, Comput. Aided Des. 103 (2018) 73-91.

[14] P. Fischer,]. Kruse, J. Mullen, H. Tufo,]J. Lottes, S. Kerkemeier, NEK5000-
open source spectral element CFD solver, Argonne National Laboratory,
Mathematics and Computer Science Division, Argonne, IL, see https:
//nek5000.mcs.anl.gov/index.php/MainPage, 2008.

[15] H.M. Blackburn, S. Sherwin, J. Comput. Phys. 197 (2) (2004) 759-778.

[16] H.M. Blackburn, D. Lee, T. Albrecht,]. Singh, Comput. Phys. Comm. 245
(2019) 106804.

[17] W. Bangerth, R. Hartmann, G. Kanschat, ACM Trans. Math. Softw. (TOMS)
33 (4) (2007) 24.

[18] F. Hindenlang, G.J. Gassner, C. Altmann, A. Beck, M. Staudenmaier, C.-D.
Munz, Comput. & Fluids 61 (2012) 86-93.

[19] G.J. Gassner, A.R. Winters, D.A. Kopriva,]. Comput. Phys. 327 (2016) 39-66.

[20] EX. Giraldo, M. Restelli,]. Comput. Phys. 227 (8) (2008) 3849-3877.

[21] D.S. Abdi, F.X. Giraldo, J. Comput. Phys. 320 (2016) 46-68.

5

[6

(7

[8

[22]
(23]
(24]
(25]
(26]
(27]
(28]
(29]
(30]
(31]
(32]

(33]

(34]

(35]
(36]

(37]

(38]
(39]

[40]

[41]
[42]

[43]
(44]

[45]
[46]
[47]

(48]
(49]

(50]
(51]

(52]

(53]

(54]
[55]
(56]

[57]
(58]

[59]
(60]

F. Witherden, A. Farrington, P. Vincent, Comput. Phys. Comm. 185 (2014)
3028-3040, http://dx.doi.org/10.1016/j.cpc.2014.07.011.

H.T. Huynh, 18th AIAA Computational Fluid Dynamics Conference, 2007,
p. 4079.

Y. Allaneau, A. Jameson, Comput. Methods Appl. Mech. Engrg. 200 (49-52)
(2011) 3628-3636.

A. Dedner, R. Klofkorn, M. Nolte, M. Ohlberger, Computing 90 (3-4) (2010)
165-196.

A. Bolis, C.D. Cantwell, D. Moxey, D. Serson, S. Sherwin, Comput. Phys.
Comm. 206 (2016) 17-25.

P.E. Vos, C. Eskilsson, A. Bolis, S. Chun, R.M. Kirby, S.J. Sherwin, Int. J.
Comput. Fluid Dyn. 25 (3) (2011) 107-125.

C.D. Cantwell, S. Yakovlev, RM. Kirby, N.S. Peters, SJ. Sherwin,]J. Comput.
Phys. 257 (2014) 813-829.

G. Mengaldo, D. De Grazia, D. Moxey, P.E. Vincent, S. Sherwin, J. Comput.
Phys. 299 (2015) 56-81.

A.R. Winters, R.C. Moura, G. Mengaldo, G.J. Gassner, S. Walch, J. Peiro, S.J.
Sherwin, J. Comput. Phys. 372 (2018) 1-21.

R.M. Kirby, SJ. Sherwin, Comput. Methods Appl. Mech. Engrg. 195 (23-24)
(2006) 3128-3144.

J-EW. Lombard, D. Moxey, S.J. Sherwin, J.F. Hoessler, S. Dhandapani, M.J.
Taylor, AIAA J. 54 (2) (2015) 506-518.

C.D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo,
D. de Grazia, S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu,
Y. Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto, RM. Kirby, S.J.
Sherwin, Comput. Phys. Comm. 192 (2015) 205-219, http://dx.doi.org/10.
1016/j.cpc.2015.02.008.

H. Xu, C.D. Cantwell, C. Monteserin, C. Eskilsson, A.P. Engsig-Karup, S.J.
Sherwin, J. Hydrodyn. 30 (1) (2018) 1-22.

M. Dubiner, J. Sci. Comput. 6 (4) (1991) 345-390.

SJ. Sherwin, G.E. Karniadakis, Comput. Methods Appl. Mech. Engrg. 123
(1-4) (1995) 189-229.

M.G. Duffy, SIAM J. Numer. Anal. 19 (6) (1982) 1260-1262.

F. Bassi, S. Rebay,]J. Comput. Phys. 138 (2) (1997) 251-285.

J. Marcon, J. Peir6, D. Moxey, N. Bergemann, H. Bucklow, M. Gammon, AIAA
Scitech 2019 Forum, American Institute of Aeronautics and Astronautics,
Reston, Virginia, 2019, p. 1725, http://dx.doi.org/10.2514/6.2019-1725.
D. Moxey, C.D. Cantwell, R.M. Kirby, S.J. Sherwin, Comput. Methods Appl.
Mech. Engrg. 310 (2016) 628-645, http://dx.doi.org/10.1016/j.cma.2016.
07.001.

D. Moxey, R. Amici, RM. Kirby, SIAM]. Sci. Comput. (2019) submitted for
publication.

S. Yakovlev, D. Moxey, S.J. Sherwin, RM. Kirby,]J. Sci. Comput. 67 (1)
(2016) 192-220.

B. Cockburn, C.-W. Shu, SIAM]. Numer. Anal. 35 (6) (1998) 2440-2463.
M. Folk, G. Heber, Q. Koziol, E. Pourmal, D. Robinson, Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases, ACM, 2011, pp. 36-47.
M. Bareford, N. Johnson, M. Weiland, Improving Nektar++ [0 performance
for cray XC architecture, in: Cray User Group Proceedings, Stockholm,
Sweden, 2018.

C. Chevalier, F. Pellegrini, Parallel Comput. 34 (6-8) (2008) 318-331.
WJ. Schroeder, B. Lorensen, K. Martin, The Visualization Toolkit: an
Object-Oriented Approach to 3D Graphics, Kitware, 2004.

J. Ahrens, B. Geveci, C. Law, Vis. Handb. 717 (2005).

K. Lackhove, Hybrid Noise Simulation for Enclosed Configurations (Doctoral
thesis), Technische Universitdt Darmstadt, 2018.

M. Germano, Phys. Fluids 29 (6) (1986) 1755, http://dx.doi.org/10.1063/1.
865649.

A. Refloch, B. Courbet, A. Murrone, C. Laurent, J. Troyes, G. Chaineray,].B.
Dargaud, F. Vuillot, AerospaceLab (2011).

F. Duchaine, S. Jauré, D. Poitou, E. Quémerais, G. Staffelbach, T. Morel, L.
Gicquel, Comput. Sci. Discov. 8 (1) (2015) http://dx.doi.org/10.1088/1749-
4699/8/1/015003.

D. Abrahams, RW. Grosse-Kunstleve, O. Overloading, CC Plus Plus Users J.
21 (7) (2003) 29-36.

P. Peterson, Int.]. Comput. Sci. Eng. 4 (4) (2009) 296-305.

D.M. Beazley, et al., Tcl/Tk Workshop, 1996, p. 43.

Elie Cartan, Riemannian Geometry in an Orthogonal Frame, World Scientific
Pub. Co. Inc., 2002.

Elie Cartan, Geometry of Riemannian Spaces, Math. Sci. Press, 2001.

Elie Cartan, La Théorie Des Groupes Finis Et Continus Et La Géométrie
Différentiellle Traitees Par La Méthode Du Repére Mobile, Gauthier-Villars,
1937.

M. Fels, PJ. Olver, Acta Appl. Math. 51 (2) (1998) 161-213.

PJ. Olver, Moving Frames - in Geometry, Algebra, Computer Vision,
and Numerical Analysis. Foundations of Computational Mathematics,
in: London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, 2001,
pp. 267-297.

https://doi.org/10.1016/j.cpc.2019.107110
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb1
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb1
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb1
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb2
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb2
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb2
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb2
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb2
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb3
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb3
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb3
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb4
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb4
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb4
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb5
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb5
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb5
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb6
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb6
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb6
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb7
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb7
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb7
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb8
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb8
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb8
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb9
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb10
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb10
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb10
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb11
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb11
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb11
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb11
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb11
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb12
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb12
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb12
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb13
https://nek5000.mcs.anl.gov/index.php/MainPage
https://nek5000.mcs.anl.gov/index.php/MainPage
https://nek5000.mcs.anl.gov/index.php/MainPage
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb15
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb16
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb16
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb16
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb17
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb17
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb17
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb18
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb18
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb18
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb19
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb20
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb21
http://dx.doi.org/10.1016/j.cpc.2014.07.011
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb23
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb23
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb23
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb24
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb24
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb24
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb25
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb25
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb25
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb26
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb26
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb26
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb27
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb27
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb27
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb28
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb28
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb28
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb29
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb29
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb29
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb30
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb30
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb30
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb31
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb31
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb31
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb32
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb32
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb32
http://dx.doi.org/10.1016/j.cpc.2015.02.008
http://dx.doi.org/10.1016/j.cpc.2015.02.008
http://dx.doi.org/10.1016/j.cpc.2015.02.008
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb34
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb34
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb34
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb35
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb36
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb36
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb36
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb37
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb38
http://dx.doi.org/10.2514/6.2019-1725
http://dx.doi.org/10.1016/j.cma.2016.07.001
http://dx.doi.org/10.1016/j.cma.2016.07.001
http://dx.doi.org/10.1016/j.cma.2016.07.001
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb41
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb41
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb41
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb42
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb42
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb42
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb43
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb44
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb44
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb44
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb46
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb47
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb47
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb47
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb48
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb49
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb49
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb49
http://dx.doi.org/10.1063/1.865649
http://dx.doi.org/10.1063/1.865649
http://dx.doi.org/10.1063/1.865649
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb51
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb51
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb51
http://dx.doi.org/10.1088/1749-4699/8/1/015003
http://dx.doi.org/10.1088/1749-4699/8/1/015003
http://dx.doi.org/10.1088/1749-4699/8/1/015003
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb53
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb53
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb53
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb54
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb55
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb56
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb56
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb56
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb57
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb58
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb58
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb58
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb58
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb58
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb59
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb60
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb60
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb60
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb60
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb60
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb60
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb60

18

[61]

[62]

[63]
[64]
[65]
[66]
[67]
[68]
[69]

[70]
[71]
[72]
[73]
[74]
[75]

[76]

[77]

[78]
[79]

(80]

(81]

D. Moxey, C.D. Cantwell, Y. Bao et al. / Computer Physics Communications 249 (2020) 107110

0. Faugeras, in: J.L. Mundy, A. Zisserman, D. Forsyth (Eds.), Cartan’s Moving
Frame Method and Its Application to the Geometry and Evolution of
Curves in the Euclidean, Affine and Projective Planes, in: Lecture Notes in
Computer Science, vol. 825, Springer, 1994.

E. Piuze,]. Sporring, K. Siddiqi, in: S. Ourselin, D. Alexander, D. Westin
(Eds.), Moving Frames for Hear Fiber Reconstruction, in: Lecture Notes in
Computer Science Book Series, vol. 9123, Springer, 2015.

S. Chun, J. Sci. Comput. 53 (2) (2012) 268-294.

S. Chun, J. Sci. Comput. 59 (3) (2013) 626-666.

S. Chun, C. Eskilsson, J. Comput. Phys. 333 (2017) 1-23.

S. Chun, J. Comput. Phys. 340 (2017) 85-104.

S. Chun, J. Marcon, J. Peir6, S.J. Sherwin, submitted for publication,

S. Chun, C. Cantwell, in preparation,

D. Moxey, C.D. Cantwell, G. Mengaldo, D. Serson, D. Ekelschot,]. Peird,
S.J. Sherwin, R.M. Kirby, in: M.L. Bittencourt, N.A. Dumont, J.S. Hesthaven
(Eds.), Spectral and High Order Methods for Partial Differential Equations
ICOSAHOM 2016, Springer International Publishing, 2017, pp. 63-79.
P.-O. Persson, J. Peraire, 44th AIAA Aerospace Sciences Meeting and Exhibit,
2006, p. 112.

D. Serson, J.R. Meneghini, SJ. Sherwin, J. Comput. Phys. 316 (2016)
243-254.

D. Serson, J.R. Meneghini, S.J. Sherwin, Comput. & Fluids 146 (2017)
117-124.

D. Serson, J.R. Meneghini, S.J. Sherwin,]. Fluid Mech. 826 (2017) 714-731.
S.J. Sherwin,]. Peir6, Internat.]. Numer. Methods Engrg. 53 (2002) 207-223.

D. Moxey, M.D. Green, S.J. Sherwin, J. Peiré, Comput. Methods Appl. Mech.

Engrg. 283 (2015) 636-650, http://dx.doi.org/10.1016/j.cma.2014.09.019.
D. Moxey, M.D. Green, SJ. Sherwin,]. Peird, New Challenges in Grid
Generation and Adaptivity for Scientific Computing, Springer, 2015,
pp. 203-215.

M. Turner, D. Moxey,]. Peird, M. Gammon, C. Pollard, H. Bucklow, Procedia
Eng. 203 (2017) 206-218, http://dx.doi.org/10.1016/j.proeng.2017.09.808.
Open Cascade SAS, Open Cascade, 2019.

J. Marcon, M. Turner,]. Peir6, D. Moxey, C. Pollard, H. Bucklow, M.

Gammon, 2018 AIAA Aerospace Sciences Meeting, American Institute
of Aeronautics and Astronautics, Reston, Virginia, 2018, p. 1403, http:
//dx.doi.org/10.2514/6.2018-1403.

C. Geuzaine, J.-F. Remacle, Internat. J. Numer. Methods Engrg. 79 (11)
(2009) 1309-1331, http://dx.doi.org/10.1002/nme.2579.

T. Colonius, S.K. Lele, Prog. Aerosp. Sci. 40 (6) (2004) 345-416, http:
//dx.doi.org/10.1016/j.paerosci.2004.09.001.

(82]
(83]
(84]
(85]
(86]
(87]

(88]
(89]

[90]
[91]
[92]
(93]

(94]

[95]
[96]
[97]
[98]
[99]
[100]

[101]

C.K.W. Tam, Fluid Dyn. Res. 38 (9) (2006) 591-615, http://dx.doi.org/10.
1016/j.fluiddyn.2006.03.006.

R. Ewert, W. Schroder,]J. Comput. Phys. 188 (2) (2003) 365-398, http:
//dx.doi.org/10.1016/S0021-9991(03)00168-2.

E.-A. Miiller, F. Obermeier, AGARD CP-22, 1967, pp. 21-22.

J. Chaplin, P. Bearman, Y. Cheng, E. Fontaine,]. Graham, K. Herfjord, F.H.
Huarte, M. Isherwood, K. Lambrakos, C. Larsen, et al., J. Fluids Struct. 21
(1) (2005) 25-40.

R. Willden, J. Graham, J. Fluids Struct. 15 (3) (2001) 659-669.

Y. Bao, R. Palacios, M. Graham, S. Sherwin, J. Comput. Phys. 321 (2016)
1079-1097.

D. Newman, G. Karniadakis,]. Fluid Mech. 344 (1997) 95-136.

G.M. Laskowski, J. Kopriva, V. Michelassi, S. Shankaran, U. Paliath, R.
Bhaskaran, Q. Wang, C. Talnikar, Z,J. Wang, F. Jia, Future directions of high
fidelity CFD for aerothermal turbomachinery analysis and design, in: 46th
AIAA Fluid Dynamics Conference, Washington, D.C., USA, 2016, pp. 1-30.
E. Tadmor, SIAM]. Numer. Anal. 26 (1) (1989) 30-44.

A. Cassinelli, F. Montomoli, P. Adami, S.J. Sherwin, High Fidelity Spectral/hp
Element Methods for Turbomachinery, ASME Paper No. GT2018-75733,
2018, pp. 1-12.

G.E. Karniadakis, M. Israeli, S.A. Orszag, J. Comput. Phys. 97 (2) (1991)
414-443.

S. Dong, G.E. Karniadakis, C. Chryssostomidis, J. Comput. Phys. 261 (2014)
83-105.

A. Cassinelli, H. Xu, F. Montomoli, P. Adami, R. Vazquez Diaz, S.J. Sherwin,
On the Effect of Inflow Disturbances on the Flow Past a Linear LPT vane
using spectral/hp element methods, ASME Paper No. GT2019-91622, 2019,
pp. 1-12.
G. Degrez,
247-263.
J.-P. Boin,]. Robinet, C. Corre, H. Deniau, Theor. Comput. Fluid Dyn. 20
(3) (2006) 163-180.

F.M. White, Viscous Fluid Flow, McGraw-Hill New York, 2006.

G. Mengaldo, D. De Grazia, F. Witherden, A. Farrington, P. Vincent, S.
Sherwin, J. Peiro, 7th AIAA Theoretical Fluid Mechanics Conference, 2014,
p. 2923.

E. Eckert,]J. Aeronaut. Sci. 22 (8) (1955) 585-587.

J. Eichstadt, M. Green, M. Turner,]. Peir6, D. Moxey, Comput. Phys. Comm.
229 (2018) 36-53.

]. Eichstadt, M. Vymazal, D. Moxey, J. Peir6, Comput. Phys. Commun. (2019)
submitted for publication.

C. Boccadoro, J. Wendt, J. Fluid Mech. 177 (1987)

http://refhub.elsevier.com/S0010-4655(19)30417-5/sb61
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb61
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb61
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb61
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb61
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb61
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb61
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb62
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb62
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb62
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb62
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb62
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb63
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb64
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb65
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb66
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb69
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb69
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb69
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb69
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb69
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb69
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb69
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb70
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb70
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb70
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb71
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb71
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb71
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb72
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb72
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb72
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb73
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb74
http://dx.doi.org/10.1016/j.cma.2014.09.019
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb76
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb76
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb76
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb76
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb76
http://dx.doi.org/10.1016/j.proeng.2017.09.808
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb78
http://dx.doi.org/10.2514/6.2018-1403
http://dx.doi.org/10.2514/6.2018-1403
http://dx.doi.org/10.2514/6.2018-1403
http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1016/j.paerosci.2004.09.001
http://dx.doi.org/10.1016/j.paerosci.2004.09.001
http://dx.doi.org/10.1016/j.paerosci.2004.09.001
http://dx.doi.org/10.1016/j.fluiddyn.2006.03.006
http://dx.doi.org/10.1016/j.fluiddyn.2006.03.006
http://dx.doi.org/10.1016/j.fluiddyn.2006.03.006
http://dx.doi.org/10.1016/S0021-9991(03)00168-2
http://dx.doi.org/10.1016/S0021-9991(03)00168-2
http://dx.doi.org/10.1016/S0021-9991(03)00168-2
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb84
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb85
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb85
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb85
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb85
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb85
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb86
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb87
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb87
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb87
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb88
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb90
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb91
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb91
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb91
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb91
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb91
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb92
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb92
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb92
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb93
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb93
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb93
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb94
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb94
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb94
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb94
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb94
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb94
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb94
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb95
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb95
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb95
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb96
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb96
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb96
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb97
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb98
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb98
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb98
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb98
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb98
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb99
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb100
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb100
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb100
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb101
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb101
http://refhub.elsevier.com/S0010-4655(19)30417-5/sb101

	Nektar++: Enhancing the capability and application of high-fidelity spectral/hp element methods
	Introduction
	Methods
	Implicit-type methods
	Explicit-type methods
	Recap of Nektar++ implementation

	Software and performance developments
	Parallel I/O
	In-situ processing
	Collective linear algebra operations
	Solver coupling
	Python interface

	Developments in numerical methods
	Method of moving frames
	Spatially-variable polynomial order
	Global mapping

	Applications
	NekMesh
	Acoustic solver
	Fluid–structure interaction (FSI) and vortex-induced vibration (VIV)
	Aeronautical applications

	Availability
	Conclusions
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A. Supplementary data
	References

