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Abstract In this paper, consideration is given to how aliasing errors, introduced when evaluating
nonlinear products, inexactly affect the solution of Galerkin spectral/hp element polynomial discretisations
on triangles. A theoretical discussion is presented of how aliasing errors are introduced by a collocation
projection onto a set of quadrature points insufficient for exact integration, and consider interpolation
projections to geometrically symmetric collocation points. The discussion is corroborated by numerical
examples that elucidate the key features. The study is first motivated with a review of aliasing errors
introduced in one-dimensional spectral-element methods (these results extend naturally to tensor-product
quadrilaterals and hexahedra.) Within triangular domains two commonly used expansions are a hierar-
chical, or modal, expansion based on a rotationally non-symmetric collapsed-coordinate system, and a
Lagrange expansion based on a set of rotationally symmetric nodal points. Whilst both expansions span
the same polynomial space, the construction of the two bases numerically motivates a different set of
collocation points for use in the collocation projection of a nonlinear product. The purpose of this paper is
to compare these two collocation projections. The analysis and results show that aliasing errors produced
using a collocation projection on the rotationally non-symmetric, collapsed-coordinate system are signifi-
cantly smaller than those for a collocation projection using the rotationally symmetric nodal points. In the
case of the collapsed coordinate projection, if the Gaussian quadrature order employed is less than half
the polynomial order of the integrand, then it is possible for the aliasing error to modify the constant mode
of the expansion and therefore affect the conservation property of the approximation. However, the use
of a collocation projection onto a polynomial expansion associated with a set of rotationally symmetric
nodal points within the triangle is always observed to be non-conservative. Nevertheless, the rotationally
symmetric collocation will maintain the overall symmetry of the triangular region, which is not typically
the case when a collapsed coordinate quadrature projection is used.
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1 Introduction

In spectral methods, the quadratic nonlinearities of the incompressible Navier–Stokes equations and the
cubic nonlinearities in the compressible Navier–Stokes are normally computed in physical space using
collocation projections. Specifically, the primary fields (i.e., velocity, pressure, energy) are first transformed
into a physical-space representation where the fields are discretely evaluated at a set of collocation points.
In the frame of triangular spectral/hp methods, two reasonably commonly adopted types of polynomial
expansions motivate different choices of collocation points. The first is a hierarchical or modal expansion
discussed in Sect. 3.2, which is designed as a generalised tensor product using a collapsed-coordinate system
which does not have rotational symmetry. The second expansion discussed in Sect. 3.3, is a nodal expansion
utilising a Lagrange polynomial through a set of nodal points that are normally chosen to be rotationally
symmetric in the triangle and have good interpolation properties. From an implementation point of view,
the first expansion motivates the choice of collocation points based upon the Gaussian quadrature points
evaluated along the non-symmetric collapsed coordinate system. Equivalently, the second basis motivates
the use of the nodal points as collocation points due to the Kronecker-delta property of this expansion
basis. Having determined potential collocation points, nonlinear products can be obtained at the discrete
points in a collocation fashion analogous to the pseudo-spectral evaluation commonly adopted in global
spectral methods.

A normal practice in polynomial Galerkin methods is the use of sufficient quadrature to integrate the
linear differential terms exactly. In [1, 2] it was argued that employing an insufficient quadrature rule for
evaluating nonlinear terms leads to an aliasing pollution that degrades the accuracy of the solution and in
the worst case leads to numerical instability. In [2], the proposed solution was dubbed “over-integration” —
a term implying that de-aliasing of the solution requires the use of more quadrature points than would be
necessary to integrate linear differential terms in a polynomial Galerkin method exactly. In this paper we
refer to this technique as “insufficient quadrature” since this terminology more accurately represents the
approximation. The errors caused by insufficient quadrature can be bounded by the theoretical estimates
of [3], and often this result is used to support the idea that, if the simulation is well-resolved, then the
numerical crimes committed by insufficient quadrature are negligible. However, as pointed out in [4], the
theory does not address what happens in the marginally or badly resolved cases frequently encountered in
practice.

Although use of consistent integration of the nonlinear products eliminates the aliasing problem due to
insufficient quadrature for handling nonlinear terms, there is a computational penalty. Specifically, at least
3/2 times more quadrature points per direction are required to properly integrate quadratic nonlinearities
(two times more points per direction for cubic nonlinearities). Hence, there may be a reasonably high
computational cost when adopting consistent integration rules for the nonlinear terms as compared to a
quadrature rule designed to consistently handle the standard linear terms.

The numerical practitioner often wants to know: (1) When is exact or consistent integration absolutely
necessary? (2) How does the aliasing error influence my solution? (3) Is there any computationally effi-
cient middle-ground between insufficient quadrature and exact integration (for example, will evaluating
the nonlinear products at a special set of points help minimize the aliasing)?

The main purpose of this paper is to understand aliasing errors generated when evaluating quadratic
nonlinear products on spectral/hp triangle discretisations with the goal of helping the numerical practitioner
answer the questions mentioned above. Specifically, we attempt to answer the following questions:
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– If one continues to evaluate nonlinear terms at the tensor-product quadrature points in collapsed coor-
dinates, as is typical practice in modal spectral/hp element discretisations [5, 6], what is the effect on
the modal energy?

– When insufficient quadrature is applied, does the geometrically non-symmetric nature of the tensor-
product quadrature points in collapsed coordinates end up being more harmful than helpful (i.e., does
one trade accuracy for numerical efficiency)?

– If one were to evaluate nonlinear products at a geometrically symmetric collection of points (such
as the Fekete [7], electrostatic points [8] or triangular Lobatto points [9] used in triangle collocation
methods), and were then to evaluate the Galerkin approximation, would the aliasing error be less (or
better distributed)?

The paper is organised as follows. In Sect. 2, we present a theoretical discussion of the aliasing error
due to the projection of squared polynomials (to mimic quadratic nonlinearities) and provide a numerical
example to help gain intuition into the results in higher dimensions. In Sect. 3, we present a review of
tensor-product integration on triangles, and then present a theoretical discussion of aliasing when using
a modal orthogonal basis or using a nodal collocation basis. In Sect. 4 we present numerical results to
demonstrate and corroborate the theoretical results presented in Sect. 3. In Sect. 5, we summarize our
findings and provide some guidelines for the numerical methods practitioner to understand the trade-offs
between the different choices presented.

2 Motivation

To motivate our discussion, we examine the essence of the nonlinear evaluation based on a simple illus-
trative example in one dimension. Assume we are given a single spectral/hp element E defined on [−1, 1]
supporting polynomials up to degree P. We denote by {φi(ξ)}, i = 0, . . . , P an orthonormal basis in L2[−1, 1]
(i.e., the scaled Legendre-polynomial basis) that spans the polynomial space PP; the index i provides the
maximum degree of the polynomial expression denoted by the basis function φi.

We now presume that we have a polynomial expansion of the form:

u(ξ) =
P∑

i=0

ûiφi(ξ),

and we are interested in obtaining the expansion

w(ξ) =
P∑

k=0

ŵkφk(ξ)

such that ‖w(ξ)− [u(ξ)]2‖L2 is minimized. The modal coefficients ŵk are uniquely determined through the
Galerkin projection which can be determined in this case by the following expression:

ŵk =
P∑

i,j=0

ûiûj

∫ 1

−1
φi(ξ)φj(ξ)φk(ξ) dξ (1)

for k = 0, . . . , P.
Note that the integrand in Eq. 1 contains the product of three polynomials from PP, and hence it is at

most a polynomial in P3P. For notational simplicity, let us define the inner product of two functions on
[−1, 1] as follows:

(f , g) =
∫ 1

−1
f (ξ)g(ξ) dξ ,



276 J Eng Math (2006) 56:273–288

and the corresponding Gauss–Lobatto–Legendre (GLL) quadrature approximation of the inner product

[f , g]Q =
Q∑

i=1

ωif (zi)g(zi),

where zi and ωi denote the GLL quadrature points and weights, respectively. The natural number Q denotes
the number of points (or weights) used. We know that the GLL quadrature is an exact approximation (to
machine precision) of the inner product when the integrand I ∈ P2Q−3 and has an error term of the
following form [10, 11],

EQ = −Q(Q − 1)322Q−1[(Q − 2)!]4

(2Q − 1)[(2Q − 2)!]3 I(2Q−2)(ζ )

where ζ ∈ [−1, 1].
Now let us consider the case where an insufficient quadrature is employed. As a common example, we

consider a quadrature order sufficient to integrate polynomials in P2P, as typically required for a linear
operation in a Galerkin discretisation. The relation between the true modal solution ŵk, defined in Eq. 1,
and the approximate modal solution w̃k, defined as

w̃k =
P∑

i,j=0

ûiûj[φi(ξ)φj(ξ), φk(ξ)]Q,

is given by the following expression,

w̃k = ŵk −




P∑

i,j=0
i+j>2P−k

ûiûj
(
(φiφj, φk) − [φiφj, φk]Q

)



 , (2)

for k = 0, . . . , P.

Remark 1 In the above summation, (φiφj, φk) = [φiφj, φk]Q for i + j + k ≤ 2P, leading to the lower bound.
If the quadrature order is sufficient to integrate polynomials in P2P exactly (for instance, with Q = P + 2),
then the k = 0 term (which represents the mean mode) is computed exactly. For each subsequent mode
(k = 1, . . . , P), the number of aliasing terms (in the right-most summation term) increases. For instance,
w̃1 obtains aliasing energy from the (i = j = P) term only; w̃2 obtains aliasing energy from the (i = j = P)
term, the (i = P, j = P − 1) term and the (i = P − 1, j = P) term.

The above remark can be used to explain two commonly used heuristics in nonlinear term evaluation.
First, in a well-resolved simulation, the aliasing errors are inconsequential. If we take a well-resolved simu-
lation to be one in which the modes of u decay with a ûk ∝ (1/k)r type fall-off for (r > 1), the aliasing effect
is significantly reduced due to the dependence of the amount of aliasing energy on the modal coefficients
of the function being squared (i.e., due to the decay of the ûiûj terms in Eq. 2. The second heuristic is that
a slight over-integration (i.e., adding a few extra quadrature points) can have a stabilizing effect, as seen
in [12]. From Eq. 2 we see that slight over-integration can reduce or eliminate the aliasing error from the
low modes–those modes on which standard linear diffusion acts most slowly. The net effect is a reduction
of the aliasing error and most likely better stability properties [2, 13].

Remark 2 In the standard nodal spectral element method, φi would be a Lagrange polynomial through
the GLL points (rather than an orthonormal expansion). In practice, the same set of points is often used
for both the quadrature and the nodal points of the expansion. In this case, the last term in Eq. 2 will not be
zero even when a summation at k = 0 is performed, which represents the mean or constant contribution
of the nonlinear term. However, the error in this conservative term will, however, be consistent with the
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overall approximation. Standard finite-volume methods based on quadrature may also introduce this type
of conservation error.

To further demonstrate how insufficient integration influences the modes, consider the following “worst-
case” numerical example. Suppose that P = 10 (i.e., 10th degree polynomials) and that the function we are
trying to project is given by u(x) = ∑10

i=0 φi(ξ)—which amounts to all the modal coefficients ûi being set to
1·0 and mimics a case in which an element has significantly under-resolved the solution within the element.
The exact Galerkin projection yielding the modes ŵk, k = 0, . . . , P can be computed when Q = 17 GLL
points/weights are used to approximate the integral [·, ·]Q given by Eq. 1. Suppose, however, that only
Q = 12 GLL points/weights are used (sufficient for integrating a polynomial in P2P exactly). Instead of
arriving at ŵk, we instead obtain w̃k as given in Eq. 2. For this particular example, the difference between
the true and the approximate inner product of the triplet is negative for each k. Combining this fact with
the observation that ûiûj = 1 ∀i, j in this example, we find that there is additional energy added to every
mode but the mean mode (i.e., k = 0). In Fig. 1, we present a chart of the magnitude of the modal energies
when reduced quadrature (w̃k) and exact quadrature (ŵk) are adopted. Note that modification of the
integration rule used (e.g. using Gauss–Legendre as opposed to Gauss–Lobatto–Legendre) or different
choices of function may lead to different aliasing characteristics (such as energy removal.)

3 Mathematical extensions to triangles

In this section, we briefly review tensor-product integration on triangular domains, and then present two
different means of expressing polynomials over triangles: orthogonal expansions and symmetric nodal
expansions. These two types of expansions motivate different approaches to evaluating a collocation
projection of a nonlinear term. We will then present an analysis of how aliasing errors can arise when
insufficient integration is applied to the collocated nonlinear term.

3.1 Integration on triangles

As all straight-sided triangles can be affinely mapped to one another, for the purposes of this paper, we
will only consider expansions on the right-sided reference triangle:

T = {(ξ1, ξ2) | − 1 ≤ ξ1, ξ2, ξ1 + ξ2 ≤ 0}.

Fig. 1 Magnitude of the
modal coefficients when
exact quadrature
(Q = 17) and reduced
quadrature (Q = 12) is
used. In this example,
energy is added due to
insufficient quadrature to
all but the mean mode
(i.e., k = 0)
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Fig. 2 Triangle to rectangle transformation

The following mapping, graphically depicted in Fig. 2, allows us to map the triangular domain to the unit
square for the purposes of integration [6];

(
η1
η2

)
= χ('ξ) =

(
2
(

1+ξ1
1−ξ2

)
− 1

ξ2

)

, (3)

(
ξ1
ξ2

)
= χ−1('η) =

(
(1+η1)(1−η2)

2 − 1
η2

)
. (4)

This bijection mapping is well behaved as we approach the singular vertex [6]. As such, it provides us with a
convenient means of mapping the triangle to a domain where tensor product integration can be performed.
The coordinates (η1, η2) within the triangular domains will be referred to as the collapsed-coordinate sys-
tem.

Using the above transformation, we can define the inner product over the triangle as

(f , g) =
∫

T
f ('ξ) g('ξ) d'ξ (5)

=
∫ 1

−1

∫ 1

−1
f̃ (η1, η2) g̃(η1, η2)

(
1 − η2

2

)
dη1dη2, (6)

where f̃ (η1, η2) = f̃ ('η) = f (χ−1('η)) (and similarly for g̃), and the term
(

1−η2
2

)
denotes the Jacobian of the

mapping. Once transformed to a reference square, we can once again employ the Gaussian quadrature to
define the following numerical approximation of the inner product

[f , g](Q1,Q2) =
Q1∑

i=1

wi






Q2∑

j=1

wj f̃ (η1i, η2j)g̃(η1i, η2j)

(
1 − η2j

2

)


 , (7)

where η1i, η2j are the quadrature points in the η1- and η2-directions. In this construction, the weights wi and
wj used in Eq. 7 now correspond to any standard Gauss–Legendre rule which does not necessarily include
the end-points.

Remark 3 The accuracy of the quadrature approximation is tacitly dependent on the mapping, as the
quadrature rules are being applied to f̃ and g̃, and hence the residual will be expressed in terms of (η1, η2)-
derivatives of the integrand. For arbitrary functions f (ξ1, ξ2) and g(ξ1, ξ2) on the triangle, the error terms
will involve (ξ1, ξ2)-derivatives multiplied by appropriate terms from the Jacobian of the mapping.
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Note that if both f ('ξ) and g('ξ) are separable in the collapsed coordinates (i.e., if f̃ (η1, η2) = f̃a(η1) · f̃b(η2)

and similarly for g̃), then we can further simplify the expression above to

[f , g](Q1,Q2) =
Q1∑

i=1

wi






Q2∑

j=1

wj f̃a(η1i)f̃b(η2j)g̃a(η1i)g̃b(η2j)

(
1 − η2j

2

)


 (8)

= [f̃a, g̃a]1,Q1 · [f̃b, g̃b]2,Q2 , (9)

where [·, ·]1,Q1 and [·, ·]2,Q2 denote quadrature in the η1- and η2-directions, respectively, given by

[f̃a, g̃a]1,Q1 =
Q1∑

i=1

w1if̃a(η1i) g̃a(η1i),

[f̃b, g̃b]2,Q2 =
Q2∑

j=1

w2jf̃b(η2j) g̃b(η2j)

(
1 − η2j

2

)
.

Following [6], we take [·, ·]1,Q1 to be the Gauss–Lobatto–Legendre quadrature, and [·, ·]2,Q2 to be the
Gauss–Radau–Jacobi quadrature with α = 1, β = 0 weight distribution in the η2-direction, so that the
Jacobian of the mapping is handled implicitly as part of the quadrature rule up to a constant of 1/2.

Remark 4 When the integrand in collapsed coordinates is separable, the quadrature error of the two-
dimensional integral can be determined from the error terms of the one-dimensional analysis.

In Fig. 3 (left), we present the quadrature point distribution sufficient for integrating a polynomial of
degree P = 11 on T exactly (to machine precision.) A Gauss–Lobatto–Legendre distribution has been
applied in the “η1”-direction and a Gauss–Radau–Jacobi distribution was used in the “η2”-direction.

3.2 Orthogonal expansions on triangles

Since we are interested in polynomial expansions on triangles, we start by defining our polynomial space
on the domain T as:

PP = {ξ i
1 ξ

j
2 | 0 ≤ i + j ≤ P}.

Although the monomial form used above is convenient notationally, it is not often used in practice as
the expansion rapidly becomes linearly dependent. Following [6], we define an orthogonal basis {)i('ξ)}
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Fig. 3 Left: Collapsed coordinate quadrature points in the standard triangular T . In the “η1”-direction a Gauss–Lobatto–
Legendre distribution has been used and in the “η2”-direction a Gauss–Radau–Jacobi distribution was used. Right:
Electrostatic nodal points distribution for P = 5
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consisting of NP = (P + 1)(P + 2)/2 basis functions which spans PP. The basis functions )i('ξ), which are
Sturm–Liouville approximations on a triangle, can be expressed as follows:

)i('x) = )σ (i1,i2)(
'ξ) = φi1i2(ξ1, ξ2) = ψ̃a

i1(η1) · ψ̃b
i1,i2(η2),

where i = σ (i1, i2) denotes a bijective index mapping, and ψ̃a
i1 and ψ̃b

i1,i2 denote principal functions in the
collapsed coordinates (i.e., in η1 and η2, respectively) under the mapping 'ξ = χ−1('η).

The principal functions can be expressed in terms of Jacobi polynomials Pα,β [6] as follows

ψ̃a
i1(η1) · ψ̃b

i1,i2(η2) = P0,0
i1 (η1) ·

(
1 − η2

2

)i1
P2i1+1,0

i2 (η2).

Remark 5 Two key observations from the expression above emerge:

(1) The basis functions, φi1,i2 , on T are separable in the collapsed coordinates.
(2) The principal functions, ψ̃a

i1 , ψ̃b
i1,i2 in the collapsed coordinates remain polynomials [6].

The first observation allows for fast tensor-product integration, as discussed in Sect. 3.1. The second obser-
vation allows us to choose quadrature such that the integrals are exact to machine precision (or, in the case
of insufficient quadrature, to understand the error terms as in the one-dimensional case.)

Hence, we can express any function u ∈ PP in the following form:

u(ξ1, ξ2) =
NP−1∑

i=0

ûi)i('ξ)

=
P∑

i1=0

i1∑

i2=0

ûσ (i1,i2)φi1,i2(ξ1, ξ2)

=
P∑

i1=0

i1∑

i2=0

ûσ (i1,i2)ψ̃
a
i1(η1)ψ̃

b
i1,i2(η2).

Just as in the one-dimensional case, we consider a function w ∈ PP that represents the Galerkin pro-
jection of the function u2 ∈ P2P back onto the original space where u resides. The Galerkin projection is
given by:

ŵσ (k1,k2) = (γσ (k1,k2))

P∑

i1=0

P∑

j1=0

i1∑

i2=0

j1∑

j2=0

ûσ (i1,i2)ûσ (j1,j2) · [T1T2] (10)

T1 =
(∫ 1

−1
ψ̃a

i1(η1) ψ̃a
j1(η1) ψ̃a

k1
(η1) dη1

)

T2 =
(∫ 1

−1
ψ̃b

i1,i2(η2) ψ̃b
j1,j2(η2) ψ̃b

k1,k2
(η2)

1 − η2

2
dη2

)

,

where

γi = 1
/ (∫

T
[)i(ξ1, ξ2)]2 d'ξ

)
. (11)

Just as in Sect. 2, we can also consider what happens if insufficient quadrature is used. Taking advantage
of the separability, we can determine the relation between the aliased modes w̃k and the true projection
ŵk as

w̃σ (k1,k2) = ŵσ (k1,k2) − (γσ (k1,k2))

P∑

i1=0

P∑

j1=0

i1∑

i2=0

j1∑

j2=0

ûσ (i1,i2)ûσ (j1,j2) ·
(

T̃2E1 + T̃1E2 + E1E2

)
(12)
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where T̃1 = [ψ̃a
i1(η1)ψ̃

a
j1
(η1), ψ̃a

k1
(η1)]a,Q1 , with corresponding quadrature error E1(i1, j1, k1) and T̃2 =

[ψ̃b
i1,i2(η2)ψ̃

b
j1 · j2(η2), ψ̃b

k1,k2
(η2)]b,Q2 , with corresponding quadrature error E2(i1, i2, j1, j2, k1, k2). Following

[2], we can fix Q1 and Q2 so that the error terms are zero. However, in practice, Q1 and Q2 are chosen so
that an integrand in P2P can be integrated exactly, but not an integrand in P3P.

Remark 6 As long as the quadrature order is chosen so that an integrand in P2P is computed exactly,
the mean, (or conservation), mode is not influenced by aliasing (i.e., w̃0 = ŵ0). This is because, when
k1 = k2 = 0, the integrals are evaluated exactly. See also Sect. 4.1.

3.3 Nodal expansions on triangles

An alternative to the orthogonal expansion discussed in Sect. 3.2 is a nodal basis which spans the same
polynomial space (such as the Fekete points [7], electrostatic points [8] or triangular Lobatto points [9]).
These point sets are determined through a process that attempts to minimize the Lebesgue constant [7, 8,
14], a number that is an interpolation quality indicator based upon the L∞ norm.

A nodal basis that spans PP can be defined as follows: Given a non-overlapping set of Np points 'ξj ∈ T
which we assume are solvable in PP, let hi(ξ1j, ξ2j) denote the Lagrange interpolating polynomial centred
at 'ξi such that hi(ξ1j, ξ2j) = δij. Given a function v('ξ), we can define the interpolation projection I v of v
onto PP as

Iv(ξ1, ξ2) =
Np−1∑

i=0

v(ξ1i, ξ2i)hi(ξ1, ξ2).

If v ∈ PP, then v = Iv, and hence any function u ∈ PP can be expressed in the form

u(ξ1, ξ2) =
Np−1∑

i=0

u(ξ1i, ξ2i)hi(ξ1, ξ2).

In Fig. 3 (right), we present the electrostatic points for P = 5. Note the symmetric geometric distribution
(as compared to the distribution exhibited by the quadrature points shown in Fig. 3 (left).) Once these
nodal points have been defined, it is numerically efficient to evaluate the nonlinear products using the
nodal locations as collocation points, thereby making use of the Kronecker delta property of the nodal
expansion. Our purpose in investigating the nodal bases is to ascertain whether evaluation of nonlinear
products at a geometrically symmetric collection of points leads to a more favourable aliasing error (in
terms of magnitude or error distribution) as compared to quadrature collocation technique discussed in
Sect. 3.2. Since, however, we can transform from one basis to another, both types of collocation projection
are possible in either expansion. Nevertheless, computational efficiency dictates that using the nodal points
in conjunction with the nodal expansion would be advantageous.

Consider once again the following problem: Given a function u ∈ PP, find w ∈ PP which represents
the Galerkin projection of the function u2 ∈ P2P back on to the original space where u resides. Using the
previously discussed orthogonal basis, we can express u2 as

[u(ξ1, ξ2)]2 = I(u2) +
N2P−1∑

j=0

v̂j )j(ξ1, ξ2), (13)

where the difference between the interpolated function and the true u2 is expressed in terms of an orthog-
onal expansion with modal energy v̂j. Given Eq. 13, we can determine the relation between the modes
generated using the interpolation projection w̃k and the true Galerkin projection ŵk. Our starting point is
to recall the definition of ŵk as the Galerkin projection of u2, and use Eq. 13 as:

w̃k = γk

(
I(u2), )k

)
,
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where we assume sufficient quadrature order to represent a function in P2P (otherwise the exact integrals
would be replaced by quadrature rules.)

Now using Eq. 13 in the definition of ŵk, we have

ŵk = γk(u2, )k)

= γk



(I(u2), )k) +




N2P−1∑

j=0

v̂j )j, )k









= w̃k + γk

N2P−1∑

j=0

v̂j ()j(ξ1, ξ2), )k(ξ1, ξ2))

= w̃k + v̂k,

or equivalently

w̃k = ŵk − v̂k

where γk was defined in Eq. 11.

Remark 7 The sum is over all N2P coefficients. If the interpolation projection were replaced with an L2
projection similar to that discussed in Sect. 3.2, the sum would only involve terms orthogonal to PP. As
the interpolation projection is designed to provide optimal interpolation properties (in the L∞ sense), it is
probable that v̂j, j = 0, . . . , N2P will be non-zero.

One might ask whether there is any guarantee that v̂0 = 0, which is required for the interpolation pro-
jection to be conservative. To investigate this question, we note that the Lagrange basis can be re-written
in terms of the orthogonal basis [14]:

hi(ξ1, ξ2) =
Np−1∑

j=0

αij)j(ξ1, ξ2), (14)

where αij denotes a basis transformation matrix, which is the inverse of the generalized Vandermonde
matrix as presented by [14].

Taking advantage of expression (14), we can express u ∈ PP as:

u(ξ1, ξ2) =
Np−1∑

i=0

u(ξ1i, ξ2i)




Np−1∑

j=0

αij)j(ξ1, ξ2)



 . (15)

In this form, we can investigate what is required for the interpolation projection of u2 to be conservative.
For conservation, we want the following expression to hold:∫

T
u2d'ξ =

∫

T
I(u2)d'ξ .

Using )0('ξ) = 1 and definition (15), we obtain
∫

T
I(u2)d'ξ =

∫

T

Np−1∑

i=0

u(ξ1i, ξ2i)
2




Np−1∑

j=0

αij)j(ξ1, ξ2)



 d'ξ

=
Np−1∑

i=0

u(ξ1i, ξ2i)
2

Np−1∑

j=0

αij

∫

T
)j('ξ) ·)0('ξ)d'ξ

=
Np−1∑

i=0

u(ξ1i, ξ2i)
2αi0/γ0, (16)

where γ0 was defined in Eq. 11.
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For Eq. 16 to satisfy the conservation property, it must be exactly equal to
∫
T u2d'ξ . Hence the inter-

polation projection is only conservative if the point set and corresponding matrix α are such that they
can exactly integrate functions in P2P. The rotationally symmetric points discussed previously do not
correspond to quadrature points; hence they do not provide conservative projections.

One outstanding question is whether there even exists a set of NP points and weights such that polynomi-
als in P2P ( i.e., the inner product of two polynomials, each taken from PP) can be integrated exactly. Using
the mathematical philosophy of Gaussian integration, this would seem unlikely. The strength of Gaussian
quadrature lies in matching the number of modal coefficients of the polynomial expansion to the available
integration degrees of freedom (points and weights). For example, in one-dimensional quadrature there
are Q points and weights that provide 2Q degrees of freedom to determine 2P modal coefficients in the
integrand. An extension of this result is a tensor product of two one-dimensional expansions (typically
applied within a quadrilateral region) where there are 2Q2 quadrature degrees of freedom that can inte-
grate functions of the form x2(Q−1)y2(Q−1). These polynomials are in a space of dimension 4(Q−1)2, which
is even higher than the degrees of freedom of the quadrature. However, this increase in the apparent
dimension that the quadrature can integrate is due to the tensor-product nature of this construction. For
triangle expansion in a linear rather than bi-linear polynomial space, there would appear to be a mismatch
since NP points and weights only provide 2NP = (P+1)(P+2) = P2 +3P+2 quadrature choices; however,
polynomials in P2P contain N2P = [(2P + 1)(2P + 2)]/2 = 2P2 + 3P + 1 modal coefficients. Thus one could
conjecture that there are not enough points/weights for the integration to be carried out exactly if only a
nodal point set totaling NP points are used.

4 Numerical results

In this section, we consider two examples that support the analysis of Sect. 3. In Sect. 4.1, we consider the
inexact Galerkin projection of a fully energised function on to the orthogonal expansion using an inexact
quadrature order, similar to the one-dimensional example in Sect. 1. In this test, we therefore consider a
“worse-case” scenario that might occur. In Sect. 4.2, we refine the test to consider the inexact Galerkin
projection of a single polynomial mode to highlight how the polynomial order of the mode is aliased to
lower-order modes.

4.1 Inexact Galerkin projection of quadratic nonlinearities

We consider the polynomial function of order P defined as

usol(ξ1, ξ2) =
P∑

i=0

P−i∑

j=0

(ξ1)
i(ξ2)

j,

and project the square of usol(ξ1, ξ2) onto the orthogonal polynomial space of order P. In performing this
projection, we have evaluated the function [usol(ξ1, ξ2)]2 using either a collocation projection at quadrature
points along the collapsed-coordinate system, as discussed in Sect. 3.1, or a collocation projection onto
the rotationally symmetric coordinate system defined by the electrostatic points, as discussed in Sect. 3.3.
In the collapsed-coordinate system, we assume that we have a P + 2 Gauss–Lobatto–Legendre points in
the ξ1 direction and P + 1 Gauss–Radau–Jacobi points with a α = 1, β = 0 weights distribution in the ξ2-
direction. For the electrostatic points, we use a set of points consistent with the polynomial order P. Once
the nonlinear product has been performed at the nodal points, we then Galerkin project the collocated
function onto the orthonormal expansion using exact integration.

In Fig. 4, we show the absolute difference of the expansion coefficient obtained by exact Galerkin pro-
jection onto the orthonormal basis, and the inexact Galerkin projection using the two different collocation
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Fig. 4 Absolute difference in modal energy between exact and aliased inexact Galerkin projection (|ŵ − w̃|) using a collo-
cation projection at the quadrature points along the collapsed coordinates for (a) P = 5, (c) P = 10 and (e) P = 15 order
polynomials. Also shown is the same error using collocation at the electrostatic nodal points for (b) P = 5, (d) P = 10 and (f)
P = 15 order polynomials. (Note only the lower triangle of mode p + q ≤ P are energised in a triangular expansion.)

projections discussed previously, i.e., |ŵk − w̃k|. Figures 4(a), (c) and (e) show the aliased error for the
quadrature based collocation on the collapsed coordinates. Figures 4(b), (d) and (f) show the aliased error
for collocation performed at the electrostatic points. We note that, for the quadrature collocation, the
lower modes are not influenced significantly by the aliasing, and as previously discussed the mean mode
has zero error. In contrast, the collocation at the electrostatic points introduces an aliasing error on all
modes including the mean mode. The magnitude of the aliasing error in this case is also significantly larger
(note the change in the z-axis scale.)
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4.2 Inexact Galerkin projection of a high-order orthogonal mode

In the second test, we consider the Galerkin projection of a single orthogonal mode φpq(η1, η2) back onto
the orthogonal expansion using a fixed set of quadrature points Q1 = 7, Q2 = 6 in the η1, η2-directions.
In this test, we once again have applied a Gauss–Lobatto–Legendre distribution in the η1-direction and
a Gauss–Radau–Jacobi with α = 1, β = 0 distribution in the η2-direction. The choice Q1 = 7, Q2 = 6
guarantees the exact evaluation of the square of a fifth order polynomial function u(ξ1, ξ2). We note that
in the η1-direction the maximum polynomial order that can be exactly integrated is 2Q1 − 3 = 11.

In Fig. 5(a–d) we show the modal energy of the (inexactly integrated) Galerkin projection in the range
0 ≤ p, q; p + q ≤ 5. As an initial validation test, Fig. 5(a) shows the energy associated with the evaluation
of mode φ2,2(η1, η2). Since this mode can be integrated exactly with the above quadrature the Galerkin
projection is exact and so the evaluated mode contains only a unit energy at p = 2, q = 2.

If we now consider projection of higher polynomial modes using φ8,8(η1, η2), φ10,10(η1, η2) and
φ12,12(η1, η2), there is an integration error in the Galerkin projection for some modes and so we see
an aliasing error onto the lower modal energy. We note that, similar to Fig. 5(a), if exact integration were
applied, we would expect to see a single mode energised with unit energy and all other modes would have a
zero value. However, we observe in Fig. 5(b) that the projection of φ8,8(η1, η2) pollutes lower-order modes
down to the mode p = 4; q = 0 (note the primary mode p = 8, q = 8 is not shown on the scale considered.)
This aliasing pollution is to be expected as the η1-quadrature can only exactly resolve integrands up to a
polynomial order of P = 11, but for this projection test one of the integrands involves the product of a
P = 8 and a P = 4 order polynomials. Similarly, the projection of φ10,10 has aliased error to lower modes
down to p = 2, q = 0, as shown in Fig. 5(c). When we consider the projection of an even higher polynomial
mode φ12,12(η1, η2), we observe in Fig. 5(d) that the constant mode p = 0, q = 0 becomes influenced by the
aliasing.

Finally, in Figs. 5(e) and (f) we show the aliased mode φ12,12(η1, η2) at this quadrature order and the
same mode evaluated using exact integration. We observe the low-frequency form of the aliased evaluation,
which highlights how the lower energy modes become polluted.

5 Concluding remarks

In this paper, we have analysed different approaches of evaluating quadratic nonlinear terms for
spectral/hp triangular discretisations within the context of polynomial Galerkin approximations. In partic-
ular, we have considered the role of aliasing errors due to inexact quadrature associated with two different
collocation projections; the first involving collocation at the quadrature points on collapsed coordinates
and the second collocating at rotationally symmetric nodal points within the triangle.

The two choices of collocation points are naturally motivated by the typical expansions (collapsed
coordinate modal expansion [6] and nodal, Lagrange-based expansion [7–9]) currently being adopted by
spectral/hp element practitioners. However, the use of collocation projections along the rotationally non-
symmetric collapsed-coordinate system is often seen as esthetically undesirable. This observation therefore
promotes the idea of introducing a collocation projection at rotationally symmetric collocation points.

During our analysis, we have focused on the error associated with the collocation projections rather
than their computational cost. We note, however, that the collapsed-coordinate system allows for the
sum-factorisation technique to be applied which takes advantage of a series of one-dimensional type
operations [6]. Evaluation using sum-factorisation asymptotically results in an O(P3) cost to construct the
Galerkin inner product for all expansion modes in two dimensions. The transformation to and from the
rotationally symmetric nodal points, however, requires the use of a matrix operation which requires an
O(P4) operation in two dimensions. So, for high-order polynomial expansion, using the rotationally sym-
metric points will necessarily be more expensive to evaluate. Nevertheless, we note that for intermediate
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Fig. 5 Aliasing associated with the evaluation of an orthogonal expansion mode φp,q evaluated with a Q1 = 7, Q2 = 6
distribution of quadrature points: The modal energy in the fixed quadrature projection of (a) φ2,2, (b) φ8,8, (c) φ10,10 and (d)
φ12,12. Also shown in (e) is the aliased approximation of φ12,12 where the z-axis scaling is arbitrary. The exact evaluation of
φ12,12 is shown in (f)

polynomial orders, the constant terms in these evaluations can play a significant role in making the cost of
the two approaches computationally similar.

In the Introduction, we raised three questions that the spectral/hp element practitioner would like to
understand. We can now attempt to answers these questions as follows:

1. When is exact or consistent integration absolutely necessary?

– If one has an under-resolved simulation, then inconsistent integration will lead to the addi-
tion (or subtraction) of modal energy on higher modes of the discrete approximation. This
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addition/subtraction is clearly undesirable from both a stability and approximation point of view.
Ultimately, this introduction of consistent integration is only absolutely necessary when the addi-
tion of modal energy leads to numerical instability. However, when an instability will occur, it is
dependent on the type of mathematical problem being discretised and not solely on the spatial
discretisation. (De-aliasing is, of course, regularly used in global spectral methods for this reason
[1]).

2. How does the aliasing error influence my solution?

– For the collocation projection, at the collapsed-coordinate quadrature points, aliasing errors lead
to erroneous addition or subtraction of energy primarily on the higher discretised modes. The
extent of the addition depends upon the quadrature order. Quadrature order fixed at a level to
exactly integrate linear terms means that the mean mode is not influenced by inexact evaluation
of quadratic-type operations. In the numerical tests considered, aliasing errors were significantly
reduced using this approach as compared to the rotationally symmetric collocation method. This
type of collocation projection is, however, not rotationally symmetric.

– Collocation projection at rotationally symmetric nodal points leads to a higher aliasing errors that
influences all modes including the mean modes, and this has implication for conservation. The trun-
cation error from this projection will be rotationally symmetric and therefore will not be influenced
by the rotation of the triangular element.

3. Is there any computationally efficient middle-ground between insufficient quadrature and exact integra-
tion?

– We have not observed any single computationally efficient middle-ground.
– When evaluating nonlinear terms that are known to be of a polynomial form, we have observed

that a collocation projection at the quadrature points is desirable, since it leads to a lower aliasing
error and maintains a conservation property.

– For the projection of an energetic function, which may not be a polynomial, such as initial or
boundary conditions and forcing functions, the symmetry of the rotationally symmetric colloca-
tion projection is desirable. The rotationally symmetric nodal points have also been designed to
minimise the L∞ error, which is also desirable.

We should comment that, in making our comparison between the two types of collocation, we have
presumed that the projection to rotationally symmetric points is undertaken at the same order as the
polynomial expansion. However, there is no reason why the expansion could not be evaluated at a set
of points that would support a polynomial of higher order and then evaluate the nonlinear product. This
point may well deserve further investigation, but would certainly be more computationally expensive than
using the quadrature collocation projection.

Although we have focused our attention on nonlinear-type terms, we highlight that spectral/hp element
approximations of deformed geometries typically involve a nonlinear mapping which introduces a polyno-
mial approximation to the Jacobian into the integrand. Therefore, deformed-element approximation can
also introduce aliasing terms, although typically during high-order mesh generation one tries to minimise
the polynomial order of the Jacobian which helps to alleviate the problem [15].

Finally, we note that the aliasing error has a similar influence to backscatter in turbulence simula-
tions where energy is coupled from the small scales back to the larger scales. This is a concept directly
incorporated in some isotropic turbulence models used in large-eddy simulation (LES). In these types of
simulations, almost by definition, the resolution is typically at best marginal and so a full understanding
of the aliasing error before introducing the role of the turbulence model would seem to be advantageous.
However, as we have seen from Eq. 12, the form of the aliasing error depends not only on the spatial con-
tributions, but also on the modal energy of the approximations. Therefore, not only does a LES backscatter
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simulation require a dynamical turbulence model, but also the evaluation of the aliasing error needs to be
determined dynamically.
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