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Abstract Model checking of safety properties can be scaled
up by pooling the CPU and memory resources of multiple
computers. As compute clusters containing 100s of nodes,
with each node realized using multi-core (e.g., 2) CPUs will
be widespread, a model checker based on the parallel (sha-
red memory) and distributed (message passing) paradigms
will more efficiently use the hardware resources. Such a
model checker can be designed by having each node employ
two shared memory threads that run on the (typically) two
CPUs of a node, with one thread responsible for state gene-
ration, and the other for efficient communication, including
(1) performing overlapped asynchronous message passing,
and (2) aggregating the states to be sent into larger chunks
in order to improve communication network utilization. We
present the design details of such a novel model checking
architecture called Eddy. We describe the design rationale,
details of how the threads interact and yield control, exchange
messages, as well as detect termination. We have realized
an instance of this architecture for the Murphi modeling
language. Called Eddy_Murphi, we report its performance
over the number of nodes as well as communication para-
meters such as those controlling state aggregation. Nearly
linear reduction of compute time with increasing number of
nodes is observed. Our thread task partition is done in such a
way that it is modular, easy to port across different modeling
languages, and easy to tune across a variety of platforms.
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1 Introduction

This paper studies the following question:

Given that shared memory programming will be
supported by multicore chips (multi-CPU shared mem-
ory processors) programmed using light-weight threads,
and given that such shared memory processors will
be interconnected by high bandwidth message passing
networks, how best to design a safety model checker
that is (1) efficient for such hardware platforms, and
(2) is modular to permit multiple implementations for
different modeling languages?

The importance of this question stems from many facts.
First of all, basic finite-state model checking must continue to
scale for large-scale debugging. Multiple CPUs per node are
best exploited by multi-threaded code running on the nodes;
the question, however, is how to organize the threads for high
efficiency and modularity, especially given that thread pro-
gramming is error-prone. Moreover, most parallel versions of
safety model checkers employ hash tables distributed across
the nodes, with new states possibly sent across the inter-
connect to be looked up in these tables (as was done since
the very first model checkers of this kind, namely Stern and
Dill [1] and Lerda and Sisto [2]); we do not deviate from this
decision.

What we explore in this paper is whether, by specializing
the threads running within each node to specific tasks, (1) the
state generation efficiency can be kept high, (2) communica-
tion of states across the interconnect can be performed effi-
ciently, and (3) the overall code remains simple and modular
to be trustworthy.

We have developed a parallel and distributed model che-
cking architecture called Eddy that meets the above
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14 I. Melatti et al.

objectives. A specific model checker following this archi-
tecture, called Eddy_Murphi (for the Murphi [3] modeling
language) has been developed and released. To the best of
our knowledge, such a model checker has previously not
been discussed in the literature. There are a wide array of
choices available in deciding how to go about designing such
a model checker. The decisions involved are how to allocate
the CPUs of each compute node to support state genera-
tion, hash-table lookup, coalescing states into bigger lines
before shipment, overlapped computation and communica-
tion, and handling distributed termination. Many of these
choices may not achieve high performance, and may lead to
tricky code. We are placing a great deal of importance on
achieving simple and maintainable code, allowing the model
checker to be easily re-targeted for a different modeling lan-
guage, and even make the model checker self calibrating over
a wide range of hardware platforms.

While much remains to be explored as well as imple-
mented, Eddy_Murphi has realized many of the essential
aspects of the Eddy architecture. In particular, Eddy_Murphi
employs shared memory CPU threads in each node running
POSIX PThreads [4,5] code, with the nodes communicating
using the Message Passing Interface (MPI, [6]). It drama-
tically reduces the time taken to model check several non-
trivial Murphi models, including cache coherence protocols.

We have also: (1) ported Eddy_Murphi to work using a
Win32 porting of PThreads [7] as well as Microsoft Compute
Cluster Server 2003 [8]; (2) created Eddy_SPIN, a prelimi-
nary distributed model checker for Promela.1 Both
Eddy_SPIN and Eddy_Murphi are based on the same archi-
tecture: while the state generation (“worker”) thread more or
less executes the reachability computation aspects of the stan-
dard sequential SPIN or Murphi, the communication threads
are organized in an identical manner.

In the rest of the paper, we will focus on the internal orga-
nization of Eddy_Murphi, the impact of its performance over
the number of nodes as well as communication parameters
such as those controlling state aggregation, as well as scala-
bility results from a catalog of benchmarks. Since we do not
have the ability to compare “apples to apples” with other exis-
ting model checkers, our contributions fall in the following
categories. (1) We provide a detailed description of the algo-
rithms used in Eddy_Murphi. (2) We report the performance
of Eddy_Murphi across a wide spectrum of examples. In one
case, Eddy_Murphi model-checked a very huge protocol in
9 h using 60 nodes when sequential Murphi had not enough
memory resources to verify it and a disk-based sequential

1 Eddy_SPIN was based on a refactored implementation of SPIN [9]
which did not exhibit the scalability advantages reported here for
Eddy_Murphi owing to its very high overheads; this will be correc-
ted in our next implementation.

Murphi [10]2 did not finish even after a week. (3) In [11],
we provide extensive experimental results, the full sources of
Eddy_Murphi, as well as a Promela verification model that
explicates the detailed organization of its thread and message
passing code.

The rest of this paper is organized as follows. Section 1.1
presents specific design considerations that lead to the selec-
tion of a natural architecture and implementation for Eddy.
Section 2 presents the algorithm used by Eddy. Section 3 has
our experimental results. Section 4 concludes.
Related work: Parallel and distributed model checking has
been a topic of growing interest, with a special conference
series (PDMC) devoted to the topic. An exhaustive literature
survey is beyond the scope of this paper. Many distributed
model-checkers based on message passing have been deve-
loped for Murphi and SPIN. Distributed BDD-based verifi-
cation tools have been widely studied (e.g., [12]). In [13], a
multithreaded SAT solver is described. The idea of coales-
cing states into larger messages for better network utilization
in the context of model checking was pointed out in [14]. Pre-
vious parallel Murphi versions has been devised by Stern and
Dill [15], Sivaraj and Gopalakrishnan [16], and Kumar and
Mercer [17]. As said earlier, a parallel and distributed frame-
work for safety model checking similar to Eddy is believed
to be new.

1.1 Design considerations for Eddy

Our main goal is to have the two threads used in Eddy run
without too many synchronizations. This increases the intra
node parallelism. Furthermore, if thread-binding to CPUs is
available (depending on the underlying OS), then context-
switching overhead can also be reduced. Hence, we design
our two threads to have complementary tasks, thus maxi-
mizing the parallelism between them. One thread will be
responsible for state generation, hash table lookup and error
analysis, while the other one will handle the communication
part, i.e. receiving and sending messages. We also give to this
latter thread the task to group up states to be communicated
in a big coalesced chunk of memory called a line. We expe-
rimentally show that this is far more efficient than suffering
the overhead of sending individual states across.
Terminology: A Nondeterministic finite state system (shor-
tened NFSS in the following) S is a 4-tuple (S, I,A,next),
where S is a finite set of states, I ⊆ S is the set of the
initial states, A is a finite set of labels and next : S →
2S×A is a function taking a state s as argument and retur-
ning a set next(s) of pairs (t, a) ∈ S × A. Given an NFSS
S = (S, I,A,next) and a property φ defined on states (i.e.,
φ : S → {true, f alse}), we want to verify if φ holds on all

2 This version of Murphi is able to limit the performance slowdown
due to disk usage to an average factor of 3.
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Parallel and distributed model checking in Eddy 15

Fig. 1 Explicit breadth—first search

the states of S (i.e., for all s ∈ S, φ(s) holds). The algorithm
in Fig. 1 is what Murphi essentially implements.3 We seek to
parallelize this algorithm based on a number of established as
well as new ideas. Our objective is to support distributed hash
tables as in contemporary works. This assigns each state s to
a home node owner(s) determined by a surjective partitio-
ning functionowner that maps state vectors to node numbers
lying in the range {1, . . . , N }. Kumar and Mercer [17] study
the effect of partitioning on load balancing—an important
consideration in parallel model checking. We consider the
selection of partition functions to be orthogonal to our work.

Given all this, the state generation rate and the commu-
nication demands of a parallel safety model checker very
much depends on many factors. The amount of work per-
formed to generate the successor states of a given state is a
critical consideration. In Murphi, for instance, each “rule” is
a 〈guard, action〉 pair, with guards and actions being typi-
cally coarse-grained. Often, the guards and actions span seve-
ral pages of code, often involving procedures and functions.
In other modeling languages such as Promela and Zing [18],

3 This rather straightforward algorithm is included in this paper to help
contrast our distributed model checker.

the amount of work to generate the successors of a given state
can vary greatly. After gaining sufficient understanding, we
hope to have a user-assisted calibration feature for all model
checkers constructed following the Eddy architecture.

In the rest of this paper, we assess results from our preli-
minary implementation. In Sect. 2 we discuss and describe
our algorithm, by giving the pseudocode (Sects. 2.1, 2.2), the
rationale behind it (Sect. 2.3) and an informal discussion of
its correctness (Sect. 2.4). In Sect. 3, we give and discuss
the experimental results we obtained with Eddy_Murphi.
Section 4 concludes the paper, giving some future research
guidelines.

2 A new algorithm for parallel model checking

We present the Eddy_Murphi algorithms in Sect. 2.1, after a
brief overview of the MPI and PThread functions used.

MPI functions employed in Eddy_Murphi

Message Passage Interface (MPI, [6,19,20]) is a message-
passing library specification, designed to ease the use of
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message passing by end users, library writers, and tool
developers. It is in use in over 60% of the world’s supercom-
puters and clusters. We now present a simplified description
of the semantics of certain MPI functions used in our algo-
rithm descriptions (we also take the liberty to simplify the
names of these functions somewhat).

• MPI_Isend(obj, dest_node, msg_label)
sends obj to dest_node, and the message is labeled
msg_label. Note that this operation is non-blocking
(the ‘I’ stands for immediate), i.e. it does not wait for
the corresponding receive. Here, obj is an object of any
type, dest_node is a node of the computing network,
msg_label is the label message (chosen between state,
termination, termination probing, termination probing
answer and continue). The following always holds:

• if msg_label is state, then obj is a set of states;
• if msg_label is termination probing or continue,

then obj is a dummy variable, since no further infor-
mation is required;

• if msg_label is termination probing answer, then
obj is a structure containing an integer and a boolean,
used in the termination probing procedure;

• if msg_label is termination, then obj is a boolean
value (to be assigned to the global variable result).

• MPI_Iprobe(src_node, msg_label) returns
true if there is a message sent by the src_node node
with the label msg_label for the current node. Other-
wise,false is returned. As the ‘I’ suggests, also this call
is non-blocking. If src_node is ANY_SOURCE instead
of a specific node, then only the message label is checked.

• MPI_Recv(src_node, msg_label) returns the
message sent by the src_node node to the current one
with the label msg_label. We will call this function
only after a successful call to MPI_Iprobe, thus we
are always sure that a MPI_Isend had previously sent
something to the current node with the given msg_
label. Again, if src_node is ANY_SOURCE, then the
current node is retrieving the message without checking
which node is the sender (only the message label is che-
cked).

• MPI_Test(obj) returns true iffobj has been success-
fully sent, i.e. if the sending has been completed. Note that
this is necessary because we are using MPI_Isend, that
performs an asynchronous sending operation. We will call
this function only for test sending completion for states.

• MPI_MyRank() returns the rank or identifier of the
node. We suppose that each node is numbered starting
from 0 and that the node with rank 0 is the root. We
also use function IAmRoot() as a shortcut for the test
MPI_MyRank() == 0.

• MPI_NumProcs() returns the number of nodes in the
MPI universe, i.e. the number of nodes partecipating to
the parallel computation.

Finally, with #MPI_Isend(msg_label) (resp.,
#MPI_Recv(msg_label)), we denote the number of
MPI_Isend (resp. MPI_Recv) performed with the mes-
sage label msg_label. Note that here msg_label is
always state, i.e. we count only the sending operations regar-
ding sets of states.

PThread functions employed in Eddy_Murphi

POSIX PThread [4,5] is a standardized programming inter-
face for threads usage. In our model checker we use the fol-
lowing functions. Note that, w.r.t. the PThread standard, we
again change the function interface to make their usage clea-
rer:

• pthread_create(f) creates a new thread. Namely,
the thread that calls this function continues its execution,
whilst a new thread is started which executes the function
f.

• pthread_exit() terminates the thread which calls it.
• pthread_join() called by the “main” thread (i.e. the

one having called pthread_create), suspends the
execution of this thread until the other one terminates
(because of a pthread_exit()), unless it is already
terminated.

• pthread_yield() Forces the calling thread to relin-
quish use of its processor.

Moreover, PThread also provides a mechanism to suspend
the execution of a thread till when another thread wakes it
up. For the sake of simplicity, in the following we will use
this mechanism with an informal description.

Finally, there are suitable PThread functions for the mutual
exclusion, to be used when accessing to variables which are
shared between the threads.

2.1 Eddy_Murphi Algorithms

In Figs. 3, 4, 5, 6, 7 and 8, we show how the breadth-first (BF)
visit of Fig. 1 is modified in our parallel approach. The most
important variables and data structures used by the parallel
algorithm are shown in Fig. 2. Since we use a Single Program
Multiple Data (SPMD) paradigm, the code listed is executed
on all the nodes of the computational network. Moreover,
each node of the computation network has its own copy of
the variables in Fig. 2. These variables are shared by the two
threads in each node.
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Fig. 2 Variables for each node

Fig. 3 Worker thread (1)

The worker thread is described in Figs. 3 and 4, and the
communication thread in Figs. 5, 6, 7 and 8.

Note that some of the data structures we use are read and
written by both the threads, e.g. the queues Q and Comm-
Queue. In our implementation, these accesses are protec-
ted with the mutual exclusion mechanism provided by the
PThread library. However, for the sake of simplicity, we do
not detail this protection in the description of our threads.

The worker thread is somewhat similar to the standard
BF visit of Fig. 1, but with important changes. One is that
only the computation root node generates the start states.
However, the most important change is in the handling of the
local consumption queue Q.

Fig. 4 Worker thread (2)

In fact, whenever a new state s is generated, and s turns
out not to be an error state, then a states distribution function
(called owner() in Fig. 4) determines if s belongs to the
current node or not. In the first case, the current node inserts
s in Q as well as in the local hash table, unless it was already
visited, as it happens in a standalone BF. In the second case,
s will be sent to the node owner(s) owing it; owner(s) will
eventually then explore s upon receiving it.

However, in order to avoid too many messages between
nodes, we use a queuing mechanism that allows to group as
many states as possible in a unique message. To this aim,
the worker thread enqueues s in a communication queue
(CommQueue in Figs. 2, 4, 5 and 6). Then, the communica-
tion thread will eventually dequeue s from CommQueue and
send it to owner(s). The details of this queuing mechanism
will be explained in Sect. 2.2.

Note that only the worker thread can dequeue states from
the local BF consumption queue Q. On the other hand, the
enqueuing of states in Q is performed both by the worker
thread (see function CheckState() in Fig. 4) and the
communication thread. This latter case happens as a result of
receiving states from some other node (see function Rece-
iveStates() in Fig. 6). Since the states received from
other nodes could be both new or already visited, the worker
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Fig. 5 Communication thread (1)

thread performs a check after having dequeued a state recei-
ved from another node. To distinguish between local genera-
ted states (already checked for being new or not) and received
states (on which the check has to be performed),Q stores pairs
(state, boolean) instead of states.

As for the communication thread, it consists of an end-
less loop essentially trying to receive and send messages. As
stated earlier, there are five types of messages, each carrying:

• states; this kind of messages can be exchanged by every
couple of nodes, where the sender is the node generating
the states and the receiver is the node owning the states.
More details on the sending of this kind of messages are
in Sect. 2.2.

• termination probings; here, we adapt the procedure emp-
loyed with Active Messages in [1], of which we recall the
basic ideas. Namely, in order to state that the global com-
putation is over, all the nodes in the computing network
have to be inactive (i.e. the local BF consumption queue
is empty and nothing can be sent and received, see func-
tion SmthngToDo in Fig. 7) and all the messages which
have been sent by some node must have been received
by some other node. In order to have this latter condition

to hold, we must check if M = ∑
0≤i<N (Si − Ri ) = 0,

being Si (resp., Ri ) the number of state messages sent
(resp., received) by node i and N the number of nodes in
the computing network.
Thus, when the root node is inactive, it queries each other
node i for its Si − Ri . Note that all of the non-root nodes
are not allowed to send any other message after having
answered to a query from the root, thus the number Si is
frozen. Moreover, each node also communicates if it is
active or not (in the sense described above). As for the
root node, it waits for all the answers and computes M ,
then it decides for the termination. Namely, if the result is
0 and all the nodes are inactive, the parallel computation
is indeed over. Otherwise, the parallel computation must
go on, and the root sends a message to all the non-root
nodes to re-enable the sending of state messages.
Summing up, there are three types of messages for the
termination probing, each carrying:

• termination probing requests; these type of messages
can be only sent by the root to the other nodes;

• termination probing answers; these type of messages
are used to reply to the root termination probing reque-
sts, thus they are sent by the non-root nodes to the root;
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Fig. 6 Communication thread (2)

• continuation notifications; these type of messages are
sent by the root to the other nodes when the parallel
computation is not over.

• termination; messages of this kind are always broadcasted
by one node to all the others. Namely, the source can
be either the root node (when the termination probing is
successfully terminated) or any node. In the first case,
all the reachable states have been globally visited, and
the system is correct w.r.t. the invariant property φ we
want to verify. In the second case, there is an error state
somewhere (i.e. a state s such that φ(s) = 0), and the
termination message will be sent by the node which has
discovered it (note that it could be also the root node, and
that more than one error state could be discovered at the
same time by different nodes).

2.2 The communication queue mechanism

A more detailed description is needed for the communication
queue handling (i.e. CommQueue in Figs. 2, 4, 5 and 6). The
purpose of this data structure is to avoid sending each state
separately: on the contrary, it allows to group up as many
states as reasonable, thus reducing the communication ove-
rhead. Of course, grouping is possible only if the destination

is the same, thus there is a communication queue for every
possible destination node.4

Differently fromQ, which is a traditional FIFO queue [sto-
ring pairs (state, boolean)], each communication queue is
organized as an array of arrays of states. We will refer to each
array of states as a line, thus our parallel algorithm depends
on two parameters:

NumLines the number of lines used;
LineSize the number of states for each line.

In Figs. 4, 5 and 6, there are four functions accessing
CommQueue. In order to explain how they work, we have to
say that at every execution time there is only one active line
(i.e. the line on which the states are currently added), while
the other lines status can be:

waiting to be sent these lines already contain all the Line
Size states they are allowed to, and they are waiting to
be sent;

currently being sent also these lines are filled up, but they
have already been passed to MPI_Isend; however, the
sending operation is still not terminated. Following the

4 Indeed, our implementation uses NumNodes − 1 communication
queues per node, while in Fig. 2 NumNodes queues are declared. This
allows to simplify our pseudocode.
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Fig. 7 Communication thread: functions for termination (1)

Fig. 8 Communication thread: functions for termination (2)

MPI standard specification, the contents of these lines
cannot by accessed until the sending operation has been
successfully completed;

waiting to be active these lines contain no states, or have
already been successfully sent, so their content can be
overwritten with new states.
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Fig. 9 Communication queue handling (1)

Thus, three line index lists are maintained, one for each
of these line types; we will call the former list WTBS, the
second one CBS and the latter WTBA. Initially, the first line is
the active one, WTBA contains all the other NumLines− 1
lines and WTBS and CBS are empty.

We are now ready to give the semantics of the four func-
tions manipulating commQueue:

Enqueue_line(CommQueue, state) called by the
worker thread, adds state at the end of the active line
of CommQueue. It also handles the active line filling, by
properly modifying WTBS and WTBA.

Dequeue_line(CommQueue) called by the communi-
cation thread, returns the first line ready to be sent in
CommQueue, and properly modifies WTBS and CBS. If
there are no ready lines, and the worker thread is sleeping,
then the active line is returned.

lines_ready(CommQueue) returns true ifDequeue_
line returns (a line with) at least one state.

Free_lines(CommQueues) calls MPI_Test on all
the lines currently being sent (no matter which queue
they belong). Those lines passing the test are moved to
the WTBA list.

A more detailed pseudocode describing these function can
be found in Figs. 9 and 10. Fig. 10 Communication queue handling (2)
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WTBA Active WTBS CBS(1) (2) (3)

(4)

Fig. 11 Evolution of a line status

Summing up, the evolution of a line status is shown in
Fig. 11, where we use the list acronyms to denote the status
of the lines that are stored in them. As for the events causing
the status transitions, if l is the line under analysis then the
following holds:

1. is triggered when a call to Enqueue_line fills up the
active line and l is the first of the WTBA list;

2. is triggered when a call to Enqueue_line fills up the
active line (which coincides with l)

3. is triggered when a call to Dequeue_line returns l;
4. is triggered when a call to Free_line finds l to be

entirely sent.

Finally, note that the initial state of the automaton in Fig. 11
is Active for the first line in the lines array, and WTBA for
all the others.

2.3 Algorithm rationale

In parallel algorithms for model checking proposed to date,
nodes alternate between state generation, state sending, and
state receiving. With only one thread available, providing
maximal overlap between these activities requires the use of
non-blocking MPI communications amidst the rather intri-
cate state generation steps of a model checker. This can render
the code brittle, non-portable, and ultimately inadequately
concurrent. In contrast, in our design, state generation and
communication are in two threads which, on an increasing
number of hardware platforms, map onto multi-core CPUs.
Through the use of threading and the lines queues, we mini-
mize the time that a worker spends in a waiting state. The
threading itself allows the worker not to be kept waiting for
communication handling. In fact, there are only two other
events that cause the worker thread to wait:

• When the consumption queue is empty (function Par-
Terminate in Fig. 4); in this case, the worker thread
enters a sleeping status, waiting for some other node to
send some new states, or for termination. However, the
wait for new states to be processed could be extended if
the communication threads keep sending small lines (i.e.,
containing too few states) to the other nodes. It should be
clear that it is more convenient to send as many states
as possible in one shot. To achieve this, it is sufficient
to set LineSize to an adequately high number. Note

however that setting this parameter to a too high number
may cause a delay in the sending of the states, thus causing
other nodes to be idle.

• When there are no available lines in WTBA of the com-
munication queue for some node; thus, all the lines are
in WTBS or CBS (in this case, the worker loops in the
while(true) statement of functionEnqueue_line
in Fig. 9). In this case, after a given number of attempts,
the worker thread yields to the communication thread,
so that some line becomes available earlier. Note that
at each iteration the worker also checks if Terminate
has been set as a result of receiving a termination mes-
sage (without this check, deadlocks are possible if a ter-
mination message is received when the worker is inside
Enqueue_lines). This problem can be mitigated by
properly choosing the number of lines and their length.
If there are too few lines, then the worker thread will
often be stopped in a waiting status when trying to submit
states to the communication queues. Thus, the parameter
NumLines should be as high as possible.

However,NumLines andLineSize cannot be set inde-
finitely high, since they are memory consuming: e.g., if 10
bytes are needed to represent a state in a given model to be
verified, then having 1,024 lines each with 1,024 states on a
50-nodes computation will result in about 500 MB RAM
memory requirement for each node. This will reduce the
space for hash table and consumption queue, so affecting
the worker thread performances.

Fortunately, we will show that 1,024 or 512 states are a
good value for LineSize, whilst NumLines can be much
smaller, e.g. 8 or 16. In fact, the number of lines merely needs
to be large enough to allow overlap of the two threads.

2.4 Algorithm correctness

In this section, we give the intuition of why our algorithm is
correct, by informally showing that:

• it is not affected by deadlock neither between threads nor
between nodes;

• it terminates only when the parallel computation is fini-
shed, i.e. when there are no more states to be explored;

• there are no critical runs when the threads access on the
shared variables.

As already stated in Sect. 2.1, we avoid critical runs on
shared variables between threads by using proper (and cor-
rect) mutual exclusion mechanisms, i.e. the ones provided by
the PThread library.

As for the remaining correctness issues, we discuss them
individually:
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Table 1 Experimental results for the parameter tuning, carried out on a Linux cluster located at the University of Utah with 128 nodes each with
two 2.4 Ghz Intel Xeon processors

Forty nodes Twenty nodes Ten nodes

NL LS time % NL LS time % NL LS time %

32 1024 0.023984 32 1024 0.046594 16 1024 0.106446

16 1024 0.023989 2 1024 0.046677 32 1024 0.106805

8 1024 0.024058 16 1024 0.046717 8 1024 0.106833

2 1024 0.024136 8 1024 0.046884 1 512 0.107657

Each node has two GB of PC2100 SDR SDRAM. The nodes are connected with a GB Ethernet network with MPI latency < 25 µs and MPI
bandwidth of 100 MB/s

Thread deadlock freeness The two threads running in
parallel on each node have to synchronize in only two
points, i.e.

1. when a new state has to be enqueued on a line, but
there are no available (active) lines. In this case, the
worker thread has to wait till the communication
thread has freed some lines by sending them;

2. when there are no states in the BF consumption queue,
thus the worker thread has to wait for the communi-
cation thread to receive some states and put them in
the queue.

However, the communication thread never waits for the
worker thread,5 thus, for point 1, eventually some line is
sent and the worker may continue, and for point 2, even-
tually some state or a termination message is received (or
termination is stated, if the current node is the root).

Nodes deadlock freeness The correctness about this issue comes
directly from the fact that each node essentially behaves
(as a black-box) as in the algorithm in [1], exploring its
states and sending across the states owning to someone
else.

Termination We use the termination algorithm in [1], which
is known to be correct.

3 Experimental results

To assess the feasibility of our approach, we implemented our
parallel algorithm within the model checker Murphi [21]. We
will call the resulting verifier Eddy_Murphi [11].

We use Eddy_Murphi to run different kinds of experi-
ments. All the experiments we run are computed as an average

5 Indeed, one can think that the communication thread has to wait for
the worker thread when a state received from some other node has to be
enqueued, but the BF queue is full. However, we use known efficient
mechanisms to swap the BF queue on disk, thus this is unlikely to
happen, and we did not consider this case in our pseudocode. In our
implementation, it is an error for a node not to be able to store all the
states in the queue, and the parallel computation is killed.

over at least two runs, and were repeated until an acceptable
SD was reached (all details provided at [11]).

Initially, we tune the communication parameters, i.e. the
number of lines (NumLines), and the size of each line
(LineSize). To do this, we use the protocol sci [15], avai-
lable within the standard Murphi distribution, modifying its
parameters in a way such that it has now a fairly high number
of states (approx. 2.7 × 106). We then run different veri-
fications on sci, changing the values for NumLines and
LineSize; these values, as already said in Sect. 2.3, are
chosen to be low for NumLines and high for LineSize;
we also change the number of nodes. The results are in
Table 1, where NL stand forNumLines, LS forLineSize
and Time % is the ratio between the execution time for
Eddy_Murphi and the execution time for standard Murphi.
In Table 1, we report only the four best configurations for our
parameters, ordered by decreasing time. It is clear that the
best results are obtained with 1,024 states for each line, and
with a number of lines between 8 and 32. To keep memory
occupation small enough, we choose 8 lines with 1,024 states
each.

Next, we use these parameters values to compare the per-
formances of Eddy_Murphi with (standard) Murphi. In these
experiments we use five protocols from the Murphi distri-
bution, in order to be able to compare the performances of
Eddy_Murphi vs Murphi. These protocols have been chosen
in such a way that their number of states is high enough to
make the use of parallel model checker meaningful; indeed,
they all have between 106 and 108 states.

The results are in Fig. 12, where we graph the speedup
obtained by Eddy_Murphi w.r.t. Murphi (the inverse of

Table 1, i.e. Murphi time
Eddy_Murphi time ) as a function of the number of

compute nodes. Figure 12 shows that we obtain a nearly
linear speedup on almost all the examples, and that on all
examples we are considerably faster than standalone Mur-
phi. Moreover, note that the protocol peterson is the only
one not showing a linear speedup: running the verification on
40 nodes is worse than on 30. However, this is due to the parti-
cular state partition function we use (i.e. the implementation
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Fig. 12 Experimental results
for performances comparison
with standard Murphi, carried
out on the same cluster of
Table 1
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we chose for function owner in Fig. 4): on this protocol, for
30 nodes we have that each node owns about n

30 states, but
this does not hold for 40 nodes. Here, we do not address state
partition functions performances, since this is an orthogonal
problem to our work.

Note that a previous parallel version of Murphi was already
developed [22]. We could not re-run the parallel Murphi
implementation of [22] because it was developed for the Ber-
keley NOW hardware which is unavailable. However, when
using an MPI porting (reported by [16]), we do not observe
the speedup mentioned in [22], and it is always much slo-
wer than standard Murphi. This is probably due to the fact
that now CPUs are faster, and that the clusters network used
in [22] are optimized for message passing, which is not the
case with MPI, that privileges the portability. Parallel Murphi
implementations were also reported by [17], but we were not
able to obtain a reliable version of this code.

Finally, we present a very large protocol whose verifi-
cation is not feasible on a standalone machine. This is the
case of the FLASH protocol [23] with five processors and
two data values as parameters. This protocol has more than
3×109 states, and its verification with standard Murphi would
require a huge amount of RAM memory (assuming 40 bits
for each state in hash compaction, we would need 15 GB of
RAM for the hash table only), as well as an unacceptable
computational time. On the other hand, by using a disk ver-
sion of Murphi [10], the computation lasts more than 1 week
(we do not know the exact amount of time, but a projection
based on the first part of the verification leads to a probable
execution time of 3 weeks). However, we successfully com-
pleted the verification of this protocol with Eddy_Murphi
on 100 nodes in approximately 10 h on a parallel cluster
with 256 nodes (512 CPUs) interconnected with Myrinet and
GigE.

4 Conclusions and future works

We have developed a novel algorithm and an associated fra-
mework for shared memory and distributed memory model
checking of safety properties, called “Eddy.” This is the
first such model checker that we are aware of. Eddy meets

many goals that we had originally set forth. One important
goal was to ensure a clean separation of concerns between
next-state generation and communication during distributed
model checking. This, in turn, has several advantages. One
advantage is that it makes the code easier to understand, vali-
date, and modify. It also helps make the model checking
framework more generic by allowing us to replace the next-
state generation logic (e.g., switch over from, say, Murphi to
SPIN or Zing) without changing the communication mana-
gement part very much. Another advantage is the increa-
sed concurrency possible when the next-state generation and
communication management activities are run as two sepa-
rate threads. Last but not least, the two threads running per
node of Eddy can exploit the two separate CPUs of dual-
core CPUs that will become widely available soon. These
threads will then have lower or no context-switch overheads,
and also utilize the cache memories of the CPUs much more
effectively. Eddy optimizes communication in several ways:
(1) by not sending individual states, but rather much more
bulky units that collect several states before shipment, the
interconnection utilization vastly improves. (2) by perfor-
ming multiple asynchronous sends in an overlapped manner,
the overall throughput improves.

Our experiments confirm that the Eddy algorithm is quite
robust and scales extremely well on a wide variety of nodes
as well as communication parameters such as those control-
ling state aggregation. In particular, large instances of the
Stanford FLASH protocol that cannot be verified through
sequential model checking on powerful uniprocessors can
now be verified quite fast using multiple nodes. The measu-
rements reported in this paper indicate the actual speed-ups
obtained as well as the impact of line sizes and the number
of lines on performance.

As part of future work, we hope to combine other opti-
mizations with Eddy. Some of the ideas under consideration
are: (1) the use of other ways to record visited states per node,
including disk-based algorithms [10], and the use of minimal
automata [24], (2) the use of thread-pools if multiple CPUs
are available per node (e.g. hyper-threaded multi-cores), and
(3) self-calibrating versions of Eddy that set its communica-
tion thread parameters based on the measured network cha-
racteristics.
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Finally, it would be interesting to provide some mathe-
matic formulas and/or estimations of the impact of the Eddy
parameters on the performances. Apart from the length and
the number of the lines of states (determined experimentally
in Sect. 3), this would be interesting also for the number of
unsuccessfull attempts the worker thread does to enqueue
a state on a line, before yielding the communication thread
(Sect. 2.3).
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