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We present a sensitivity analysis of the optimization of the probe placement in radiofrequency (RF) ablation which
takes the uncertainty associated with biophysical tissue properties (electrical and thermal conductivity) into account.
Our forward simulation of RF ablation is based upon a system of partial differential equations (PDEs) that describe the
electric potential of the probe and the steady state of the induced heat. The probe placement is optimized by minimizing
a temperature-based objective function such that the volume of destroyed tumor tissue is maximized. The resulting
optimality system is solved with a multilevel gradient descent approach. By evaluating the corresponding optimality
system for certain realizations of tissue parameters (i.e., at certain, well-chosen points in the stochastic space) the
sensitivity of the system can be analyzed with respect to variations in the tissue parameters. For the interpolation in
the stochastic space we use an adaptive sparse grid collocation (ASGC) approach presented by Ma and Zabaras. We
underscore the significance of the approach by applying the optimization to CT data obtained from a real RF ablation
case.

KEY WORDS: stochastic sensitivity analysis, stochastic partial differential equations, adaptive sparse
grid, heat transfer, multiscale modeling, representation of uncertainty.

1. INTRODUCTION

The interstitial thermal destruction of lesions with rddéguency (RF) ablation has become a widely used technique
for the treatment of tumor diseases in various organs. Thik woncentrates on the RF ablation of lesions in the
liver. In RF ablation, a probe containing some electrodegvts connected to an electric generator is placed in the
malignant tissue. Upon turning on the generator, the tisshieated by an electric current due to its Ohm resistance.
The heat causes the coagulation of proteins and consegtisatle cells die. The treatment is considered successful
if all malignant cells are completely destroyed includingpéety margin of about 0.5-1 cm (cf., e.g., [1]).

The success of an RF ablation treatment depends heavilye@ntitomical configuration and on the experience of
the attending medical doctor. As blood vessels in the vigioi the lesion transport away the heat which is generated
by the electric current, there is the risk that tumor celtsselto blood vessels are not destroyed. As a consequence,
local recurrences may result, and indeed there are reagrmetes of up to 60% reported in the literature [2]. At
present, it mostly depends on the experience of the attgnditiologist, surgeon, or gastroenterologist to selezt th
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therapy parameters, i.e., the placement of the probe argkttiags of the electric generator such that the local blood
flow does not hinder the success of the therapy.

These expositions motivated many medical scientists duhia last decade to investigate RF ablation scenarios
using mathematical modeling, simulation, and optimizatibhe common goal is to understand the biophysical pro-
cesses involved in this treatment form and to allow for trenping of an optimal treatment for an individual patient
in advance which would yield the greatest therapy quality surccess.

The mathematical/biophysical models of this scenario wiiave been developed so far result in systems of
partial differential equations (PDES) [3—6]. These sys@fiPDEs allow for the numerical simulation of RF ablation
yielding a prediction of the outcome for a given placementhef probe and power of the generator. Clearly, these
models depend on the physical properties of the tissue,their electrical and thermal properties such as eledtrica
and thermal conductivity, heat capacity, density, and nedatent. The full complexity of the biophysical processes
leads to a fully nonlinearly coupled system of PDEs and &rttigebraic equations for the states of the system, which
is difficult to treat numerically [7].

The modeling of tissue properties poses a particular angdiéecause they depend on the current state of the tis-
sue, e.g., the electrical conductivity depends on the teatpes, the water content, and also on the grade of degiructi
of the tissue [3, 8, 9]. In the work presented here we consid@mplified version of the model, thus restricting the
investigations to the steady state and tissue propertl@shvdo not depend on temperature, water content, and coag-
ulation state of the tissue.

Moreover, the tissue properties vary interindividuallgdan fact they are not exactly known. Values used in
simulations are, for example, often based envivoexperiments of animal tissue [3]. In addition, experiménta
measurements are always accompanied with a certain rargeoo$. Consequently, truly patient-specific models for
RF ablation are not currently feasible, and the questicsearwhether results obtained through simulations can be
used efficaciously in the clinical setting. In our view, theue of patient specific models and simulations is in fact the
most challenging task for mathematical modeling and sitraridan medicine.

For practical purposes, more relevant than the simulatfoRFoablation is the inverse problem of finding an
optimal placement for the RF probe such that a given lesigorispletely destroyed. This optimization problem has
been investigated by the authors with thorough mathenmatigaoaches that minimize certain objective functions [10
11]. The role of the objective function is to measure the fyiaof a given probe placement; a quantification of
quality provides insight into the deviation of the achiet@uperature from a desired temperature. Clearly this il
the use of one of the aforementioned models for forward sitiaris of RF ablation.

We end up with a nonconvex PDE-constrained optimizatioblera for which we cannot expect the existence of a
unigue global minimum. A mathematical analysis of this mytiation problem is extremely challenging and probably
even unfeasible given its underlying complexity. Our nuissrexperiments show that the energy landscape has many
local minima and that a delicate tuning of the numerical athm and the parameters and stopping criteria involved
is necessary. From the perspective of the medical apgitatiowever, this is not a drawback: For the medical doctor
it is not relevant whether an optimal probe placement is umigr not. From their perspective, what is important is
whether a proposed optimal placement can be incorporatedstice, whether it conflicts with other constraints of
the therapy or the patient’s case and—most importantly—tuodwst the therapy success is with respect to variations
in the configuration and deviations in the actual practicabp placement.

In this paper we make first steps toward combining the optition of the probe placement with the analysis of
the uncertainty that is associated with material pararagtey., we investigate the sensitivity of the optimal probe
placement with respect to variations in the material patarseThus, we do not consider the electric and thermal
conductivity to have fixed values, but to be probabilisticdistributed. The ranges for these parameters can be taken
from experiments which are documented in the literatur@stimations of the measurement error can be taken into
account. Substituting the probabilistically distributelues into the PDE model for the simulation of RF ablation
yields a system of stochastic partial differential equai(SPDES).

The goal of our investigations is to sensitize the attendieglical doctor of the uncertainties associated with the
optimal probe placement and thus reveal the robustnesshefragy plan with respect to the intrinsic patient-specific
biological and anatomical variations, which cannot be gfiad exactly. Using our results, it would be the task of
the medical doctor to adjust the therapy plan (use multiptées, different generator settings, or even a different
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type of treatment) if the sensitivity analysis would showosgibly huge variation of the best probe placement, i.e., a
nonrobust optimal placement, and thus a low confidencelleahierapy can be performed with greatest success.

There are several different methods to discretize the agiithcomponent of this system. Probably the most popu-
lar approach is the (rather slowly converging) Monte Cairlaugation, which is a nonintrusive sampling methodology
that requires a large number of randomly chosen samplingptd completely cover the stochastic space. We have
instead elected to follow in the footsteps of the stochdistite element framework advocated by Ghanem and Spanos
[12] and subsequent refinements and additions of this sémviork for the discretization of the stochastic system
arising in this problem. In the Related Work subsection weige will situate the variants of the methodologies that
we have employed in the context of what has already been pegjtheoretically and demonstrated in the context of
other uncertainty quantification problems. For the purpagfehe current discussion, we merely note that we have
elected to employ the adaptive sparse grid collocation atefh3] (a modification of the global spectral finite element
method that combines the power of collocating methods wigtsbme of the theoretical properties of temeralized
polynomial chao$ramework [14]).

By evaluating the SPDE system for certain realizations efrttaterial parameters in a collocating sense, we can
analyze the sensitivity of the system with respect to vianetin the coefficients of the PDE system, i.e., with respect
to variations in the material parameters. To compute thisifeity analysis we use the above mentioned adaptive
sparse grid collocation (ASGC) Method with piecewise ntinkiar ansatz functions for the adaptive interpolation of
the stochastic space. A mathematical analysis of the smesshof our coupled SPDE system with respect to the
stochastic parametrization (in the manner as describgd e [15]) is very difficult or rather impossible due to the
high complexity of our problem. Hence, although other mdtiiogies that stem from the original work of Ghanen
and Spanos may provide superior convergence propertiesy timgl assumption of sufficient smoothness within the
stochastic space (e.g., polynomial collocation method4&}), we decided to employ the ASGC methodology with
the understanding that it provided reasonable convergextes (superior to Monte Carlo) while providing relative
robustness in the presence of possible irregularitiesarstbchastic domain. In an empirical study of this sort with
realistic medical data, this trade-off between theorétioavergence and robustness is very important to the practi
tioner.

1.1 Related Work

The numerical simulation of RF ablation (and related thértharapies) has been considered by many authors
[3, 4, 6, 17, 18]. A particular focus has been emphasizedaxmimtg the modeling of blood flow and its effect on
the temperature distribution during RF ablation [5, 17,. T%]e optimization of the probe placement through a min-
imization of theL? distance between the achieved temperature and a critioglet@ture inside the tumor was first
considered by the authors in [10]. A modification of our optiation that uses shape derivatives instead of central
differences for the calculation of the descent directioarier to increase the robustness (i.e., the starting podtet-i
pendency) of our optimization algorithm will be published11]. In [20] Villard et al. approximate the complicated
optimization with PDE constraints by a simple geometridrotation which uses templates for the elliptical shapes
of temperature isosurfaces generated by RF probes. Butz[@lh who focus on the optimization of cryotherapy,
but consider RF ablation as well, also use ellipsoidal agiprations of the ablation zone, which they have obtained
from the literature and additional experiments. Moreoaeglated form of therapy (interstitial ultrasound) hasrbee
optimized in [22]. In [23] Seitel et al. present a trajectpignning system for percutaneous insertions that extends
the work of Villard and Baegert [1, 24] and determines ratedsible insertion zones/trajectories via hard and soft
constraints using the concept of pareto optimality. Howelrere the ablated tissue region and its coverage of the
tumor seems not to be under consideration (i.e., part ofdfiegnstraints) any more. Kapoor et al. [25] formulate the
task of optimizing the number and placement of multiple REdhe probes as mixed variable optimization problem
with hard and soft constraints, which they solve with a dene-free class of algorithms called mixed variable mesh
adaptive direct search. In contrast to Seitel, et al. [28]yttake into account the optimal thermal ablation coverage
but again use ellipsoidal-shaped approximations of sipgie ablation zones, which are then combined with the
resulting necrosis. In particular, they do not take intocactt the cooling effect of large blood vessels close by the
tumor. In [26] Chen et al. optimize the RF probe’s inserti@pith and orientation under the assumption of a given,
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fixed entry point of the probe. They use an objective functiat depends on the survival fraction, which is predicted
by a finite element computation of the Arrhenius formalisot,Wwhich is also approximated as a field that transforms
rigidly with the electrode during the optimization. To thesbof our knowledge none of the above approaches consid-
ers the uncertainty that is associated with tissue paraméte to their patient- and state dependence, as well as due
to measurement errors.

The main stochastic theoretical underpinning of this werdignerally referred to aeneralized polynomial chaos
Based upon the Wiener-Hermite polynomial chaos expan&@hgnd combined with finite elements in the global
stochastic finite element method (GSFEM) of Ghanem and Spdr®), generalized polynomial chaos seeks to ap-
proximate second-order random processes by a finite limeabmation of stochastic basis functions which are global
in nature. Once one has chosen an approximation space afrtdem process of interest, a solution within that space
can be found by solving the stochastic partial differergjatem of interest in the weak form. Because of its analogy
with the classic Galerkin method as employed in finite elesighis methodology is often referred to as the gener-
alized polynomial chaos-stochastic Galerkin method (§®&-{14]. It has been applied as a method for uncertainty
guantification in the field of computational mechanics fouaiber of years and has recently seen a revival of inter-
est [28-35]. This approach has also been applied succlgssitilin the biological modeling world. In [36], Geneser
et al. employed the gPC-SG approach to evaluate the effégtmiations and uncertainty in the conductivity values
assigned to organs in a two-dimensional electrocardidgsapulation of the human thorax.

Although the stochastic Galerkin method provides a solithemmatical framework from which one can do analysis
and can derive algorithms, it is not always the most comjartatly efficient means of solving large problems. Nor
is it the case that one always has the freedom to rearchiteictdurrently available deterministic solver to employ
gPC-SG. To address these issues, nonintrusive combisaifostochastic Galerkin and Monte Carlo methods that
decouple computations through the choice of interpoldtimgjs have been developed [14].

For the sensitivity analysis of our optimization with resp® changes in the tissue parameters, we use a stochastic
(collocating) finite element approach advocated by Ma aruhras called the adaptive sparse grid method (ASGM)
(see [13, 37-39]). Within the gPC literature, this is somes referred to as multielement generalized polynomial
chaos method (MEgPC) [40, 41]. In [13], a nice delineatioti emmparison of these methods in the historical context
is provided; we recommend that the reader the introductfothat work for a more complete exposition on the
interconnection between the various methods.

The optimization problem considered in this paper lies anftbld of nonlinear optimization subject to infinite di-
mensional constraints given by a system of (stochastitigbdifferential equations. For an overview of the methledo
ogy we refer the reader to [42]. The consideration of unaastén inverse problems and optimization problems with
PDE constraints has not yet received much attention in thenaanity. The estimation of parameters in the presence
of noisy measurements has been treated with the Bayesemeitfe approach, which uses known information about
the parameters to creadeoriori distribution [43-45]. A first approach to stochastic ineepsoblems is presented by
Narayanan and Zabaras in [46], where the solution of théwasiiT inverse heat equation is obtained with the method
of polynomial chaos.

Gunzburger et al. analyze an SPDE-constrained stochastieniinn boundary control problem in [47]. They
prove the existence of an optimal solution and of a corredjpanLagrange multiplier and estimate the error for
the finite element solution of the optimality system. Fipalfiou et al. [48] investigate an optimal control problem
constrained by elliptic SPDEs, where the expectation odieking cost functional is considered. Again, the existence
of an optimal solution and Lagrange multiplier is proven amareover error estimates for the discretization of the
probability space and for the finite element discretizatibthe spatial space are derived. A stochastic collocation
approach to the solution of optimal control problems withckiastic PDE constraints is presented in [49]. In this
work the authors derive a gradient descent method as welsaguential quadratic program for the minimization of
objective functions of tracking type, which involve stostia moments of the state variables.

1.2 Paper Organization

The paper is organized as follows: In Section 2.1 we revievditerministic model used for the simulation of the
electric potential and the temperature profile during R&td. We discuss the uncertainty of tissue properties;lvhi
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come into the PDE model as parameters in Section 2.2. Coestigwe extend the deterministic PDE model toward
a stochastic PDE (SPDE) model taking into account stoataistidistributed parameters and states. In Section 2.3
a review of the optimization of the probe placement will beegi including a description of the objective function,
a multiscale gradient descent approach for its minimiredi® well as our approach to the analysis of the sensitivity
of the optimal probe placement. Section 2.4 is devoted tadtberetization of the stochastic PDE model and the
optimization with a composite finite element (CFE) approaclthe physical space and the adaptive sparse grid
collocation (ASGC) method in the stochastic dimensionsstMav results and different sensitivity analyses based on
a true RF ablation case and corresponding segmented CTnda¢éefion 3. Finally we draw conclusions in Section 4.

2. SIMULATION AND OPTIMIZATION OF RF ABLATION

In this section we present a PDE model for the simulation efRir ablation and for the optimization of the probe
placement. The model is parametrized by a set of biophyga@meters which characterize the electric and thermal
conductivity of the tissue under treatment. We will discth&suncertainty associated with the values of these param-
eters and discuss how to incorporate them into an analoystans of stochastic PDEs. The actual optimization of
the probe placement is discussed as well as the analysi® cktisitivity of the optimal placement with respect to
variations in the material parameters.

We consider the computational domain to be a cutididc R? in the three-dimensional space with boundary
B = 90D in which a tumorD; C D and vascular structured, C D are located. Furthermore, we assume that a
monopolar RF probe is applied iR, whose positiorp € D (of the active zone’s center) and directione S? =
{z € R® : |z| = 1} are variables (over which we would like to optimize laterpeTsubset oD that is covered by
the probe is denoted by, and the subset covered by the electrode is denoted.bycf. Fig. 1). Note that these
sets depend op anda. In practical applications the sef$, and D, are determined from segmented image data in
advance, e.g., by the methods presented in [50]. Moreavexhieve the desired safety margin we can consigjer
to be a dilated version of the original segmented tumor mask.

2.1 Deterministic Simulation of RF Ablation

Let us first describe how to compute the heat distributiorhanttssueD for a fixed position and orientation of the
probe, that is, for fixed,, andD.;. Note that here we work with a reduced and simplified modeld&gails on the
full model of RF ablation we refer the reader to [7].

The forward simulation model consists of two parts. The ficshponentis the electrostatic equation that describes
the electric potential of the tissue which is induced by tleeteic potential of the electrodes. The second component

D,
B N D
Q

p Del
D

5

FIG. 1: Schematic sketch of the considered configuration idemtifyihe different geometric regions specified in the
text. Note thatD,; C D, where both sets depend pranda.
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is the heat equation which models the distribution of terapge once the heat source from the electric potential is
known.
The electric potentiap : D — R of the RF probe is modeled by tledectrostatic equation

—divjo(z)Vd(z)] =0 in D\ Da, 1)

with appropriate boundary conditions (see below). Here,D — R is the electric conductivity of the tissue. It is
known that the electric conductivity also depends on thepnature, the water content, and the protein state of the
tissue. More refined models for the forward simulation tdke behavior into account [7, 51]. However, since our
approach is a first step towards an optimization of the prddesment (i.e., the inverse problem), we do not consider
this dependence and merely investigate the spatial vamiafic = o(z). For the electrostatic equation (1) we consider
the inner boundary condition

=1 on Dy , (2a)

which fixes the potential on the electrode; below, we aregtirscale the heat source resulting from the electric field
according to the actual voltage which is imposed by the gaoerFurthermore, as outer boundary conditions for (1)
we consider the Dirichlet boundary condition

$=0 on B . (2b)

Due to the electric resistance of the tissue, the poteditinluces a heat sourc¢grr. However, the magnitude of
this heat source depends on the power of the generator andpledance (resistance) of the tissue, which leads to a
decreased energy input if the impedance increases. To rtloselependence on the characteristics of the generator,
we take the equivalent circuit diagram shown in Fig. 2 intocamt [3]. This yields a characteristic curve of the
generator of the type presented in Fig. 2. The curve showslgépending on the resistance of the tissue the effective
power applied to the tissue is in general smaller than thammax power of the generator.

To provide the reader with a better perspective on how thidimear relationship impacts the system, we provide
more details on the coupling: The impedartef the tissue is given by

2
R= u With  Pioral = / o|Vo|? dz, (3)
Ptotal D

whereU = 1V is the potentialh of the electrode [cf. (2a)]. According to the equivalentait diagram shown in
Fig. 2, the effective power of the generator is now given by

P — 4PsctupRRI (4)
g§= —2 "
¢ (R+Ry)?”’
Feg [W]
inner resistance Ry
of the generator P, setup T 7 -
impedance R (= resistance of
the tissue) 150+

|
I
I
I
I
I
I
I
I
|

| 50+
voltage Up probe 0 ; ; ; ; ; —RI[D
0 Rr 200 400 600 800 1000
FIG. 2: Left: Equivalent circuit diagram for the calculation of tlsealing factor which is needed to convert the
unscaled powelP into the effective heat soura@gr. Right: The characteristic curve of the generator shows the
dependence of the effective powkry on the impedanc® of the tissue, while?; and Py are fixed (hereR; =
808, Psetup = 200 W).
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whereR; is the inner resistance of the generator &hd.,,, is the value setup at the generator’s control unit. Finally,

the heat source is given by
Pcﬁ'
xr) =
QRF( ) Ptotal
which is proportional to the square of the magnitude of tleeteic fieldV¢$ imposed by the electric potentidl
The heat distributiofl” : D — R is modeled by the steady state of tiieheat-transfer equation

—divIA@) VT (2)] = Qre(r) + Qpet(z)  in D. (6)

Here,A : D — R is the thermal conductivity of the tissue. Again in our firspstoward optimization, we only take
spatial variation of the heat conductivity into account.rigloefined models also consider the dynamics of the heat
distribution and the dependenceXobn other states (water content, protein state) of the sygtem

Known values of the electric conductivity and of the thermal conductivity for the above model are based
mostly on experiments performed on, e.g., animal tissueadaweric human tissue. The fact that this kind of tissue
has different electric and thermal properties than naitiez tissue as well as the associated experimental measatem
errors are the sources for the parameter uncertainty tedmagstigated in this work.

The right-hand side of (6) consists of the source (heatifgy due to the electric current and the sink (cooling)
Qpert due to the blood flow in the vascular structufeés We assume that there is no heating on the outer boundary of
D, i.e., we choosé® to be sufficiently large (cf. also Section 3). Thus, we coasttie Dirichlet boundary condition

o(@)|Vo(z)*  in D, (®)

T = Tbody on B. (7)

To model the cooling effects of the blood perfusion, we useemiated variant of the approach of Pennes [52]:

VvesselPblood Cblood, 1T = € Dy,
Vcap Pblood Cblood; else

Qpert () = —v(2) [T(2) = Tooay], V() = { (8)

Thus, the coefficient : D — R depends on the relative blood circulation raggsse[s '] of vessels andrcap[s—l] of
capillaries, respectively, as well as on the blood densjiysq [ke/m] and the heat capacityood [J/ kg K] of blood.
Here, we assume that the whole tissue is pervaded by cgpiasels and thus is exposed to their cooling influence.
For simplicity, the coefficientcapis also assumed on the probe, i.e., withip, and D.;. We emphasize that for the
modeling of blood flow we have again purposely chosen a venpls approach.

Remark

The modeling of perfusion has been investigated by manyoasi{b3—-57]. Sheu et al. [58] investigate the influence
of different heat transfer coefficients between tissue @s3dels. These authors conclude that with increasing ablati
time, the relative influence of cooling through blood adia@ttdecreases, whereas the capillary/diffusive cooling
increases. Obviously, the unknown heat transfer coeftigibatween tissue and blood flow pose another important
source of uncertainty in the simulation of RF ablation. Wepbasize that the stochastic finite element method is
capable of handling these uncertain heat transfer coeffgia the bioheat transfer equation. However, in the pitesen
work we did not investigate this uncertainty. We also not taking into account uncertainty in flow simulations
with, e.g., the Navier-Stokes equations, is a more invotept: which has been investigated in, e.g., [35].

Remark

In the literature it is common to estimate the damage inflictethe tissue through the temperature profile by the
Arrhenius formalism [59]. This formalism considers a higtmtegral over a certain function of the temperature, thus
it takes into account that already at low temperatures @mange of a high fever, i.€l, > 43°C) destruction of tumor
cells takes place. A different approach considers a ctitezaperature, i.e., the temperature at which (according to
the Arrhenius formalism) the tissue is destroyed after grosure time ofl s. Clearly, using this approach is much
simpler; however the size of lesions is underestimated.

In summary, the states : D — R andT : D — R are defined by the boundary value problems

—divjo(z)Vd(z)] =0 in D\ D, (9a)
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—div]A(2)VT (2)]+v(z)T(z) = Qrr(z)+V(2)Thoay  IN D, (9b)
with boundary conditions (2) and (7). Note that the two emunstare coupled through the te@iy.

2.2 Parameter Uncertainty

The PDE model for the simulation of the heat distributionadié®d in the last section involves the electric and
thermal conductivity of the corresponding tissue. As weehdiscussed in the Introduction, these quantities cannot
be determined exactly. The material properties depend emliysical state of the tissue, and moreover they vary
interindividually (i.e., from patient to patient) and incfahey also vary from day to day depending on the patient’s
physical constitution. The range of values, which is giverthe literature, underlines this uncertainty, e.g., from
[3, 4, 6, 9] we learn that even in native liver tissue we have

0=0.17 S/m—0.60 S/m, A =0.47 W/Km—0.64 W/Km. (10)

These values have mostly been obtained froritro experiments on cadaveric human tissue or animals, and they a
certainly furthermore associated with realistic measemrerrors ofl0% or more.

Taking the uncertainty of the values of material paramétgosaccount leads to the question about the dependence
of the forward simulation of RF ablation and also about thesgiity of the optimal probe placement (see Section 2.3)
with respect to variations (either due to uncertainty coesxin the material parameters. Discussing this questes d
not improve the accuracy of the simulation or the optim@atas numerical verification is a matter divorced from the
answer to this question); rather, it enables us to quantiy the uncertainty of the electric and thermal conductwiti
affects (or propagates through) the numerical resultse@as the results obtained by our sensitivity analysis, @réut
goal is in the direction of patient-specific modeling anddation whereby we will (hopefully) be able to optimize
the confidence of the success of the therapy.

In the following, we extend the model for the simulation of BBlation presented in Section 2.1 such that it
incorporates the uncertainty in the material propertiespv¥ésent a review of the optimization of the probe placement
and discuss different variants to analyze the sensitivith® optimal probe placement in Section 2.3. In Section 2.4
we review the adaptive sparse grid collocation method, wvhie use in this work.

Let (2, .4, 1) be a probability space expressing the behavior of the tHexomaluctivity and electric conductivity
where() is the event spaced C 2% the o-algebra, and: the probability measure. In the following we consider the
case that the tissue parameterandA are not fixed to particular (deterministic) values, but eatle within a range
of possible values. Thus, an eventin our probability space consists of a particular choicehefrnaterial properties
(o,A). The physical parameters can be considered as random figdsssible in terms of random variables and
characterizable by their probability density function®B).

For the medical problem of interest, let us assume that we tree main types of tissue present in our computa-
tional domain: native liver tissue (n), tumor tissue (t)ddmood vessels (v). For each of these tissue types we assume
that the distributions of andA are controlled by uniformly distributed independent ramdariables.

Following [14], we know that we can represent any generabiseé@rderandom procesg(w), w € 2 in terms
of a collection of random variablés = (&3, ... &5 ) with independent components up to some truncation error. Fo
certain processes and choices of basis functions, thisdtiom error can be shown to be zero given particular values
of N. In general, as with spectral methods, we rely on the fadtititlhe process is smooth, given sufficiently large
N the size of this truncation error will be small. Ideally, omeuld attempt to provide bounds on the magnitude of
this term; for our optimization problem, the magnitude asttruncation error is very difficult to quantify and can
only indirectly be inferred by monitoring the convergenteuwr hierarchical collocated refinement scheme presented
subsequently.

Here, the stochastic process under investigation is thmapprobe placement as it is obtained by the algorithm
that will be described in the next subsection. Since thengdtprobe placement depends on the material parameters
andA, any uncertainty associated with those parameters willégedincertainty in the optimal probe placement. Note
that in the following we will also refer teandom fieldsas stochastic processes.

International Journal for Uncertainty Quantification



Sensitivity of Optimization of Radiofrequency Ablationtime Presence of Material Parameter Uncertainty 303

Remark

Here and in the following we assume that the distributiomgHe three-different components of the material parame-
ters are independent. Note that from the mathematical \oewfi is very convenient to assume independence since it
allows us to construct tensor-product Hilbert spaces ostihehastic domain. Note independence may not be justified
from the anatomical perspective, since, e.g., the diffecenductivities are correlated through the water contént o
the tissue. However, there exists a mathematically rigofoonlinear) mapping which transforms a set of random
variables into a set of independent random variables. Hsisarch falls into the area of numerical representation of
non-Gaussian processes, which remains an active resesctfilB].

To describe the electric field emerging from the RF probendshas a random field, let us consider the vector
of random variable€® = (£9,£7,8°%) € Ty C R3 (i.e., N = 3) which describes the uncertainty in the electric
conductivity of the native tissue, the tumor, and the vesa®e model the stochastic fietdz, £”) for the uncertain
electric conductivity by

on(ET) if z € Dy,

o(x,£%) = { 0y (£0) if x € Dy, (11)
oy (&9) if x € Dy.

To model the uncertain distribution of heat we proceed siryilby considering® = (£}, &}, &}) e T'y C R3.
The three components @f* represent the heat conductivity in the native and maligtisstie as well as in the
vascular structures. As in (11) we define the overall heatlaotivity Az, E"). We will henceforth consider our input
parameters to be of the form(z, £°) andA(x, £") given by & = (£°,&") e T distributed over the ranges as,
e.g., given in (10), wherE :=Tc x 'y C R3 x R3..

Having introduced the uncertain electric conductivity,ce@ formulate atochastic electrostatic equatiemilar
to (1) and (2): Find a stochastic fiefez, £°) such that

—div[o(2,£°)Vdp(2,E£°)] =0 ae.inD\ Dg x Ty ,
Gz, %) =1 ae.onDy x Ty | (12)
¢(z,£€°) =0 a.e.ondD x T, .
Straightforwardly, we can proceed to incorporate the ua@®y into the remaining components of the model that

have been presented in Section 2.1. This yields a stoctisdtidor the heat source and stochastic processes for the
total and the effective power, i.e.,

Qur(0,£%) = 7 ME L o £) (Voo ) (13)
o 2
Pan(e?) = S E L e = T Pan(®) = [ ot £)Ve ) . 14

We may also define thstochastic heat equatidoy analogy to (6) and (7). Since the source term on the right
hand side depends on the solution of the stochastic eléatimsquation, the temperature distribution is going tabe
random field that depends on bdf andg’, i.e.,

—diviA(z, EMVT (2, )] = Qrr(z, &%) + Qper(2,E) a.e.in D x T,

(15)
T(.I', Ev) = Tbody a.e.onogD x F,
whereg = (£°, a)‘). The sink ternt) e, in (15) is modeled as in Section 2.1
Qpcrf(I, E.) _ —V(I) [T(L E.) _ Tbody], V(x) _ VvesselPblood Chlood  TOF € Dy, (16)
Veap Pblood Chlood else
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2.3 Optimizing the Probe Placement

The aim of the RF ablation therapy is the complete destruaiothe lesion including a sufficiently large safety

margin. Thus, for a given lesion it must be decided by thenditey doctor how to place the RF probe such that this
goal is achieved. In this section we review and extend afegeavbrk [10, 11], which uses mathematical optimization
to find the best probe placement. Our exposition in this sadti the basis for an analysis of the sensitivity of the
optimization with respect to the uncertainty related tortraterial parameters.

2.3.1 Objective Function

In the following, we focus on an objective function which raeees the “quality” of a given temperature distribution,
i.e., which estimates the success that would be obtainddanifiven probe placement. For reasons of stability and
robustness of the optimizer, we base our objective funatidirectly on the temperature profile. Thus, we relate
our approach to the notion of critical temperature, havingnind that we (systematically) underestimate the size of
lesions (see our remark above).

For the optimization we consider an optimal ablation regulie a maximum volume of destroyed tissue, which
is obtained by high temperatures inside the lesian Thus, to maximize the volume of ablated tissue we would
therefore want to maximize the lowest temperature insiddehion including a safety margin. Since we do not aim
at an optimization of the generator powRy.,, it does not make sense to directly consider the deviatimr &
critical temperature. In fact, the critical temperaturemdoonly change our chosen objective function by a constant
term (see [11]).

To be more precise, let us remember that admissible prolaensders lie in the spadé := D x S2. Thus, we
aim at finding the optimal probe placemépta) such that

(p,a) = argmax min T'(x) = argmin (— min T(:v)) ,
(p,a)EU €Dy (p,a)eU €Dy

whereT depends on the probe placeménta). This objective is designed such that the smallest temper#tat is
attained inside the lesion is maximized. Sinceifia-function is not differentiable it is popular to approxiradt by
a smooth function. In the following we use the approximation

= 1 1
f(r):= < log (m . exp [ — o«T'(z)] d:v) a7)
for someox > 0. Note that fora — oo, the integran@xp[—«T'(z)] converges to zero slowest for the smallest value
of T'(x). Thus, for largex the integrand can be approximated by the constant vadpe- o minp, 7'). Consequently
for largea the integral reduces @' log[|D¢|~" [}, exp(—aminp, T) dz], andf(T) simplifies to— minp, 7.

With our choice of approximation (17), which uses the expia¢function, we seek an equal heat distribution
inside the tumor, since therewith the lowest temperatwig@the tumor is penalized most. The faator 0 models
the grade of penalization of a nonuniform temperatureibigtion inside the tumor.

We can writef (T') = K + o« f(T) with K = o~ log(1/|D;|) and thus arrive at

f(T) :=log ( / exp [ — oT'(z)] d:c) ; (18)
Dy
which is a simpler objective function thgh Consequently our optimization problem becomes
(p,a) = argmin f(T) = argmin log < / exp [ — o«T'(z)] da:> . (29)
(p,a)eU (p,a)€EU Dy

Formally, our objective functiorf defined above is a function of the temperature distribufioBut 7' depends
on the heat sourc@rr, andQrr depends on the optimization paramefera) =: « € U. We can handle these
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dependencies by expressing our optimization problem &sifel we seek a positioning such that the cost function
given in terms of the positioning' (u) = f o 7 o Q(u) is minimized, where

Q(u) = Qrr, T =T (Qrr).

Obviously, in certain situations the uniqueness of a miring configuration is not guaranteed, e.g., for spherical
tumors. This situation may also occur in practice for hepatmors, which in general have a spherical-like shape.
However, such a symmetry is broken by the consideration wbending blood vessels and their cooling effects.
Moreover, for practical reasons the uniqueness of a solusaot needed and even local minima give important
information about good probe and generator configurations future model we will incorporate constraints for the
optimization parameters which break any existing symmetgn further. Such constraints are given by anatomical
structures (bones, colon, diaphragm) that must not be pretttiuring the ablation.

2.3.2 Multiscale Gradient Descent

For the minimization of the objective function&l we use a gradient descent method. Since the orientaties on
the two-dimensional spheig? and the computation of a gradient on the sphere would invadwee difficulties (in
particular because there is no basis of the tangent spageatfa that depends continuously ai), we replacd/ by
the open set }
U=Dx (R*\{0}) DU,

and use in each step of the gradient descent method the fiwojec

PD><S2 :UHUa (pva)H (p7a/|a’|)
We also define a continuation of our solution oper@antoU that does not depend on the lengthuofia

Q(p,a) = (Q o Pstz)(p,a) = Q(paa/|a|)'

Letting the superscript € N denote the iteration count, we can describe the particogaedients of our gradient
descent method as follows:

e Initial value. Setn = 0, and choose an arbitrary probe positionifige U as an initial guess.

o Descent direction. Then, in each iteration step> 1, calculate the descent directia¥ € U from the current
iteratew™ as an approximation of D, F'(u") = —D,[f o T o Qrr(u")] = —Drf - Doy, T - D,Qrr(u™) (See
Algorithm 1).

o Step size. Determine the step siz& > 0, such that the resulting new iteraté ! = Pp, g2 (u™ + s"w") is
admissible, i.e., fulfillsu" ™ € U and reduces the value of the objective functiofu™*!) < F(u™). Using
the projectionPp 52, we assert that the new orientation lies on the sphere.

e Stopping criterion. The iteration continues until the differenpe**! — v | falls below a given threshol@.

To accelerate the gradient descent algorithm, we use astalki approach, i.e., we start with the optimization on
a coarse grid and use the solution as the initial guess onragfiiite In Algorithm 1 we show the complete multiscale
optimization algorithm in pseudo-code. For each lé\gke lines 3—25 of Algorithm 1) of the computational grid the
optimization is performed as described above. The desderdtidn w™ in line 7 of Algorithm 1 is computed with
help of a conjugate gradient calculation of the correspagédjoint equation (see [10, 11]) and a determination of the
derivative of the heat souréggr with respect to the probe positionimgvia shape derivatives (see [11]). Specifically,
we interpret the probe placement U as a vector of shape parametgrs R® such that the computational domain
D depends om, i.e., D = D(p) and in particulaDe; = D.i(p). Then we can calcula®,, Qrr as

Pcﬁ' 2)
oV
Ptotal | ¢)|

Op, Qrr = Op, (

Ri—R  U* \ |Vo| Peg
2 » )
R(R + Ri) Ptotal> Pz T VoV (G, ¢)

total Ptotal

=0 [—2/ oVoV (0, ¢)dx (Pcﬁ' + P.g
D
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Algorithm 1 Multiscale gradient descent for the optimization of theh@placement

1.0« Iy > Start with levelly
2: Initialize @.
3:whilel < L do

4: w0 —a > Initialization
5 n<0
6. repeat
7: w™ — =V, F(u") = =D, f{T[Qrr(u")]} > Compute descent direction
8: if n =0 then > Initialize step size
9: sY — (2|w°|)~tdiam(D)
10: else
11: s" — 2w Y (Jwn]) sl
12: end if
13: m <0 > Reset counter
14: u™tl — P(u" + s"w™) > Determine step size
15: while F(u!) > F(u™) oru™*! ¢ U do
16: m«—m+1 > Increase counter
17: if m = mpax then
18: STOP
19: end if
20: s — s" /2 > Bisect step size
21: u" Tt — P(u™ + s"w")
22: end while

23:  until [untt -y <0

24: g «— ynt!

25: l+—1l+1 > Proceed to next level
26:end while

Here, the derivativé,, ¢ of the potentialp with respect to the shape parametgis calculated by the following PDE
system obtained by a transformation of the potential eqodfi) with boundary conditions (2):

/ o(VO,, d,Vu)ydr =0
D\Del

Op b =—(Vb,2p,) V€ dDa.

For the integration in the objective function we use a tefsoduct trapezoidal rule. The search for the optimal
step size is performed with a variant of Armijo’s rule (cf.gg [42]) (lines 8—22 of Algorithm 1). Note that for each
test in the while-condition (see Algorithm 1, line 15), arakation of the complete system of PDEs (9), and the
objective function are needed. To obtain representatibttseeovascular structur®, and of the lesiorD; on coarse
grids we use a bilinear restriction frequently used in nguidi methods [60] with an additional threshold for the tumor
and the vessels to obtain sharp boundaries.

For more details of the multiscale gradient descent appreac refer the reader to [10]. There, we have also
verified the multiscale optimization process on the basanortificial example where the optimal probe placement
is qualitatively known.
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2.3.3 Sensitivity Analysis

From an appropriate approximation of the stochastic psdescribing the optimal probe placement (see Section 2.4),
we can analyze the sensitivity of the system to perturbatiothe material parameters.

An indicator for the robustness (or more precisely the dibbhavior) of the optimal probe placement with respect
to variations in the material parameters is obtained byectianalysis of the probability density function of the prob
placement. For the sensitivity analysis of the optimal probientation (which has values on the two-dimensional
sphere) we perform a visualization of the PDF by a color cgdihthe sphere (see Section 3.3). The PDF of the
optimal probe position is a mappi®} — R which could be visualized through volume rendering. Howgaeleep
understanding and analysis of the respective three-diowads?DF could be obtained only by an interactive three-
dimensional display of the data. Moreover, in general, tB& i3 not calculable analytically; one has to evaluate the
stochastic process or its approximation at a large numbsaumpling points to get an appropriate approximation of
the PDF. For more details we refer the reader to [61] and itiquéar to [62].

An analysis of the stochastic moments is more accessibli¢,can be obtained more easily from the discrete
representation of the stochastic process bypassing ttgtraotion of the PDF. Thus, for the sensitivity analysishef t
optimal probe position, we consider the covariance mafrtk@joint distribution of the probe position’s components
For the joint distribution of the coordinates of the optimedbe positiorp(&) = [p. (&), 5y (&), p-(&)] we have

Covp] = (COMpe. ), yer .y WHETE  COVp. pul = E[(pe — Elpel)(pu — Elpa)] (20)

for all pairs of coordinates,d € {z,y, z}. The covariance matrix is a symmetric (in this c8se 3) matrix that
guantifies how the coordinates of the optimal probe posdi@coupled through the random variabldf this matrix
were diagonal, the coordinates would be independent. Tvariemce matrix can be visualized as an ellipsoid, whose
principal axes are aligned with the matrix’s eigenvectard whose extension is scaled with the square root of the
corresponding eigenvalues. In Section 3 we will use exdgityway of visualizing the sensitivity of the probe positio

In fact, this approach can be interpreted as a principal corapt analysis of the PDF: large ellipsoids imply that the
distribution is wide (has a high variance) in the correspogdirection; small ellipsoids indicate narrow distrilmuts;
cigar-shaped ellipsoids indicate (approximate) independ of two components; etc.

Remark

We emphasize that special care must be taken concerningebeagy of the numerical solvers involved. In [63] Kai-
pio and Somersalo discuss that limited numerical accusdce, discretization errors) can sometimes (effectieel
ineffectively) be interpreted as the behavior of a randootess and thus as sensitivity of our problem. Consequently,
in our numerical experiments shown in Section 3 we have sestibpping criteria of the iterative solvers as well as
for the optimization loops appropriately.

2.4 Discretization

We now discuss our approach for both the spatial discratizatf the problem and the stochastic discretization of
the problem. For the spatial discretization we will use a posite finite element approach and for the stochastic
dimensions an adaptive sparse grid collocation method hwilapplied. As collocation methods are nonintrusive
discretization variants for stochastic problems, we cagilye@&stimate the effort needed for our computations as
the number of collocation points times the effort for oneedetinistic optimization. In the setting described below,
the computational effort for one deterministic optimipatiis about 2 h on a standard contemporary PC. For the
sensitivity analyses shown in Section 3 we needed severalrbd hours of computational time; however, as the
adaptive collocation approach can be parallelized, dtthigvardly computed clusters can accelerate the analysis
enormously.

2.4.1 Spatial Discretization

For the discretization of the elliptic boundary value pmhbb (9a) and (9b) with boundary conditions (2) and (7)
we use a composite finite element (CFE) approach on the thireensional uniform Cartesian grids induced by
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the underlying medical image data. Composite finite elerhertdtions are characterized by an enriched set of basis
functions, which take into account particular propertieghe solution that are consequences of interfaces or domain
boundaries. In fact, the CFE basis functions allow one tolvekinks of basis functions or supports of basis functions
which are not resolved by the computational grid. Thus, Caf lee seen as a kind of adaptivity which is built into
the set of shape functions in contrast to the classical glaghavity with local mesh refinement.

In the simulation and optimization of RF ablation, discukkere, the main advantage of CFEs over the classical
finite element approach is a better resolution of the RF gsajEpmetry. In fact, with CFEs the geometry of the RF
probe is built into the shape of the basis functions, whighdg high resolution of the probe even on structured grids,
allowing for a combination of the adaptivity and the effiagrof structured hexahedral grids. Furthermore, in our
numerical experiments we determined that good resolutitimeoRF probe has a significant impact on the robustness
of the optimization of the RF probe placement, which will lescribed later. For details on the CFE method we refer
the reader to [64—66].

For reasons of analogy we restrict the following descriptmthe problem (9b) which we assume to be adjusted
to homogeneous boundary conditions in the usual way. Warotita weak form by multiplying the corresponding
PDE with a test function. Integration by parts leads to

(AVT,Vv)a.p + (VT,v)2,p = (QrF + VIbody, V)2,D (21)

for all test functions), where(-, -)2, p denotes the.? scalar product oveb.

In a second step we discretize this variational problem byricting (21) to a finite dimensional spab# con-
sisting of piecewise trilinear, globally continuous sh&yections of our finite element space. Note that our CFE basis
functions are adapted on the boundary of the RF probe, sathhé probe’s geometry is approximated sufficiently
well on the grid.

Denoting the vector of nodal valuésof the temperature with = (t1,...,t,)T and the vector of nodal values
of the right-hand side witi¥ = (ry,...,7,)7, we finally have to solve

(LA + Mp) £=17
where thestiffness matriXL[A] and themass matriXM[v] are given by
Lij[Al = AV, Vbs)a p and  Mi;[v] = (vibi, dj)2.p -

Since the matriXL[A] + M[v]) is symmetric and positive definite, this system can be sobsee.g., a conjugate
gradient (CG) method.

2.4.2 Stochastic Discretization

For the sensitivity analysis as discussed in the previotagoaphs, we have to traverse through the stochastic space
and evaluate the optimal probe location for various retiima of the uncertain material parameters. Roughly speak-
ing, we are thus analyzing the response surface of the oppirabe location as a function of the uncertain material
parameters.

As briefly described in the Introduction, a multitude of apgrhes has been developed for the discretization of
SPDEs. Here, we follow the adaptive sparse grid collocajmproach by Ma and Zabaras [13]. This approach com-
bines the sampling character of collocation methods witkpédity in the stochastic space, thus imposing low regu-
larity assumptions on the underlying stochastic process.tbD the sampling nature we can easily use the optimization
algorithm presented above.

A classical and very popular sampling approach is the Mo@igoqGMC) method. Thereby/ realizationsg,;,
j=1,..., M of the vector of random variablé&sare generated. Consequenfly,deterministic problems are solved,
which are obtained from the deterministic optimizationtgeon (19) by considering the realizations of the electrid an
thermal conductivitys andA corresponding té,;. Finally, the statistics of the corresponding samples efdaptimal
probe placemeni(&;) = [p(&;),a(&;)] is analyzed to yield the desired sensitivity analysis. THe &pproach is
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known to be extremely robust and requires no assumptionseosrnhoothness of the underlying stochastic processes.
However, the convergence is very slow and goes asymptigtigiah 1/+/M.

Other sampling approaches for the solution of SPDEs aredb@séhe construction of interpolating functions.
Analogous to classical interpolation and quadrature, soethods are either used to perform the integration over the
stochastic space in order to evaluate the stochastic memoétite process under investigation, or they are simply
used to construct an approximation of the stochastic psoces

Itis popular to use a set of quadrature poi{’ﬁ@}?:1 which lie on a sparse grid in the stochastic space (see Fig. 3,
left) generated by Smolyak’s algorithm [67]. In Smolyakgaithm a one-dimensional interpolation rule is extended
to multiple dimensions with a special tensor-product cartston. For the choice of the one-dimensional collocation
points there are several other options, among them eqaidigbints (Newton-Cotes formula), or the extrema of the
Chebyshev polynomials (Clenshaw-Curtis formula). Forabeptive collocation approach followed here (cf. [13]),
the use of equidistant points is more convenient as it allmv®asier local refinement of the stochastic grid (see
Fig. 3, right).

In the following we will explain the adaptive sparse gridloohtion approach in one dimension. For the ease of the
presentation we will treat the actual pair of random vagahi (&), A(&)] used in our application as an element of a
one-dimensional stochastic space, accepting the reguttisuse of notation. Let us assume that Smolyak’s algorithm
yields an interpolant for the optimal probe location

Qi Qi
a'(E) =Y _a(E))ni(E) =Y S[o(E)),ME]))Ih}(E) (22)
j=1 j=1

on a set of collocation point{sij- }?;’1. Hereh?(a};) = §;;, denotes the corresponding set of nodal basis functions and
S denotes the solution operator for the deterministic oation problem from the previous sections, i€£,) =
S[o(&}),A(E})]. The indexi refers to the level of refinement of the sparse Smolyak ged, we have a sequence of

interpolationsi?, which are constructed with varying numbé}s of collocation pointsX? := {E,é-}Qi 1 € N. Due

. . J=1
to the construction of the sparse grids the sets of collooatoints are nested, i.eX;’ ¢ X*+!.
The key to the adaptive sparse grid collocation lies in tredyesis of the incremental interpolant

Al(w) =a" —a' L.

Using the nestedness of the collocation points and (22) viseaat
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FIG. 3: Two-dimensional sketch of a distribution of grid nodes aixd with Smolyak’s algorithm (left) and of a
uniform, adaptive distribution of nodes for the two-dimiemsl stochastic interpolation with piecewise multilinea
hierarchical ansatz functions (right).
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Ay = > (SloE)AED - a@ T E)) M= Y win, (23)
a;}exi\xi—l a;}exi\xi—l

wherew? = S[o(E}),A(E))] — @'~1(&}) is the hierarchical surplus. Starting witll = 0, we can construct the
interpolanti’ at leveli from the interpolant at level — 1 using the hierarchical surpluses and the associated basis
functions. Due to the enumeration of the collocation poimthe sum of (23) the basis functions will be visited in a

hierarchical way (cf. Fig. 4) and we arrive at a hierarchieglresentation of the interpolant in the form

aE)=>" > whnke). (24)

k<i a?exk\xk—l

With this representation we can straightforwardly evadihé moments needed for the sensitivity analysis as disduss
in Section 2.3.3. For the expectation we get

Bl =Y > w;?/ﬂhf(a) du, (25)

]qgi a?exk\xk—l

where the integrals of the basis functidr@%can be computed in advance, such that the evaluation of ffectation
can be accelerated toward a simple weighted sum of the bigcat surpluses. To obtain higher order moments or the
covariance from (20) we first need to express the product(fi‘e- E[u¢])?], respectively(p. — E[p.])(pa — E[pa])]

in the hierarchical representation (24) and then evalts&xpectation with (25).

In the case of interpolation in a multidimensional stocttaspace, hierarchical difference spaces must be con-
structed, which lead to the analog definition of the hiermalsurpluses. We refer the reader to [13] for details on the
multidimensional adaptive sparse grid collocation applnoén Fig. 3 (right) we show an adaptive hierarchical sparse
grid resulting from the construction described above.

For the construction of an adaptive sparse grid, the hibigaitsurpluses are used as indicators for the smoothness
of the interpolation. Given a threshaldhierarchical basis functioni% are refined (i.e., the corresponding collocation
points in the sparse Smolyak grid are added) if the corredipgrierarchical surplus’, fulfills ||w’|| > . According
to [13] the hierarchical surpluses tend to zero with indregakevel; if the procesa: is smooth. At discontinuities the
magnitude of the hierarchical surpluses will not decreasedughly speaking indicate the size of the jump.

Note that in the application of the adaptive sparse gricbcallion method to the optimal probe placement problem
we are working with two different thresholdsande. As described abov@,is the criterion steering the stopping of the
optimization algorithm, thus it can be interpreted as amesy associated with the optimal probe locations obtained
by the algorithm. We also have the smoothness indicatehich steers the refinement of the adaptive stochastic grid
We emphasize that these criteria cannot be chosen indepindet we need to respect a compatibility condition. In
fact, as the stopping criterighcan be seen as an indicator of uncertainty or error for theagabfu at the collocation
pointszj-, we neect > 20 in order to avoid meaningless refinement of the adaptivensistac grid.

h;

r

FIG. 4: A set of piecewise multilinear, hierarchical ansatz fumesiin one dimension is shown.
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3. RESULTS

In the following we will evaluate the concepts presentechimmpreceding sections on the basis of a real RF ablation
case. From CT data, which have been segmented with the nodtigydrom [50], we obtain the geometrical descrip-
tion of the computational domain. This includes the repnes@n of the tumor as well as the vascular system in the
vicinity of the tumor. The tumor has main axes of approxintatgth 45.9, 41.9, and 36.2 mm. We place itinto a com-
putational domairD of extent60 x 60 x 60 mm3, which is discretized with a fine grid 6> cells. For the multiscale
optimization we consider one coarser grid haviag cells. Our grid width is thué = 60/64 mm = 0.9375 mm.

We consider the material parameters to be uniformly disteith based upon values found in the literature [3, 4, 6].
In our computations the thermal conductivity= (A, A¢, Ay ) is distributed uniformly in [0.47,0.64% [0.51,0.77]
x [0.51,0.54] [W/Km] and the electric conductivity = (o, 0y, 0y) is distributed uniformly in [0.17, 0.60k
[0.64, 0.96]x [0.67, 0.86][S/m)]. For the perfusion term (8) we takga, = 0.006067 s~ andvyessei= 0.05s~*. The
value for the blood density isoiood = 1059.0 kg/m?, and the heat capacity of blood is settRod = 3850.0 J /kgK
(cf. Section 2 and [3, 6]). In our study, all these latter eglare taken to be deterministic, although they are clearly
associated with measurement errors and uncertainty as well

A monopolar probe with radius.2 mm and with an electrode length 80 mm is applied. The electric generator
has an inner resistance & 2, and it is set up to a power 80 W.

For the ASGC discretization of the vector-valued positiod arientation of the probe positioning, we need two
stopping criteria for the placemept as well as for the direction. In our computations we sef, = 1mm and
€. = 5°, which means that the refinement continues until the hibieat surpluses of position and orientation are
less than mm and5°.

As settings for the deterministic optimization, which igfpemed at each collocation point, we ugse= 0.5
to regularize the objective functiofi in (18). The stopping criteria in the optimizer are setdip = 107 ¢h =
9.375 x 10~"mm and®, = 0.057° for the probe location and the probe orientation, respelstiFor the iterative
solvers used in the computation of the forward problem, fle deterministic PDE, we use an accuracy of machine
zero 1015 for the decrease of the residual. For the optimization, tiigal probe position is always located at a
distance ofl1.25 mm in each coordinate direction from the centerof The initial orientation isa = (5,2, 3),
projected on the sphere (i.e., normalized to lengthVith these settings the optimization of the probe loaafior
one sampling point in the stochastic space typically takesie2 h on a standard desktop PC with an IfeCore 2
Duo™ 2.93 GHz processor and GB RAM. For the computations shown here we have used paraltbtinde on 48
processors. Thereby the collocation samples have beenutechipy different nodes running the original deterministic
code with the respective material parameter values. THeatmin of the individual results and the computation of the
hierarchical surpluses has been managed by a master process

Remark

To guarantee that the size of our computational domain doemfluence the result of the optimizer, we have per-
formed a comparison between forward simulations usingcBigt or Neumann boundary conditions@b. Both
temperature profiles differ at most loy45 K [Kelvin] in the interior of D, i.e., at locations which are more than
10 mm apart fromdD. Closer to the boundary, i.e., for locations which lie inmgrivith radiusl0 mm aroundoD,

the temperatures differ more. In particular, the largesiat®n of 4.93 K appears at the outer boundatp. We
conclude that in the vicinity of the lesion the particulaoie of boundary condition does not influence the result
significantly.

3.1 Sensitivity of the Temperature

To start with the sensitivity analysis we investigate tHiuence of the uncertain material parameters on tempetature
which is determined by the forward model (see Section 2.&jelve do not take the ASGC discretization into account
but perform a simple uniform sampling of the six-dimensistachastic space for stochastiandA by 36 = 729

grid points, such that ai® combinations otr andA at the interval boundaries and at the middle of the interasds
considered. We then determine the values ahd\ for which theZ>°-norm (maximum values) of the temperatures
differs most.

Volume 2, Number 3, 2012



312 Altrogge et al.

We find that we get the largest difference between the temhpesafor the paramete(s,, o, oy, An, At, Ay) =
(0.17,0.64,0.67,0.64,0.51,0.54) and (oy, 0%, 0y, An, Ae, Ay) = (0.60,0.64,0.86,0.47,0.77,0.51). In Fig. 5 we
show the50°C isosurface of those temperature realizations (left anddfe)das well as th&g0 K [Kelvin] isosur-
face of the difference of these temperature profiles (right)

The results match our intuition, since for a large value @f thermal conductivity\; within the tumor region
(Fig. 5, middle) the high temperature around the probe si&ufaster away than for a small valuexgf From the
results we see a significant difference in the shape o3@R€ temperature profiles, in particular close by the vessels
(see left and middle image of Fig. 5). Moreover, we see tratalgest temperature difference appears around the end
of the probe’s electrode which lies close by the vasculatesygsee right image of Fig. 5). Further, we notice that
obviously there exist material parameter settings for Whicomplete ablation of the tumor is not achieved (Fig. 5,
middle). This further motivates the consideration of theerial parameter uncertainty for the planning of RF ablatio

3.2 Sensitivity of the Optimal Probe Location

In the following three subsections we will focus on the attgmsitivity analysis of the optimal probe location and
optimal probe orientation. If we consider the full comptgxaf the underlying material parameter uncertainty, weshav
to analyze and visualize a six-dimensional stochasticesftacee dimensions each forandA), which is mapped to
the five-dimensional spadé of admissible probe placements. Thus the visualizationaaradysis of PDFs of the
probe placement is not straightforward, as they are magfAg> U — R.

Moreover, we need to be aware that in the optimization we asdiy with a very complex nonconvex energy
landscape, which is characterized by local optima and plyssonexisting and nonunique global optima (see also the
discussion in Section 2.3). In our numerical experimenesfaund that the optimization of the probe’s position only
(keeping its orientation fixed), and the optimization of grebe’s orientation only (keeping its position fixed) have
fewer local optima than the optimization of both quantité¢she same time. Thus, in the following we first analyze
the sensitivity of the optimal probe position and oriemtatseparately (i.e., independent of each other) (see Figs. 6
and 7) and in a further step then consider the sensitivith@eftombined optimization of both quantities (see Figs. 8
and 9).

So let us first keep the probe’s orientation fixed at the starialue and just optimize for the location. From
the hierarchical representation (24) we compute the firsherd and the covariance matrix using (25) and (20). As
described in Section 2.3.3 we compute its eigenvalues gahetctors yielding an ellipsoidal representation. In the

20 s o),

FIG. 5: Left and middle: We show th&0°C isosurface of two different temperatures obtained foredéht realiza-
tions of o andA. Right: Visualization of the30 K isosurface of the difference of the two temperatures, wi6s€
isosurfaces are presented on the left. In all images theslassystemD,, is displayed in beige-brown and the tumor
lesion Dy is displayed in a transparent gray color. Moreover, allusfaces of temperatures are displayed in trans-
parent yellow. Hence, the superposition of the gray tumarthe yellow isosurface of the temperature appears in a
greenish color.
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sl

FIG. 6: Visualization of the sensitivity of the optimal probe pamit through an ellipsoidal representation of the
covariance matrix. The sensitivity with respect to vadas in the electric conductivity (left, blue ellipsoid) and
thermal conductivityA (left, pink ellipsoid) are shown. In addition, we show the R®Bbe drawn at the mean of the
corresponding placement’s distribution for stochastigndA, respectively (middle). Moreover, the sensitivity with
respect to a larger variation of(i.e., o € [0.1, 3.0} [S/m]) is visualized (right). As before, the vascular syst&m

is displayed in beige-brown and the tumor lesiopis displayed in a transparent gray color.

XD

FIG. 7: Visualization of the sensitivity (i.e., the PDF) of the apél probe orientation through a color coding of
the sphere. As shown by the color ramp on the right, greerrsatdicate unlikely orientations, whereas red colors
show likely orientations. On the left we see the sensitiviiyh respect to variations i within the rather small
ranges presented at the beginning of Section 3. In the leftlimimage we additionally draw the RF probe at the
mean of the placement’s distribution. On the right imagese&the sensitivity with respect to larger variations of
(i.e.,0 € [0.1, 3.0 [S/m]) for level 10 (middle, right) and for the previous refinemkavel 9 (right) again with the
RF probe drawn at the mean of the placement’s distributi@in&he previous figures, the vesséls are displayed

in beige-brown and the tumdp, is displayed in transparent gray.

visualization shown here we draw the ellipsoid centereti@ekpected probe location; the principal axes are aligned
with the eigenvectors; and the radii are scaled with the ot of the eigenvalues.

In Fig. 6 we embed the ellipsoid in the surrounding anatomthefCT data set of a real RF ablation case. We
visualize the sensitivity of the probe position (with fixedemtation) with respect to variationsén(left, blue ellipsoid)
andA (left, pink ellipsoid). The RF probe is drawn at the expdotabf the corresponding placement’s distribution
for stochastia andA, respectively (middle).

We see that our model (i.e., our optimal probe position) showsignificant sensitivity with respect to variations
in o or A, since the corresponding ellipsoids are very small (seedrlgft). Moreover the expectation of the placement
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FIG. 8: Visualization of the sensitivity of the optimal probe pamit (left, representation of the covariance matrix
via blue ellipsoid) and orientation (middle right, colagiof the sphere) with respect to variationsooin the ranges
described at the beginning of Section 3 and obtained for dmbined optimization of the probe’s position and
orientation up to leved. In the left middle image we see the corresponding sensitieisults for the optimal probe
position and for the last three refinement levels (Ieued, and9) of the stochastic grid. In the right image we see
the sensitivity result for the optimal probe orientatiomdar the previous refinement level (lewl Again as in the
previous images, the segmented vascular sygber(if shown) is displayed in beige-brown and the segmentdadres
Dy is displayed in transparent gray.

fe

ot

FIG. 9: Visualization of the sensitivity of the optimal probe pasit (right) for the combined optimization of position
and orientation and with respect to variationsoindA at stochastic refinement levél On the left we show the
corresponding result for the combined optimization withyorariations inc, again at refinement levél

S |

for stochastiar differs from the expectation for stochashdy only 0.2 mm (see Fig. 6, middle). Also, for simulta-
neous variations i andA we did not obtain a significant sensitivity in our numericgberiments. Consequently the
results are not shown here.

In a second step of this numerical experiment we assumehbathges for our material parameters are further
accompanied by measurement errors and carry additionatiamtty because they are taken from animals or cadaveric
tissue. Thus, we consider = (o, 0y, 0y) € [0.1,3.0]* [S/m]. From these calculations we see a slightly larger
sensitivity of the optimal probe position (see Fig. 6, right

In summary, our results show that the sensitivity of theroptiprobe position with respect to uncertainties in the
electric and/or thermal conductivity is small when anakgzan optimization of only the probe position with fixed
orientation. However, the sensitivity of the optimal prqimsition with respect to tissue parameters increases for a
combined optimization of position and orientation (seeti®ac3.4). Moreover, we have to keep in mind that results
may change for different patient data, the analysis of wis@n important future task.
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3.3 Sensitivity of the Optimal Probe Orientation

In the second numerical experiment, we consider the seihgitif the optimal probe orientatio, keeping the probe’s
position fixed. As we are again expecting the greater seitgitivith respect to the electric conductivity here, we
investigate variations io only. We are now dealing with a stochastic process, whiclvalags on the two-dimensional
sphereS? (as we identify orientations with unit vectors). On the sghge can easily visualize a PDF, e.g., by a color
coding as shown in Fig. 7. In this figure we see the resulting BDthe optimal probe orientatioi for o varying
within the ranges presented at the beginning of Sectiong {ieft and middle left) as well as for the extended range
o €[0.1, 3.0f [S/m] (Fig.7, middle righflevel 10] and right[previous leveb for comparisop.

In the computation with the extended rangesofie found that until a refinement level 6f= 10 the hierarchical
surpluses had not fallen below the prescribed threshald ef 5°. According to [13] the hierarchical surpluses would
decrease to zero, i.e., the refinement would stop, if thege®were smooth. So, our observation could be an indication
of a discontinuous or possibly oscillatory response serfacan even more delicate interplay between the various
parameters of our algorithms and the stopping criterialime In fact, more detailed and thorough mathematical
and numerical analysis would be needed, which is not fudisrussed here. However, from the viewpoint of the
practical problem of providing important information taethttending radiologist, we note that the accuracy achieved
is sufficient. We refer to the next section in which we willdiss this aspect in more detail. The results shown here
used about 480 h of wall time for the parallel code.

The results shown in Fig. 7 confirm our observation from thalysis of the optimal probe location: We have a
weak dependence anfor variations within the rather small ranges presentedabeginning of Section 3 and a more
significant dependence @nfor large variations of this three-dimensional tissue paater.

Again, we analyzed the sensitivity of the optimal probe mta¢ion with fixed position with respect to variations
in the thermal conductivity within the rather small ranges presented at the beginnir8eofion 3. As before, the
results do not differ much from the corresponding resultsafstochastic electric conductivity(i.e., they reveal no
significant sensitivity), thus we do not show them here.

3.4 Sensitivity of Joint Optimization of Position and Orientation

Our final experiments consider the sensitivity analysishefdimultaneous optimization of the probe’s position and
orientation with respect to variations in the electric coctiity o only (see Fig. 8 and Fig. 9, left) and with respect
to variations in both the electric and thermal conductivitgndA (see Fig. 9, right).

For the first experiment (onlg uncertain), the electric conductivity varies within thexgas presented at the
beginning of Section 3. The results are reported in Fig. &rehive see a much larger sensitivity of the optimal probe
position than for the separate optimization of only the grsiposition from Fig. 6.

Again we found that up to refinement level= 9 (and up to a wall time of about 520 h for the parallel code)
the hierarchical surpluses did not decrease below the fivesicthresholds, = 1 mm ande, = 5°. In the figure
we visualize the corresponding ellipsoid for the last thefemement levels, 8, and9 (Fig. 8, middle left). On the
right images of Fig. 8 we show the sensitivity of the optimadlpe orientation, which we obtained for this combined
optimization for refinement levels(middle right) andB (right).

As described in Section 2.3.3 we can analyze the covariaatexiy evaluating its eigenvalugs, j = 1,2, 3,
which are reported in Table 1 for the case considered heral$@esee from the eigenvalues that the refinement has
not stopped and thus the eigenvalues have not convergedwittasing refinement levél As stated in the previous
subsection a more detailed mathematical and numericaysinalould be needed to understand the results we see
here.

However, the pictures shown in Figs. 7 and 8 show almost neal/gifference between the last refinement lev-
els. In fact, if we would use these pictures to communicagerdsult of the analysis to the attending radiologist,
he/she would not be able to see a significant differenceentispely, make different decisions, based on either image.
Furthermore, taking into account that our computationsbased on units of millimeters, the eigenvalues shown in
Table 1 have sufficient accuracy: A radiologist will not béeato place a probe, which has a diameter of 1 mm, with
an accuracy of fractions of millimeters.
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TABLE 1: Eigenvalues3;, j = 1,2, 3 of the covariance ma-
trix and number of used collocation points for the sengitivi
analysis of the combined optimization of the probe’s poaiti
and orientation with respect to uncertain electric coniditgto
(see also Fig. 8) for the stated refinement levels.

Refinement| Number of

Leveli colloc. pts. Br P2 Bs
4 162 3.25665 | 1.55417 | 1.33213
392 5.39707 | 2.6754 | 1.45017
942 4.89901 | 2.85342 | 1.6954

2156 5.90408 | 3.74795 | 2.13096
4412 5.91824 | 3.30217 | 2.23831
8470 5.5201 2.84418 | 2.53418

© 00 J O Ot

Finally, we evaluate the sensitivity of the combined optiation of position and orientation for uncertainty in
both o andA. This is the most complex configuration treated with the apph discussed in this work: We are now
analyzing the sensitivity of the mapping frdd¥ > (o,A) toR® > 4 = (p, @). The collocation in the six-dimensional
stochastic space is of enormous numerical complexity. €helts shown here used about 720 h of wall time.

In Fig. 9 (right) we show the sensitivity of the optimal prgiesition for this combined optimization and ferand
A varying within the ranges presented at the beginning ofi@e8t Also for this last experiment, we found that up to
refinement level = 6 the hierarchical surpluses did not decrease below the filpesicthresholds fog, ande,. On
the left of Fig. 9 we display the resulting ellispoid for theepious experiment (combined optimization with omly
uncertain) at refinement levéto allow for a comparison with the result on the right of Figcembined optimization
with both o andA uncertain) which is obtained for the same refinement level.

We finally conclude that for the combined optimization of firebe’s position and orientation and/or for large
variations in the electric and/or thermal conductivity tirecertainty of the tissue properties can have a significant
influence on the optimal probe placement for RF ablation. él@x;, this sensitivity seems dominantly to be influenced
by the electric conductivity rather than by the thermal conductivity

4. DISCUSSION AND CONCLUSIONS

We have discussed a model for the optimization of the plao¢wiea monopolar probe in radiofrequency ablation
that depends on the electric and thermal conductivity a¥adiver tissue, tumor tissue, and vessels. The detertignis
forward model for the simulation of the temperature disttiln of the RF ablation, which is used within our opti-
mization, has been extended to a stochastic PDE model withastically distributed material parameters, taking int
account the uncertainty associated with electric and thkeoonductivities of the tissue. Together with an adaptive
sparse grid collocation method, we have evaluated thetadtyspf the optimization results with respect to variat®

in the material parameters.

We have presented numerical results which are based on a&négiriesion and vascular structures from a real
CT scan. Because vector-valued data are optimized (prafa¢idm and/or probe orientation) a visualization of the
resulting distributions is not straightforward. For theualization of the distribution of the optimal probe locatiwe
presented different approaches. Since a three-dimensiolnae rendering of the histograms is difficult to interpre
we use an ellipsoidal representation, which easily rewbalsnean and the covariance of the distribution. A visualiza
tion of the distribution of the optimal probe orientatiomisich simpler. Here we showed a color coding of the sphere
according to the corresponding PDF.

Our numerical experiments show a significant sensitivityhef temperature profiles resulting from the forward
problem with respect to variations in the tissue properfies the optimization, however, the separate considaratio
of only the probe position or only the probe orientation degisshow any significant sensitivity for realistic variato
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in the electric conductivity and/or the thermal conductivilywhich are given in the literature for cadaveric animal
tissue. If we enlarge the variations in order to account feasurement errors and differences between animal and
human tissue we see a slightly more significant sensitivéiyeeially for the optimization of only the probe orientatio

If we analyze the combined optimization of the probe’s posiaind orientation, we obtain significant sensitivities,
also for the smaller variations of

The optimization of the placement of one monopolar probeqmreed in this work easily generalizes to an opti-
mization of the placement of a cluster of probes. Also, thelsof treatment by bipolar probes, multipolar probes,
or umbrella-type probes is possible with the framework @nésd herein. Our investigations in these fields are still in
progress. In addition, the approach presented in this pagrebe used for many other models in medical simulation
including cryosurgery or irreversible electroporatioma|.

With our investigations we have performed a step towardcep&specific modeling in the field of medical simula-
tion—here applied to the optimization of RF ablation. We dbtackle the problem of patient-specific parameters by
trying to obtain more accurate material parameters. ldsieaconsider uncertainty to be an intrinsic attribute of the
modeling process. The numerical experiments consideneddsmonstrate that our approach allows one to quantify
the robustness of predictions and optimal probe placemitiisrespect to the uncertainty involved in the model
parameters. In this sense our investigations can sengiizgractitioner to problematic cases in which further step
need to be taken to be confident of therapy success. Howkeeaghsitivity analyses are obtained at an extremely high
computational cost resulting from the highly complex ogziation problem and the enormous number of collocation
points that needed to be taken into account.

The acceleration of the sensitivity analysis is an impdréspect of our future investigations. This will involve
further model reductions and possible simplifications Wwhatlow one to more easily traverse the response surface
and thus analyze its shape.

In some numerical experiments discussed in this paper, we hat been able to fulfill the stopping criteria of
the adaptive refinement in the stochastic space. We wilhéuranalyze this effect and expect to gain more insight
and understanding of the complex interplay between algoriand parameters of this extremely complex real world
stochastic PDE constrained optimization problem. In thes® of these investigations we will study further the sen-
sitivity of the combined optimization of probe position amiientation with respect to uncertainty in several diffdre
tissue properties (e.g., electric and thermal condugjiait the same time.

Further future research directions deal with the optiniredf the RF ablation under a refined and time-dependent
model for the simulation. Thus, we can take into account tirdinear dependence of the material parameters on the
state of the system as well. Also, the consideration of th@upion coefficients as sources of uncertainty will be a
further direction of research. Figure 10 shows an outloathis direction. Here, we see tt58°C isosurface of the
resulting temperatures of our forward simulation caladafior different values of the relative perfusion ratRsse

E—

\3‘\\ | | \)‘\\ i i\z

FIG. 10: 50°C isosurface of the temperatures calculated with our fonganailation forvyessei= 0.006067 s~ (left)
andvyesser= 0.5 5! (right). In both calculations the values @findA have been set to the mean values of the intervals
presented at the beginning of Section 3.
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(see Section 2.1), i.e., foressel = 0.006067 s~ ! (capillary perfusion) and fowyessel = 0.5s~! (strong perfusion

for which the temperature within the vascular system apprately remains body temperature). All other tissue
parameters (i.e., the conductivity values) have been gaetmean values of the intervals presented at the beginning
of Section 3. We see that we get a significant difference irskiage of the corresponding temperature profiles, which
motivates a deeper analysis of uncertain perfusion coeffiisi
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