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Fig. 1. Pressure field on the ONERA M6 Wing (Section 5.1.2), rendered using ElVis and illustrating the application of color maps and
contour lines on curved and planar surfaces.

Abstract—This paper presents the Element Visualizer (ElVis), a new, open-source scientific visualization system for use with high-
order finite element solutions to PDEs in three dimensions. This system is designed to minimize visualization errors of these types
of fields by querying the underlying finite element basis functions (e.g., high-order polynomials) directly, leading to pixel-exact repre-
sentations of solutions and geometry. The system interacts with simulation data through runtime plugins, which only require users
to implement a handful of operations fundamental to finite element solvers. The data in turn can be visualized through the use of
cut surfaces, contours, isosurfaces, and volume rendering. These visualization algorithms are implemented using NVIDIA’s OptiX
GPU-based ray-tracing engine, which provides accelerated ray traversal of the high-order geometry, and CUDA, which allows for
effective parallel evaluation of the visualization algorithms. The direct interface between ElVis and the underlying data differentiates it
from existing visualization tools. Current tools assume the underlying data is composed of linear primitives; high-order data must be
interpolated with linear functions as a result. In this work, examples drawn from aerodynamic simulations–high-order discontinuous
Galerkin finite element solutions of aerodynamic flows in particular–will demonstrate the superiority of ElVis’ pixel-exact approach
when compared with traditional linear-interpolation methods. Such methods can introduce a number of inaccuracies in the resulting
visualization, making it unclear if visual artifacts are genuine to the solution data or if these artifacts are the result of interpolation
errors. Linear methods additionally cannot properly visualize curved geometries (elements or boundaries) which can greatly inhibit
developers’ debugging efforts. As we will show, pixel-exact visualization exhibits none of these issues, removing the visualization
scheme as a source of uncertainty for engineers using ElVis.

Index Terms—High-order finite elements, spectral/hp elements, discontinuous Galerkin, fluid flow simulation, cut surface extraction,
contours, isosurfaces.

1 Introduction

High-order finite element methods (a variant of which are the
spectral/hp element methods considered in this work [12]) have ad-
vanced to the point that they are now commonly applied to many real-
world engineering problems, such as those found in fluid mechanics,
solid mechanics and electromagnetics [25, 11]. An attractive feature
of these methods is that convergence can be obtained by reducing the
size of an element (h adaptivity), by increasing the polynomial or-
der within an element (p adaptivity), or by combining these two ap-
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proaches. Meshes built with high-order solutions in mind can obtain
the same level of accuracy with far fewer degrees of freedom than their
linear counterparts [36].

Engineers working with high-order simulation data encounter sig-
nificant obstacles when attempting to generate accurate visualizations.
The underlying finite element basis functions are represented in terms
of nonlinear functions (e.g., the high-order polynomials considered in
this work), yet most visualization methods assume that the basis func-
tions are linear. Therefore, to generate a visualization, the simulation
data must first be converted into a linear format. While linear interpo-
lation enables the engineer to produce the desired image, it introduces
error into the visualization. This leads to the common question: are
the features and artifacts seen in the visualization part of the high-
order data, or are they errors introduced through the visualization pro-
cess? Unfortunately, visualization errors arising from linear interpola-
tion look the same as genuine solution artifacts arising from problems
such as insufficient mesh resolution. With traditional interpolation-
based rendering techniques, engineers are hard-pressed to differentiate
between the numerous potential causes of visual artifacts. The sever-
ity of these visualization errors can be mitigated by refining the linear
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approximations, but this approach does not scale well, requiring too
much computational time and storage to be practical [27].

A variety of visualization algorithms developed in recent years
address interpolation-based errors by using the high-order data di-
rectly. However, these techniques are scattered across multiple soft-
ware packages and tools; as a result, the barrier to entry is high for
users. Additionally, existing methods assume knowledge of the un-
derlying basis functions used, requiring that the data first be converted
into the appropriate format for each tool used.

To address these issues, we need an integrated visualization system
that is designed specifically for high-order finite element solutions.
Specifically, such a system must have the following features:

• Extensible Architecture: To support data originating from
any high-order simulation, the system’s visualization algorithms
should be decoupled from the data representation, allowing them
to change independently of each other. The advantage of this ap-
proach is that the visualization algorithms can be improved as
new techniques and algorithms are developed, while engineers
are free to choose whatever basis functions are most appropriate
for the scenarios under investigation. This architecture enables
the system to support methods currently in use, as well as meth-
ods that have not yet been developed.

• Accurate Visualization: To avoid introducing error into the vi-
sualization, the high-order system must work with the high-order
data directly. Specifically, the system must be able to evalu-
ate the solution at arbitrary locations in the domain to machine
precision. The system must also support visualization methods
that have been developed based on the a priori knowledge that
the data was produced by a high-order finite element simulation.
These methods will ideally make use of the smoothness prop-
erties of the high-order field on the interior of each elements,
while respecting the breaks in continuity that may occur at ele-
ment boundaries.

• Interactive Performance: In terms of computational resources
required, using the high-order data directly carries significantly
higher costs than using simpler linear approximations. While
a high-order system is not expected to provide the same level
of performance as its linear counterparts, it should provide an
interactive experience on a standard desktop workstation (i.e., it
should not require expensive, special purpose hardware).

In this paper we describe the Element Visualizer (ElVis), a new
high-order finite element visualization system that meets the require-
ments listed above. We demonstrate ElVis’ utility by using it to vi-
sualize finite element simulations produced by ProjectX, which is a
general-purpose PDE solver with an emphasis on aerospace applica-
tions [7, 21, 6, 36, 35]. Specifically, we will consider the visualizations
necessary during the debugging and verification processes of model
generation.

2 Related Work
In recent years, there has been a growing awareness of the errors
caused by using linear methods to visualize high-order data. This
has lead to the development of many new algorithms that have been
designed to accurately render high-order fields. In this section, we
provide a brief overview of these algorithms.

A popular visualization technique is the use of color maps and con-
tours on surfaces (element and geometry boundaries) and cut-surfaces.
These techniques allow the engineer to gain detailed information about
specific locations in the data set. There are several schemes that apply
color maps to planar data. In one approach, the color map is generated
by what is called a polynomial basis texture [8]. Each basis function
used in the high-order field is sampled onto a triangular texture map.
The colors in the triangle are not generated by linear interpolation, but
instead by the linear combination of the appropriate textures, based on
the triangle’s order. In this way, a set of basis textures can be generated

in a pre-processing step, and then, assuming there is sufficient resolu-
tion in the texture, accurate images can be generated for all high-order
triangles. Another method uses an OpenGL fragment shader to cal-
culate the field’s value at each fragment’s location, resulting in more
accurate lookup into the color map [4]. Finally, another method ana-
lytically calculates the intersection of a plane and quadratic tetrahedra,
then uses a ray tracer to apply the color map to the new primitive [32].

Most of the work dealing with the generation of contour lines deals
only with 2D high-order elements. A common theme is to generate
the contours in an element’s reference space (which we will define
in Section 3) and then transform them into global (world) space for
display. One approach [15] creates contour lines in an element’s ref-
erence space by subdividing the domain and using linear interpolation
within these sub-domains to create a piecewise linear contour. Another
approach steps along a direction orthogonal to the field’s gradient [3],
where each step is controlled by a user-defined step size. A method
for generating contour lines over quadrilateral elements by determin-
ing the shape of the contour in reference space and then generating a
polyline to approximate it was developed in [28] and later extended to
linear and quadratic triangles in [29].

The only 3D contouring algorithm [13] generates contour lines on
cut-planes through finite element volumes. The procedure first locates
a seed point for the contour line along the element’s boundary. It then
steps in a direction orthogonal to the field’s gradient, using a user-
controlled step size, to generate a polyline representing the contour.
It differs from the previously described methods in that the plane is
a three-dimensional entity. At each step, the contour can, and often
does, move off of the cut-surface. The method introduces a correction
term to fix this problem and keep the contour on the cut-plane. As
with the other object-space contour methods described, the step size is
useful to determine how accurately the polyline represents the contour
in world space, but is not as useful in expressing how accurate the final
image is, as it can be accurate from one view but have large error in
another.

Several approaches have been developed for volume rendering
high-order fields. An analytic solution to the volume rendering integral
was developed in [34] for linear and quadratic tetrahedra. Numerical,
point-based solutions for high-order tetrahedra were presented in [37],
and solutions for arbitrary elements and order have been developed as
well [30]. Approaches for isosurface rendering have been developed
for quadratic tetrahedra using analytical calculation of the isosurface in
reference space [33] and through ray-tracing approaches [32]. Other
approaches include using a ray tracer for arbitrary elements of arbi-
trary order [19], a point-based approach that uses particles that actively
seek and distribute themselves on the isosurface [16] and a hybrid sys-
tem that combines isosurface-seeking particles and ray-tracing [23].
Finally, new approaches for creating line-type features in scalar and
vector fields [22] have recently been developed that are optimized for
high-order fields.

3 High-Order Finite Element Methods
A finite element volume is represented by the triangulation TH of an
open, bounded domain Ω into a mesh of Ne non-overlapping elements
κi. Ω exists in what is called the world space. The elements κi are
such that Ω =

⋃
i≤Ne

κi and κi
⋂

κ j = /0,∀i 6= j. The four basic ele-
ment shapes for 3D finite elements are the tetrahedron, hexahedron,
(triangular) prism, and (square-base) pyramid.

3.1 Element Reference Spaces

The elements of the triangulation can come in a multitude of sizes and
shapes in the world space; treating each as its own unique entity is
cumbersome. Thus, it is common practice to standardize a reference
space for each element shape. For example, one choice for the refer-
ence space of a tetrahedron is the tetrahedron with corners at (0,0,0),
(1,0,0), (0,1,0), and (0,0,1). Then a function (or composition of
functions) Φ : R3 → R3 provides the continuous, bijective mapping
from the reference space to the world space. Additionally, the Jaco-
bian determinant (henceforth simply called the Jacobian) of this trans-
formation must be positive to guarantee that the inverse exists and that
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Fig. 2. (Left) - Illustration of the mapping between reference and world
space for a tetrahedron. Reference points are denoted by η , and world
space points by x. (Right) - Degree p polynomials interpolate the solu-
tion within elements, but discontinuities are allowed at element bound-
aries; 2D example.

the desired orientation is maintained. In the linear case, this mapping
can be conceptualized as a combination of translation, rotation, and
scaling operations. In the high-order setting, the mapping is nonlinear.
A diagrammatic example of these mappings for a tetrahedron is shown
in Figure 2.

Since Φ is a bijection with positive Jacobian, it can be inverted to
compute the reference point corresponding to a particular world point.
Unfortunately, Φ−1 generally does not have a closed-form. As a result,
a more general root-finding scheme must be used. For high-order ele-
ments, Φ−1 is also nonlinear and a scheme like the Newton-Raphson
Method is required.

3.2 Basis Functions
A standard finite element practice is to describe the function Φ in
terms of element-wise basis functions defined on the reference space.
The space spanned by these functions is finite dimensional. In this
work, examples will apply a basis that is polynomial in the refer-
ence coordinates, but other choices (e.g., Fourier basis) are possible
as well. For example, consider a function F(ξ ) ∈ P p1,p2,p3 with
respect to the reference element, where p1, p2, p3 denote (possibly)
different polynomial orders in the three principle directions and ξ is
a reference coordinate. This basis choice is associated with at most
(p1 +1)(p2 +1)(p3 +1) degrees of freedom.

3.3 Solution Representation under Continuous and Discontinu-
ous Finite Elements

Similar to the geometry, the solution representation is also commonly
written in terms of basis functions. The solution basis can be different
than the geometry basis; in this work, polynomials are used again. In
visualization applications, it is important to distinguish between con-
tinuous and discontinuous finite elements. In continuous finite ele-
ments, the solution is defined to be continuous across element bound-
aries. As a result, the value of the solution at every point in the domain
is uniquely defined. With discontinuous elements, this is not the case:
discontinuities can exist at element boundaries and in general, solu-
tions are multi-valued along such boundaries; see Figure 2.

The discontinuous setting raises some challenges for visualization.
For example, contour “lines” may have discontinuities at element
boundaries since the underlying solution value could “jump.” Simi-
larly, isosurfaces may have holes in them. Any derived, continuous
solution representation used within the visualization system is only
guaranteed to be valid within individual elements.

4 The Element Visualizer (ELVIS)
ElVis is a system that has been developed to implement the fea-
tures necessary for high-order visualization, as described in Section
1: namely, visualization accuracy, interactive performance, and exten-
sible support for arbitrary high-order finite element systems.

ElVis is designed to provide visualization tools that are broadly ap-
plicable to any high-order finite element solution. ElVis’ implemen-
tation is generic and aims to decouple the implementation of the vi-
sualization from the implementation of the high-order basis functions.
ElVis achieves this goal through the use of plugins, which provide a
simplified interface to the high-order data by exposing the minimal
amount of functionality required to generate a visualization. In this
way, it is broadly applicable to a wide variety of simulation products,

and gives each product wide latitude on how it behaves behind the
scenes. We discuss plugins in more detail in Section 4.1.

Once the data is accessible to ElVis through a plugin, ElVis can per-
form the required visualizations without knowledge of the details of
the underlying simulation. ElVis’ visualization algorithms focus par-
ticular attention on the two often competing goals of image accuracy
and interactive performance. Image accuracy is obtained by devising
high-order specific versions of common visualization strategies (cut-
surfaces, isosurfaces, and volume rendering). Performance is achieved
by careful implementation of these algorithms as parallel algorithms
on a NVIDIA GPU, using the OptiX [24] ray-tracing engine and Cuda
[1] as the framework. We present more details about ElVis’ visualiza-
tion capabilities in Section 4.2.

4.1 Extensibility Module

One of the fundamental challenges of creating a general-purpose visu-
alization system for high-order finite element simulations is that there
is no single set of basis functions that is appropriate in all simulation
settings. Therefore, each simulation system chooses the basis that is
most suited for the problems at hand. This means that ElVis cannot be
implemented in terms of any specific basis and expect to be used with
arbitrary simulation systems. The Extensibility Module addresses this
issue by providing a plugin interface that acts as a bridge between the
visualization system and the simulation package. The module accepts
plugins written in one of two ways, each providing different trade-offs
as described below. The first type of plugin is the data conversion plu-
gin, which is used to convert a data set from the format used by the
simulation package to the format used by ElVis’ default plugin, the
Nektar++ extension [2]. The second plugin type is the runtime plu-
gin, which provides an interface for ElVis to interactively query the
simulation data on both the CPU and GPU.

The purpose of the data conversion plugin is to convert fields and
geometry from the format used by the simulation package into the na-
tive Nektar++ format used by ElVis. The Nektar++ data format is sup-
ported through a default runtime plugin (described below) that is dis-
tributed with ElVis as a reference implementation for the development
of plugins for other simulation systems. Nektar++ uses a polynomial
basis to represent its data, and the data conversion plugin is responsible
for projecting the field from the simulation package onto the polyno-
mial basis used by Nektar++. Projection of the data then occurs as fol-
lows. First, ElVis queries the plugin to obtain information about each
element’s type (e.g., hexahedron, tetrahedron) and the desired polyno-
mial order of the converted data set. For simulations already using a
polynomial basis, this can be chosen so that the projection introduces
no error beyond floating-point rounding errors. For other bases, it can
be set to the level needed to meet the desired accuracy requirements.
ElVis then queries the plugin to determine if the resulting projection
should be represented using functions that are continuous or discon-
tinuous at element boundaries. Finally, ElVis samples the field at a
collection of points determined by the choices made in the previous
steps and creates the projected data set.

The advantages of this approach when compared to runtime plugins
(described below) are that they will generally require less coding and,
once the conversion is done, ElVis will have no runtime dependencies
on the simulation package. Another advantage is that ElVis handles all
of the details about file formats and data storage—the plugin is only
responsible for sampling the solution. The downside is that the native
internal format represents fields and geometry as the tensor product
of one-dimensional polynomials [12]. Therefore, data sets from simu-
lation packages where fields are represented by non-polynomial basis
functions cannot be represented exactly, so this approach will intro-
duce projection error into the visualization. Another disadvantage is
that simulations using non-standard elements do not fit the input re-
quirements described above and cannot be converted.

Runtime plugins are loaded into ElVis each time it is run; they
provide access to a simulation’s data during the rendering process.
The data can be accessed directly in the format used by the simula-
tion (e.g., polynomial or Fourier basis functions) without the need to
convert formats first. However, implementing a runtime plugin re-
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quires significantly more code than the data conversion approach, and
it also requires a working knowledge of both OptiX and Cuda. All of
ElVis’ visualization algorithms are implemented on the GPU; there-
fore, all runtime plugins must provide a means to access data fields on
the GPU.

A runtime plugin consists of three components:

• Volume Representation Component: This component is re-
sponsible for reading a volume on the CPU and then transferring
it to the GPU. ElVis imposes only one restriction on the way
in which the volume’s data is represented and accessed on the
GPU, leaving the choice of optimal implementation to the exten-
sion. The sole requirement is that the data be accessible to the
OptiX-based ray-tracer through a specially named node in the
ray-tracer’s scene graph.

• Volume Evaluation Component: All of the visualization meth-
ods described in the next section require the ability to evaluate a
high-order field and its gradient at arbitrary locations within an
element. These functions must be implemented on a GPU and
will be called a large number of times for each of the visualiza-
tion methods discussed in the next section, so extra care must be
taken to ensure that they are as efficient as possible.

• Ray-Tracing Component: Finally, the ray-tracing component
connects the OptiX portion of ElVis to the simulation data. This
component is not responsible for handling the high-level me-
chanics of the ray-tracer; however, it is responsible for providing
some of the primitives used by ElVis to perform the ray-tracing.
Examples include providing ray-element intersection tests, ele-
ment and element face bounding box procedures, and tests for
whether a point is located in an element.

4.2 Visualization
In this section, we discuss the visualization methods for scalar fields
that are currently available in ElVis; namely, color maps and contours
on cut-surfaces [20], isosurfaces [19], and volume rendering [18].
Each of these visualization methods is discussed in greater detail in
the references provided. The scalar field restriction is not a funda-
mental limitation of the ElVis framework; rather, it is a reflection of
the algorithms that have been developed for the initial release. Future
releases will support visualization of high-order vector fields.

The visualization algorithms discussed below all require quick and
efficient point location queries. ElVis uses a bounding volume hi-
erarchy, which is supplied by OptiX, to accelerate all point location
queries.

4.2.1 Surface Visualization
A surface visualization is where the scalar field is plotted on a surface
using color maps, isocontours or both [20]. These types of visualiza-
tions, while conceptually simple, are very useful for the engineer when
studying the simulation. Much of the interesting behavior occurs on or
near certain domain boundaries (e.g., a wing), and it makes sense to be
able to plot the behavior of the field on these surfaces accurately. An
overview of the surface rendering algorithm is presented in Algorithm
1, with details in Nelson et al. [20].

ElVis supports the rendering of an arbitrary number of cut-planes
and surfaces, of which the curved faces lying on domain boundaries
are common choices. In Figure 1, we show an example of the pressure
field on an ONERA M6 wing (see Section 5.1.2 for details) and on a
plane cutting through the wing. A color map is applied and contour
lines are plotted on the wing’s curved surface and on the cut-plane’s
flat surface.

ElVis also has the ability to plot the intersection of the 3D mesh and
a surface through an extension of the contouring algorithm discussed
above. It is often useful to see the mesh on a surface to verify that
the mesh has been generated correctly, as well as to aid in debugging.
Oftentimes features may appear in the visualization that appear out
of place, but turn out to be reasonable if they occur next to a mesh
boundary. An example of such a feature is a discontinuous contour

ALGORITHM 1: Surface Visualization
Step 1 - Sample the field on the surface.
if Surface is a cell face then

Sample the scalar field using the basis functions defined for the face.
else

Cast a secondary ray to find the enclosing element.
Sample the scalar field using the element’s basis functions.

end

Step 2 - Visualize the scalar samples.
if Rendering Color Maps then

Use the scalar value as a lookup into a color table.
else if Rendering Contours then

Use the scalar value to determine if the contour crosses the pixel, using the crossing
tests from [20].

end

Fig. 3. Isosurface of Mach number 0.1919 for the delta wing simula-
tion (Section 5.1.1), showing the development and roll up of the vortex
structures along the leading edge and downstream of the wing. Note
the crack in the surface arises because the underlying solution is from
a DG method.

line in a DG field. In this scenario, a break in the contour is expected
at element boundaries, but not in the interior of the element. Further
examples that apply the meshing tool can be found in Section 5.

4.2.2 Isosurfaces

Isosurfaces in ElVis [16, 19] take advantage of the smoothness prop-
erties of high-order finite element solutions to project the field along
a ray onto a polynomial. Once the polynomial is created, accurately
finding the location of an isosurface is a root-finding problem [19]. We
give an overview of this procedure in Algorithm 2. We note that this
procedure is only valid on the interior of elements, where the solution
is guaranteed to be smooth, so our isosurface algorithm operates on
element-partitioned segments along the ray.

An advantage this method has over existing object-space methods
is that it respects the features of the high-order data. In particular, un-
less care is taken, object-space isosurfacing methods such as marching
cubes can miss valid features of DG simulations, such as discontinu-
ities across element boundaries that can cause cracks in the isosurface,
and isosurfaces that exist entirely within an element. An example of
this can be seen in Figure 3, where we plot an isosurface of the Mach
number for the delta-wing simulation described in Section 5.1.1.

ALGORITHM 2: Isosurface Algorithm

Input: A ray R(t) and a list of all elements E traversed by the ray, ordered by intersection
distance, and desired isovalue ρ .

foreach Element Ei ∈ E do
Determine ray entrance ta and exit tb for element Ei.

Evaluate the field on the ray segment [ta, tb] using interval arithmetic to obtain field
bounds [ fmin, fmax].

if ρ ∈ [ fmin, fmax] then
Perform root-finding procedure to identify the location of the isosurface.

end
end
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4.2.3 Volume Rendering

In some scenarios, isosurfaces can be noisy and difficult to interpret.
In these cases, it can be useful to use volume rendering to represent the
isosurface. When applied to high-order solutions, ElVis uses an algo-
rithm that takes advantage of the structure of the field to provide better
convergence properties than those available through existing methods
[18]. By doing this, ElVis is able to display more accurate images for
a given amount of time.

Volume rendering proceeds in a manner similar to isosurface gener-
ation. The ray traverses the volume and as it encounters each element,
it categorizes the field along the ray in the element, then applies an
optimized volume rendering algorithm.

4.2.4 Combining Visualizations

A constant challenge for high-order visualization is the computational
cost of each of the algorithms described above. This comes from the
cost of sampling a high-order field (primarily the cost of converting
world points to reference points and evaluating the field) and the cost
of traversing the volume with a ray (where ray-element intersections
can be of high-order and require expensive, iterative root finding pro-
cedures). Several of the visualization algorithms above have been
shown to be interactive while maintaining accuracy when applied in
isolation; but combining these visualization methods into a single im-
age without taking into account their interactions leads to slow perfor-
mance.

Instead, when multiple visualization methods are used in a single
image, we create a system of communication and sharing between
modules to minimize the cost. The first optimization is sample shar-
ing, where samples taken for one module can be reused in another. For
example, when a surface color map is generated, the samples can also
be used to generate the contours. The second optimization is occlu-
sion sharing. We render the surface modules first, since they are the
cheapest, and use the depth information obtained by those modules
to terminate the mesh traversal portion of the isosurface and volume
rendering algorithms once the occluding structure has been reached.
Finally, the isosurface and volume rendering modules share the mesh
traversal algorithm, reducing the number of ray-element intersection
tests that are performed.

5 Results
This section demonstrates the capabilities and advantages of ElVis
through several examples. We focus our attention on cut-surface and
isosurface visualizations, as ProjectX users do not currently use vol-
ume rendering in their engineering analysis. Our examples are taken
largely from engineering problems solved or being worked on with
ProjectX; some examples were synthetic problems designed to demon-
strate specific capabilities. The following subsection describes the
sources of our examples, enumerated as series of cases. Then we show
results and comparisons with current visualization “best-practices”
used by ProjectX developers.

5.1 Simulation Examples

We preface this subsection by noting that the upcoming cases are all
characterized by quadratic geometry representations and cubic solu-
tion representations. These are not limitations of ProjectX nor ElVis;
rather, both pieces of software can handle different order geometry and
solution representations in different elements. However, they are rep-
resentative of cases being examined by ProjectX engineers at present.
Additionally, these relatively low polynomial orders present a “best
case” for Visual3 in the comparisons to ElVis presented in this sec-
tion. The differences that exist could only become more pronounced
at higher polynomial orders.

5.1.1 Case 1

Case 1 is an isolated half delta-wing geometry with a symmetry plane
running down the center chord-line of the wing. The case was orig-
inally proposed by [14] to demonstrate the efficacy of their adapta-
tion strategy. Delta-wings are common geometries for CFD testing
due to their relatively simple geometry and the complexities involved

in the vortex formation along the leading edge of the wing and the
subsequent roll-up of those vortices. The equations being solved are
the compressible Navier-Stokes equations. The flow conditions are
M∞ = 0.3, Rec = 4000, and α = 12.5. The solution was obtained
through ProjectX, using an output-adaptive automated solution strat-
egy [35].

The delta-wing geometry is linear. The computational mesh con-
sists of 5032 linear, tetrahedral elements with 10434 total faces (linear
triangles). The solution was computed with cubic polynomials.

5.1.2 Case 2
Case 2 is an isolated ONERA M6 wing again with a symmetry plane
running down the center chord-line [26]. We are presenting a subsonic,
turbulent flow over the same geometry (transonic was not available).
The flow conditions are Rec = 11.72×106, M∞ = 0.3, and α = 3.06.
The flow is fully turbulent; the RANS equations are being solved with
the Spalart-Allmaras model for closure. As before, the solution was
obtained using ProjectX.

The computational mesh consists of 70631 quadratic elements with
146221 faces (quadratic triangles); meshing limitations restrict us to
a quadratic geometry representation. The solution polynomials are
cubic.

5.1.3 Case 3
Case 3 is synthetic example meant to demonstrate the mesh-plotting
capability of ElVis. The geometry is a hemisphere. The mesh is com-
posed of 443 quadratic tetrahedra with 1037 faces (quadratic trian-
gles). Case 2 also uses curved elements, but the curvature is almost un-
noticeable except on boundary faces. This mesh has noticeably curved
elements away from the geometry as well.

5.1.4 Case 4
Case 4 is another synthetic example designed to show how ElVis can
display negative Jacobians naturally. “Real” computational meshes
with negative Jacobians are not usable; as a result these are discarded.
Thus it was simpler to create a one element mesh with very obvious
negative Jacobian issues. The mesh consists of one quadratic tetrahe-
dron with four faces (quadratic triangles). The tetrahedron has corners
at (0,0,0), (1,0,0), (0,1,0), and (0,0,1). The mesh was created by first
placing quadratic nodes at their locations on the linear element. Then
the quadratic node at (0.5,0,0) was moved to (0.5,0,0.6), causing the
element to intersect itself and leading to negative Jacobians.

5.2 ProjectX
As mentioned above, all results generated in this section are from so-
lutions produced by the ProjectX software. The results considered in
this paper arise from solutions of the compressible Navier-Stokes and
RANS equations. ProjectX implements a high-order Discontinuous
Galerkin (DG) finite element method; DG features relevant to visual-
ization were discussed in Section 3. It also strives to increase the level
of solution automation in modern CFD by taking the engineer “out of
the loop” through estimation and control of errors in outputs of interest
(e.g., lift, drag) [7, 36]. Solution automation is accomplished through
an iterative mesh optimization process, which is driven by error esti-
mates based on the adjoints of outputs of interest [35].

We have worked closely with ProjectX engineers to endow ElVis
with visualization and interface features that they would find useful.
Visualization has great potential to aid ProjectX developers’ ability to
understand and analyze their solutions. It has perhaps even greater ap-
plication in the realm of software debugging, where visual accuracy
is of the utmost importance since it is often difficult to discern visual
artifacts from genuine or erroneous (i.e., a result of a software bug)
solution features. As we will discuss below, to date, visual inaccura-
cies in their current software have often inhibited ProjectX engineers’
analysis and debugging efforts.

5.3 Comparison Visualization Software
ProjectX developers currently use Visual3 [10, 9] to examine and at-
tempt to understand their solution data. The reasons are simple: Vi-
sual3 is freely available, can deal with general (linear) element types,
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(a) ElVis (b) Visual3 0 Refinements

(c) Visual3 1 Refinement (d) Visual3 2 Refinements

Fig. 4. Plotting Mach Number at the leading edge of the delta wing
(Case 1) at the symmetry plane with ElVis (a) and Visual3 using 0 (b),
1 (c), and 2 (d) levels of refinement.

is extendable and there is local knowledge of this software. Visual3
supports a number of usage modes; e.g., cut-planes, surface rendering,
surface contours, isosurfaces and streamlines/streaklines. ProjectX de-
velopers use Visual3 to explore their solution data and to support de-
bugging of all aspects of their solver.

At present, Visual3 is rather dated and more modern methods (e.g.,
those discussed in Section 2) exist. Visual3 is a complete, well-tested,
and thoroughly-documented application with a functional GUI and a
clearly-specified API. Cutting-edge visualization software often lack
these features. Moreover, until recently, native high-order visualiza-
tion on commodity hardware was not possible. Ultimately, ProjectX
developers are not members of the visualization community; they do
not have the time or expertise to dedicate towards turning prototype
software and technology demonstrators into full-fledged visualization
systems. As a result, ProjectX developers continue to use Visual3
since it is a robust and familiar tool.

Visual3 operates on a set of linear shape primitives (tetrahedron,
hexahedron, pyramid, and prism). The solution data and computa-
tional mesh must be transferred onto these linear primitives (via in-
terpolation) for visualization to occur. Since ProjectX produces high-
order solutions on curved meshes, some error is introduced through
the linear interpolation. To decrease visualization error, each individ-
ual element of the visualization mesh can be uniformly refined (in the
reference space) a user-specified number of times. Due to compute
time and memory constraints, ProjectX developers typically use 0 or 1
level of refinement. In this paper, 2 levels of refinement are performed
in some cases for the sake of comparison. However there is usually
insufficient memory for 3 levels of refinement on our typical work-
stations; additionally in the ever-larger simulations run by ProjectX
developers and users, 2 levels of refinement is often infeasible as well.

5.4 Visualization Accuracy

As discussed above, the primary motivation behind this work is the
ability to achieve accurate visualizations of high-order data. In this
section, we demonstrate ElVis’ accuracy, and describe how this en-
ables ProjectX engineers to interpret and debug their simulation data
more effectively.

5.4.1 Surface Rendering

We begin with visualizations of the leading edge of the delta wing
(Section 5.1.1) at the symmetry plane, which we show in Figure 4.
The black region is the airfoil at mid-span; the wing is not plotted so
that it does not occlude any of the details of the boundary layer. This
set of figures compares the pixel-exact rendering of ElVis to linearly-
interpolated results from Visual3. For comparison, Visual3 results are
posted with 0, 1, and 2 levels of uniform refinement.

As rendered by Visual3 with 0 refinements (Figure 4b), the char-
acteristics of the solution are entirely unclear. The boundary layer

Fig. 5. A zoomed out ElVis generated image of the delta wing from Case
1 showing the location of the cut-plane used in Figure 6. The cut plane
is located 0.2 chords behind the trailing edge of the wing.

appears wholly unresolved and severe mesh imprinting can be seen.
It is not clear whether the apparent lack of resolution is due to a poor
quality solution, bugs in the solver, or visualization errors. Even at one
level of refinement (Figure 4c), the Visual3 results are still marred by
visual errors. Again, mesh imprinting is substantial and the thickness
of the boundary layer is not intelligible.

The Visual3 results continue to improve at 2 levels of refinement
(Figure 4d) with the rough location of the boundary layer finally be-
coming apparent. But mesh imprinting is still a problem, and engi-
neers could easily interpret this image as the result of a poor quality
solution. Only the ElVis result (Figure 4a), clearly indicates the lo-
cation of the boundary layer and clearly demonstrates where solution
quality is locally poor due to insufficient mesh resolution. Although
not shown here, distinct differences similar to the effects at the lead-
ing edge on the symmetry plane are also observed at the delta wing’s
trailing edge and along its entire leading edge.

ProjectX developers were genuinely surprised at the difference be-
tween between Figures 4d and 4a. In fact, since users had only gen-
erated and viewed Figures 4b and 4c previously, the common miscon-
ception was that resolution at the leading edge (and indeed in many
other regions around the wing) was severely lacking.

However, had the ProjectX solver been subject to a software bug,
engineers expressed that they would have been hard pressed to inter-
pret Visual3 results to aid these efforts. Specifically, at 0 or 1 level
of refinement, the visualization quality is so poor that developers are
often unable to discern the precise source of solution artifacts. Unfor-
tunately, a misdiagnosis can lead to a great deal of time wasted on a
“wild goose chase.” As a result, visualization has not played as large
a role as it could in debugging practices.

5.4.2 Contour Lines

For our next example, we illustrate the generation of contour lines.
Contours are useful visualization primitives since they, unlike color
plots, limit the amount of information being conveyed and allow for
more detailed and targeted images. In particular, it can be difficult to
interpret the magnitude and shape of a field’s gradient through color
maps; this is much easier with contours.

In Figure 6, we show a comparison of contours on a cut-plane be-
hind the trailing edge of the delta wing (Section 5.1.1). The images
were generated using ElVis and Visual3, once again using 0, 1, and
2 levels of refinement for the latter. Figure 5 provides a zoomed out
view, showing the location of the cut-plane relative to the wing.

The images in Figure 6 reiterate the observations from the discus-
sion of surface rendering. With 0 and 1 level of refinement (Figure 6b
and c), most of the contour lines produced by Visual3 are extremely in-
accurate. These images do little to illuminate the vortex structure they
are trying to show. The situation improves somewhat with 2 levels of
refinement in Visual3 (Figure 6d), but substantial errors remain.

As before with surface rendering, the errors present in the Visual3
outputs at all tested levels of refinement are too great to properly sup-
port visualization as a debugging tool. The resolution of vortex struc-
tures like the one shown in Figures 5 and 6 is a prime candidate for
the application of high-order methods, because vortexes are smooth
flow features. They are also extremely common, arising as important
features for lift and drag calculations in any 3D lifting flow, amongst
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(a) ElVis (b) Visual3 0 Refinements

(c) Visual3 1 Refinement (d) Visual3 2 Refinements

Fig. 6. Plotting Mach number contours at the trailing edge of the delta
wing (Case 1). An overview of this scenario is shown in Figure 5, with
a detailed view of the contours on the trailing cut-plane generated by
ElVis (a) and Visual3 using 0 (b), 1 (c), and 2 (d) levels of refinement.
For visual clarity, we have modified the contour lines produced by both
systems so they are thicker than the default one pixel width.

other things. Here, we are only showing a solution with cubic polyno-
mials; with the even higher polynomial orders that could be applied to
vortex flows, linear interpolation-based visualization methods will be
even more inadequate.

5.5 Curved Mesh Visualization

Following on the footsteps of the previous section on accuracy, it is
impossible to accurately visualize curved geometries with only linear
interpolation techniques. Here we will examine a mesh where highly
curved elements can be seen clearly: the hemisphere from Case 3.
With 0 levels of refinement (Figure 7b), the Visual3 results are not ob-
viously hemispherical at all. Figures 7c and 7d, showing 1 and 2 lev-
els of refinement respectively, provide successively greater indication
that the underlying geometry is in fact curved. However, without the
color scheme which helps outline true element boundaries (as opposed
to boundaries generated through refinement), typical Visual3 displays
can make it difficult to discern which computational element contains
to a particular point on the screen. This issue is further compounded
by the fact that curved elements are linearized.

Figure 7a does not have any of these issues. Produced by ElVis,
this representation accurately represents the curved surface. Engineers
would be readily able to localize particular flow features or artifacts to
specific elements for further investigation during debugging or analy-
sis. ProjectX developers and users are given easy and direct access to
curved geometries and curved elements, capabilities that were impos-
sible using Visual3.

5.6 Negative Jacobian Visualization

Negative Jacobians can be extremely difficult to detect. In general,
negative Jacobians manifest in elements whose reference to world
space mapping is not invertible since it becomes multi-valued. As a
result, their presence can lead to severe stability and convergence is-
sues. In general, detecting negative Jacobians amounts to a multivari-
ate root-finding problem of high-order polynomials. This procedure
is very costly and it is not practical to search every element. Instead,

(a) ElVis (b) Visual3 0 Refinements

(c) Visual3 1 Refinement (d) Visual3 2 Refinements

Fig. 7. A top-down view of the hemisphere from Case 3. The mesh
plotting tools of Visual3 and ElVis are enabled.

(a) (b)

Fig. 8. Views of Case 4 (negative Jacobians in a single tetrahedron)
rendered with ElVis. Colors show Jacobian values from -0.5 to 0.0. Left
is a view of the x+ y+ z = 1 face being intersected by the x− y face.
Right is a view of the x− z face, where the self-intersection effect of the
quadratic node at (0.5,0,0.6) is apparent.

finite element practitioners typically check for negative Jacobians at a
specific set of sample points (usually related to the integration rules
used); unfortunately sampling is not a sufficient condition for detec-
tion.

If negative Jacobians are suspected (e.g., through convergence fail-
ure of the solver), visualization of problematic elements is a potential
path for deciding whether Jacobian issues played a role. At present,
ProjectX developers have no way of directly visualizing negative Ja-
cobians. Linear tetrahedral elements have constant Jacobians; thus the
linear visualization mesh produced for Visual3 is of little use when it
is used to visualize inverted elements. However, ElVis is not subject
to such constraints since it handles curved elements naturally. Case
4 demonstrates our ability to directly visualize negative Jacobians as
shown in Figure 8.

5.7 Distance Function Visualization
A distance function is a scalar field defined by

d(~x) = in f{|~x−~p| : S(~p) = 0} (1)

where S is an implicit definition of a surface. In regard to ProjectX,
the distance function is an important part of the Spalart-Allmaras tur-
bulence model, which is used in Case 2. In fact, wall-distances are
needed by most turbulence models. In aerospace applications, turbu-
lent effects typically first arise due to very near-wall viscous interac-
tions. The consequences of incorrect distance computations can vary
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widely, from having no effect, to producing incorrect results, to reduc-
ing solver robustness or even preventing convergence all together.

Visualization has the potential to be a valuable first attempt at di-
agnosing distance calculation errors. Developers can inspect the dis-
tance field for smoothness and make other qualitative judgments on
the quality of the computation. Although visualization cannot guaran-
tee that distance computations are correct, they can provide confidence
and more importantly one would hope that visualization would make
substantial errors in distance computations apparent.

Existing visualization packages introduce error into this visualiza-
tion because they must interpolate high-order surfaces and interpolate
the distance data, the latter of which is not even a polynomial field.
Linear interpolation introduces a number of problems. It is impossible
to judge the quality of distance calculations without at least being able
to see the true shape of the underlying geometry. As a result, ProjectX
developers typically find themselves unable to use visualization to aid
in debugging distance computations; let us see why.

Figure 9 is meant to demonstrate the difficulty experienced by Pro-
jectX developers when using Visual3 to help diagnose problems with
distance function computations. In the 0 refinement case (Figure 9b),
the visualization mesh is so coarse that almost nothing can be learned
from this image, except possibly that the distance computation is not
producing completely random numbers. The 1 refinement case Fig-
ure 9c) does little to improve the situation. Here, a large protrusion
is visible on the right and a large recess is visible near the top of the
isosurface. Other confusing-looking regions are also present. After 2
levels of refinement (Figure 9d), Visual3 gives strong evidence that a
bug is present in the distance computation, but the linear interpolation
is still preventing rendering of the expected smooth surface.

On the other hand, ElVis renders (Figure 9a) a smooth surface with
one substantial protrusion (corresponding to the protruded region seen
in Figures 9c and 9d). From the ElVis result, the fact that the distance
computation is wrong is obvious. Additionally, the ElVis result was
obtained in seconds, in stark contrast to performing 2 uniform refine-
ments in Visual3.

Figure 10 shows the result from plotting the correct distance func-
tion in Visual3 and in ElVis. The effect of the bug was very local (man-
ifested in the large protrusion on the right side). The images from Fig-
ure 9 are largely unchanged, hence only the highest resolution Visual3
image was replicated. Indeed, the 0 refinement results from Visual3
with the bug fixed appears indistinguishable from Figure 9b, making

(a) ElVis (b) Visual3 0 Refinements

(c) Visual3 1 Refinement (d) Visual3 2 Refinements

Fig. 9. Plotting the isosurface for a distance of 6.2886 to the surface of
the ONERA wing (Case 2) with ElVis (a) and Visual3 using 0 (b), 1 (c),
and 2 (d) levels of refinement. Here, the underlying distance computa-
tion has a bug.

(a) ElVis (b) Visual3 2 Refinements

Fig. 10. The same view as shown in Figure 9 but with the underlying
distance computation fixed.

this level of Visual3 resolution useless for debugging. At 1 level of
refinement, the right-side bump is gone, but there are so many other
recesses and protrusions that ProjectX developers indicate they would
have little confidence that the distance evaluation is correct. After 2
levels of refinement (Figure 9d), the Visual3 results look believable
for a linear interpolation of the distance field. Nonetheless, ProjectX
developers indicated that they would much rather have debugged the
distance function with ElVis, even if Visual3 could perform more re-
finements without additional compute and storage overhead.

In fact, ProjectX developers used the distance computations shown
in Figure 9 for a period of months before finding the bug that caused
the large protrusion shown in the isosurfaces. They had checked the
distance function using views similar to those shown in Figures 9b
and 9c. However, due to the lack of clarity in those images and since
the solver appeared to be performing reasonably, no issues were sus-
pected.

When presented with the before and after views from Figures 9a
and 10a, one ProjectX developer expressed great frustration that ElVis
was not available during the development of the distance function. It
would have saved him many hours of confusion, greatly accelerating
the debugging process by providing clear and direct access to the un-
derlying data.

5.8 Performance
For ElVis to be useful, it must be able to provide images that are both
accurate and interactive. To examine performance, we tested three
different scenarios in both the delta and ONERA wing data sets. For
test 1, we rendered a color map and ten contour lines on a cut-plane
through each wing (similar to the view shown in Figure 5). Test 2
measures the performance of rendering color maps and ten contour
lines on the element surfaces directly (as shown in Figure 1). The final
test consists of an isosurface rendering in each data set. The results
of these performance tests, along with the amount of memory used by
the GPU during rendering, is shown in Figure 11.

We found that visualizations of regions with highly anisotropic el-
ements performed worse than regions without. The root cause of this
behavior is that these types of elements often produce bounding boxes
that significantly overestimate the element’s footprint, which reduces
the effectiveness of ElVis’ acceleration structures. To illustrate the
practical impact, we rendered views with many anisotropic elements
(denoted as “detail” in Figure 11) and views with few (denoted as
“overview”).

For all test cases, we measured performance and memory usage as
the image size increases and as the number of elements in the data set
increases. To create the data sets, the implied metric fields from Case
1 and Case 2 were scaled and new meshes were generated [17]. Tests
were run on a desktop workstation equipped with an NVIDIA Tesla
C2050 GPU and Intel Xeon W3520 quad-core processor running at
2.6 GHz. The Cuda and OptiX kernels were executed using double
precision floating point numbers.

Figures 11(a) and 11(b) indicate that our method scales well with
increasing image size. Figures 11(d) and 11(e) show that it also scales
better than linear as the number of elements in the volume increases.
This is important since, compared to traditional finite element methods
which routinely use 100s of millions of elements, high-order solutions
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(a) Cut-surface performance as image size increases

600×600 1000×1000 1800×1800
10−2

10−1

100

101

102

Linear

Image Size

Ti
m

e(
s)

Delta wing isosurface (detail).
Delta wing isosurface (overview).
ONERA wing isosurface (detail).
ONERA wing isosurface (overview).

(b) Isosurface performance as image size in-
creases
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(c) GPU memory usage as the image size in-
creases
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(d) Cut-surface performance as the number of elements
increases for a 1000×1000 image
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(e) Isosurface performance as number of ele-
ments increases for a 1000×1000 image
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(f) GPU memory usage as the number of ele-
ments increases

Fig. 11. Performance and memory usage for the delta and ONERA wing when varying the image size and number of elements.

rarely consist of volumes with as much as a million elements. In fact,
the only real constraint on volume size is the memory required, shown
in Figure 11(f), which limits the size of the volume that can be stored
on the Tesla 2050 to approximately 1.5 million elements. The iso-
surface algorithm we are currently using is an adapted version of the
algorithm shown by Nelson et al. [19] that has not yet been optimized
for GPU execution, which results in the relatively poor performance
of isosurfaces when compared to cut-surfaces. We plan on developing
new, GPU-specific algorithms for isosurface generation to address this
issue.

6 Conclusion
This paper presents ElVis, a new high-order finite element visual-
ization system. ElVis was designed with an extensible architecture;
it provides interactive performance; and it produces accurate, pixel-
exact visualizations. The final point deserves further emphasis: ElVis
makes few assumptions about the underlying data, nor does it use ap-
proximations when evaluating the solution. This degree of accuracy
is a substantial step beyond what is possible in contemporary, linear
interpolation-based methods. ElVis provides users with direct access
to their finite element solution data either through conversion to known
storage formats or by querying user-provided code directly. Direct
data access is a capability previously unavailable to most finite element
practitioners, and judging from the reactions of ProjectX developers,
this capability is immensely valuable. We show that the software de-
sign elements behind ElVis reduce barriers to entry (in terms of coding
effort) for new users. ElVis is also readily available as a full-fledged,
ready-to-use application, making it a good choice for finite element
practitioners seeking a native high-order visualization system.

The capabilities demonstrated here are the components of ElVis’
initial release, which has been focused on scalar field visualization.
This is not a fundamental limitation of the software; future releases

will address additional visualization capabilities to address additional
user requests. In particular, our next release will address vector fields.
While techniques exist for generating streamlines in high-order fields
[31, 5], it is not immediately apparent how this will extend to a GPU
implementation; additional capabilities will need to be developed for
ElVis to support these features. Additionally, the direct-access to so-
lution data will allow ElVis to naturally handle solutions involving cut
cells [7], a capability not available in any current visualization system.

Even as it stands now, every ProjectX developer wanted to know
how to “get [ElVis] on my computer” or “when can I start using
[ElVis].” ElVis fills a major gap that has existed in scientific visu-
alization. While solvers are moving toward high-order methods, vi-
sualization systems continue to apply linear interpolations. ProjectX
developers and users were hard-pressed to debug their solver and ana-
lyze the results it produced. High levels of visualization errors caused
developers to misdiagnose bugs and arrive at erroneous conclusions
about mesh resolution, amongst other issues. These problems could
have been avoided with ElVis. Ultimately, everyone involved agrees
that ElVis would be a welcome and valuable addition to their kit of
development, debugging, and analysis tools.
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