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Fig. 1. Contour boxplot for an ensemble of the pressure field of a fluid flow simulation with a LIC background image for context.

Abstract— Ensembles of numerical simulations are used in a variety of applications, such as meteorology or computational solid
mechanics, in order to quantify the uncertainty or possible error in a model or simulation. Deriving robust statistics and visualizing the
variability of an ensemble is a challenging task and is usually accomplished through direct visualization of ensemble members or by
providing aggregate representations such as an average or pointwise probabilities. In many cases, the interesting quantities in a sim-
ulation are not dense fields, but are sets of features that are often represented as thresholds on physical or derived quantities. In this
paper, we introduce a generalization of boxplots, called contour boxplots, for visualization and exploration of ensembles of contours
or level sets of functions. Conventional boxplots have been widely used as an exploratory or communicative tool for data analysis,
and they typically show the median, mean, confidence intervals, and outliers of a population. The proposed contour boxplots are a
generalization of functional boxplots, which build on the notion of data depth. Data depth approximates the extent to which a particular
sample is centrally located within its density function. This produces a center-outward ordering that gives rise to the statistical quan-
tities that are essential to boxplots. Here we present a generalization of functional data depth to contours and demonstrate methods

for displaying the resulting boxplots for two-dimensional simulation data in weather forecasting and computational fluid dynamics.

Index Terms—Uncertainty visualization, Boxplots, band depth, ensemble visualization, order statistics.

1 INTRODUCTION

An important and widely used strategy within the area of uncertainty
quantification (UQ) in simulation science is the construction of ensem-
bles. Ensembles are collections of different simulations for the same
physical phenomenon conducted with differing parameter values, dif-
ferent boundary or initial conditions, different instances of stochastic
phenomena, different phenomenological models, different numerical
regimes or parameters, or even different software systems. These en-
sembles are a means to represents sets of possible, likely, or reasonable
outcomes from a simulation-based experiment or forecast. They can
be used to study sensitivities to parameters, evaluate possible extreme-
case scenarios, and qualitatively or quantitatively assess the inherent
variability or uncertainty in a simulation outcome. For instance, vir-
tually all weather forecasting is based on an aggregation of forecasts
using different simulation systems and different initial conditions [34].
Likewise, hurricane forecasting is typically done by considering out-
puts from different hurricane prediction software systems [5].

In analyzing the results of a simulation or a simulation ensemble,
scientists are often interested in particular features of interest, rather
than the dense fields of data we normally associate with physical sim-
ulations. In many cases these features can be represented as isocon-
tours or level sets of the physical data or derived quantities. Some
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very important applications rely on ensembles of climate- or weather-
derived features. For instance, thresholds on rainfall and temperature
can affect the boundaries of agriculture regions. Air-quality warnings
and corresponding emission restrictions are often related to tests or
thresholds of temperature, wind, efc. In the forecasting of fire, risk
experts rely on weather forecast ensembles and thresholds of tem-
perature, wind speed, and relative humidity to establish warnings or
alerts. Understanding how such threshold boundaries behave across an
ensemble of forecasts or simulations is essential to assessing the un-
certainty of these predictions/warnings and weighing that uncertainty
against other costs and risk factors.

Ensembles are also used to study the behavior of physical phenom-
ena. In fluid simulations, researchers are often interested in the behav-
ior of eddies and turbulence to better understand the structure of re-
gions that have low pressure or high vorticity. They use ensembles to
establish the sensitivity or repeatability of their findings through time
or across sets of parameters or models. In solid mechanics, engineers
often want to understand which parts of an assembly undergo criti-
cal thresholds of force or deformation in order to predict patterns of
failure or modify designs to address these potential weaknesses [38].
In computational biomechanics, simulations give rise to load patterns
on joints, and loads beyond certain thresholds are a risk factor for ex-
cessive joint wear [11]. In all of these cases, ensembles can help to
establish the variability in the boundaries of these critical regions and
give simulation scientists some way of quantifying the confidence in
their findings.

When considering the visualization of ensemble data there are a
variety of different options. One very natural strategy is to compute
statistics on the underlying fields of physical parameters [19]. Treat-
ing these fields or functions as vectors in linear spaces allows one
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to define distances, inner products, a corresponding statistical aggre-
gates of mean, variance/covariance, etc. However, we will assert and
demonstrate that statistical analyses of the underlying functions are
not the same as analyses of the feature sets, which are isocontours of
fields and derived quantities. Functions include modes of variability
that are not important when considering particular isocontours. The
notions of an average, median, or most representative sample have
a different meaning (and result) when considering fields versus iso-
contours. Meanwhile, certain applications are particularly interested
in the shapes, positions, and variability of the isocontours (contours)
themselves, and thus statistical analyses and their corresponding visu-
alizations must reflect this.

Because contours are not functions, but are instead manifolds or
shapes, statistical analyses of ensembles of contours are particularly
challenging, and there is an active field of research called statistical
shape analysis, that seeks to establish the foundations that overcome
these challenges [7]. Much of the work in shape analysis relies on as-
sumptions about correspondence, topology, and alignment of shapes,
and is difficult to apply in the contour setting without significantly
more development. In this work we propose a somewhat simpler type
of shape analysis that is motivated by a class of methods for statistical
analysis of functions.

The development of this methodology is motivated by a set of crite-
ria that we have established based on collaborations with domain sci-
entists/engineers and the kinds of questions they are trying to answer
with these ensembles.

Informative about contours/regions: As described above, visualiza-
tions should apply specifically to contours and convey statistical
properties of their shapes, positions, efc.

Qualitative interpretation: Visualizations should provide high-level,
qualitative interpretations of shapes of contours and variability.

Quantitative interpretation: Visualizations should display well-
defined statistical content that allows for quantitative interpre-
tation.

Statistical robustness: Aggregate quantities in visualizations should
not be sensitive to a small number of examples in the ensemble
that are significantly different from the others; such examples
should be identified.

Aggregation preserving shape: Visualizations should display sum-
mary information but should not hide details that are character-
istic of the typical properties of the contours.

This paper presents a new method for visualizing ensembles of con-
tours. The method uses nonparametric statistical methods to quantify
and display a set of information that is analogous to the mean, median,
order statistics, and outliers that are typical in conventional boxplots.
Thus, we call the method contour boxplots. Contour boxplots rely on
the quantification of statistical depth—how central or deep an instance
is within a distribution. While there are many ways to characterize
depth, for this work we present a novel method for computing depth
of contours, for which there is no depth measure to date. The proposed
contour depth is a generalization of the method of band depth, which
has been presented in the statistics literature to quantify and visualize
ensembles of functions [17]. Band depth exhibits some sensitivity to
the shapes of functions (rather than just their position), which is im-
portant in this context. The proposed generalization of band depth is
proven to be mathematically equivalent to functional band depth un-
der specific conditions, but also much more general. We also show
how this method of band depth can be used to construct a set of vi-
sual primitives (lines and polygons) that display the information one
would normally associate with a boxplot. Thus, this new analysis and
visualization technology offers a statistically sound and visually effec-
tive way of presenting ensemble results for feature sets. We evaluate
and analyze the proposed method and some other state-of-the-art ap-
proaches in relation to the list of criteria above.

The rest of the paper proceeds as follows. The next section gives
an overview of related work and characterizes the proposed contour

boxplot method in that context. Section 3 briefly reviews the technical
background for band depth and functional boxplots, describes the pro-
posed generalization, and establishes equivalences for special classes
of inputs. Section 4 describes the implementation and the visualiza-
tion strategies for contour boxplots. Section 5 verifies the behavior
of the method on controlled experiments and then shows results for
two different applications—computational fluid dynamics and weather
forecasting. We summarize our findings and conclude in Section 6.

2 BACKGROUND AND RELATED WORK

The origins of the recent research activity in “uncertainty visualiza-
tion” are not entirely clear; however, most would acknowledge that
the early works of Pang ef al. (e.g., [20, 16, 19]) combined with John-
son and Sanderson’s call for “visualization error bar” [12] signaled an
upturn in interest for methods designed to represent the output of the
process of uncertainty quantification in experiments and simulation. A
salient review and taxonomy of the state-of-the-art in uncertainty visu-
alization is given in [29]. We review here those works most relevant to
the motivation and contributions of our current work: those related to
the visualization of (simulation) data-derived features extracted from
fields having uncertainty information in the form of distributions (rep-
resented in terms of a model of the distribution or as an ensemble).

Grigoryan and Rheingans [9] introduced point-based primitives to
show surface uncertainty by displacing individual surface points along
its normal by an amount proportional to a random number multiplied
with the local uncertainty value, hence creating a “fuzzy surface” to
convey the surface uncertainty. Texture and/or color are employed to
denote uncertainty through a modification of a direct volume rendering
technique in [6]. Other proposed methods to visualize surface uncer-
tainty include fat surfaces [19], likelihood and confidence maps [21],
and point primitives for rendering uncertain isosurfaces [10]. Follow-
ing from this idea, Kniss et al. [15] developed a volume visualization
method that incorporates the fuzzy classification into the visualization
cycle to allow users to interactively explore the uncertainty, risk, and
probabilistic decision of surface boundaries. Rhodes et al. [31] pro-
posed an isosurface rendering technique for multiresolution volumet-
ric data while incorporating the error present in the data. In summary,
all such previous attempts at visualizing the uncertainty of extracted
features fail to meet one or more of our aforementioned motivating
criteria: in particular, they do not maintain both a qualitative and quan-
titative means of interpretation of the certainty, and it is not clear that
they make any attempt to robustly summarize the set of shapes in an
ensemble, but mostly seem to convey magnitudes in potential error or
variability in point positions.

In recent years, there has been a move within the community to in-
corporate statistical models directly into the process of detecting iso-
contours. The concept of Level Crossing Probability (LCP) was intro-
duced to quantify and visualize uncertain scalar fields [26], where they
introduced a model for uncertain spatial data and the corresponding
spatial distribution of uncertain isocontours. As an extension of this
method, a probabilistic version of the marching cubes algorithm was
proposed in [28], where the authors take into account scalar fields in
which the data points are possibly correlated. Pfaftelmoser er al. [23]
proposed the isosurface-first-crossing-probability (IFCP) algorithm as
an efficient way to calculate the probability incrementally along a ray
cast through a correlated random variable field. In [27], the authors in-
troduced an approximation to calculate cell-wise level-crossing proba-
bilities for uncertain scalar fields as a preprocessing stage. With a dis-
cretized Gaussian assumption, they have designed a tool to explore the
LCP interactively. The LCP methodology does provide quantitative
estimation error bounds. However, the visualization of the LCP (even
when accounting for local correlations) is not able capture the global
statistics of the field that are often the most important aspect of un-
derstanding the ensemble of simulations and their associated physics.
Furthermore, while the method is quantitative by construction, it pro-
vides only a qualitative visualization of the variability, and thus does
not satisfy the criteria we have established in the Introduction. This
will be demonstrated on specific examples later in this paper.

A related work [24], proposed a technique to represent the global
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correlation structure of 2D discrete scalar fields through the introduc-
tion of a correlation strength model for discrete points. While their
correlation model can be defined over the whole domain, to make it
practical, a clustering approach was introduced, and correlation values
are only calculated locally. That work was extended in [22] for prob-
abilistic local feature extraction for crisp vector fields considering a
local correlation structure on the uncertain vector field. The proposed
framework was used to find probabilities of singularities (e.g., sink or
saddle point) using the local neighborhoods. Although that method
does give a quantitative interpretation of the variability of features,
the necessary reduction in degrees of freedom through local approx-
imations limits its ability to convey a sense of the fypical shape of
members drawn from the distribution. Furthermore, the reliance on
parametric models presents challenge in the case of non-normal distri-
butions and outliers.

An alternative approach to tackling the quantification issue is to at-
tempt to visualize the ensemble data directly and let the user interpret
the underlying variability and uncertainty qualitatively. Joseph et al.
[14] introduce a visualization system for displaying uncertainty in iso-
surfaces and facilitating isosurface comparison. Phadke et al. [25]
proposed scaled data driven spheres (SDDS) and attribute blocks to
visualize single (or multiple) ensemble members. One can also use de-
scriptive statistics of the ensemble data to simplify the interpretation.
Ensemble-Vis [30] was introduced as a flexible infrastructure to con-
vey statistical properties of ensemble data along with multiple views of
various fields of interest to enhance visual analysis of ensemble data.
In addition to these general approaches, there have also been domain-
focused attempts at direct ensemble visualization. Noodles [33] is an
example of an interactive visualization tool that has been designed
for visualizing weather forecast data where the uncertainty has been
quantified for each of the ensemble members independently from the
ensemble mean. In [5], hurricane track predictions are examined in an
similar manner, and an ensemble visualization technique is proposed
as an alternative to the “error cone” visualization typically displayed to
the public in hurricane warnings. These methodologies, however, fail
to provide quantitative summaries or aggregates, and place a larger
cognitive burden on the user to interpret the statistical meaning of the
many examples. That is, they inadequately summarize shape in a way
that readily leads to a precise, quantitative interpretation.

3 BAND DEPTH METHOD AND ITS GENERALIZATION TO CON-
TOURS

Here we begin with a review of the concept of statistical depth and the
definition of band depth, which is a particular depth measure that is
sensitive to the shapes and heights of functions.

Order statistics (e.g., percentiles, median) require an ordering on the
data. For scalar data, this ordering is obtained by simply sorting the
values. Bagplots proposed in [32] contained a generalization of ranks
for bivariate points, which relies on the notion of halfspace depth [37].
A bagplot consists of a bag denoting 50% of the data and a fence (in-
flation of the bag by a factor of three) to distinguish the outliers. For
multidimensional data, the concept of ordering may be more compli-
cated, especially when one wants to capture specific properties, such as
geometric relationships between variables. Of course, one could order
each coordinate (or degree of freedom) independently of the others,
but such an approach essentially assumes independence, and ignores
structure in the data that is reflected in the interdependency (e.g., cor-
relation) of coordinates.

Statisticians have developed a concept of data depth for nonpara-
metric, multivariate data analysis. Data depth provides center-outward
orderings of multivariate data and has led to a variety of new nonpara-
metric multivariate statistical analyses, i.e., methods not reliant upon
assumptions about the underlying distributions. Data depth quanti-
fies how central (or deep) a particular sample is within a given cloud
of data. The deeper samples are considered more representative of the
data as a whole, and the shallowest samples can be considered outliers.
Thus, depth allows one to perform certain kinds of order statistics on
multidimensional data in a way that is general but does not ignore sta-
tistical relationships between coordinates.

The statistics literature describes a variety of different methods for
data depth, but a recent development, called band depth [18], is par-
ticularly relevant for the goals of this paper. Band depth is defined on
an ensemble of functions, f;: 2 — % i=1,...n. For this discus-
sion, & and & are intervals in R. The band depth of each function
is the probability that the function lies within the band defined by a
random selection of j functions from the distribution. For instance,
a function g(x) that lies in the band of j randomly selected functions
fi1(x),...,fj(x) satisfies the following:

g(x) CB(fi(x),...fi(x)) iff (1
jfk(x)-

Fig. 2a shows the construction of this band graphically for j = 3.
We can see that a function lies in the band defined by j other func-
tions if it lies between the upper and lower envelopes formed by those
functions. The band depth for a given j is the probability that a func-
tion falls into the band formed by an arbitrary set of j other functions
chosen at random from the probability distribution associated with the
ensemble:

BD/ (3(x)) = P[g(x) C B (f1(x).... f;(x))] 2

where the indices enumerate members of a set in no particular order.
The notion of band depth has been found to be more robust if one
considers the sum of all smaller sets to form the band. That is

J
BD; (g(x)) = ¥ BD/ (g(x)). 3)
Jj=2

The probability P[] is computed by a sample mean of the indicator
function associated with Eq. 2, which is formed by evaluating BD over
all appropriately sized subsets from the given ensemble (excluding g).
The size of subsets should be chosen to prevent degenerate cases where
no bands are sufficiently wide to contain the function or too many
examples have the same depth. For instance, if one considers j = 3 for
an ensemble containing 10 functions, a particular example would be
tested against C(9,3) = 84 bands in order to determine the probability
in Eq. 2.

The band depth is computed for each member of the ensemble and
can be used, as described in [35, 36], to visualize summary statis-
tics for an ensemble of functions, as shown in Fig. 2b—c. A func-
tion boxplot, therefore, shows the median (sample with the greatest
depth—maximum BD), bands associated with percentiles (e.g., band
containing 50% of the examples) and outliers (e.g., samples f with
BD(f) > 1.5 x BD(f509 ), Where fs504 is the function that is at the
middle of the sorted list of BD values from the ensemble. Notice that
this definition of data depth allows one to capture shape differences in
functions. That is, functions that are near the center of the distribution
but have irregular shapes will have a lower probability of falling within
a particular band of randomly chosen samples. This method also cap-
tures relationships between values across the domain, which may be
lost if one uses conventional boxplots to describe pointwise statistics
of the ensemble (as shown Fig. 2c).

Theoretical results on this definition of band depth show that it sat-
isfies several important statistical criteria. The sample mean of the
probability of falling into a particular band size converges to the ex-
pectation as the size of the ensemble goes to infinity. For symmetric
distributions, the sample with maximum depth converges to the cen-
ter of the distribution. Likewise, samples that are infinitely far from
that center will have band depths that approach zero. Finally, for the
case of univariate data band depth is equivalent to conventional order
statistics.

In practice, with too few samples and too much variability in shape,
there are simply not enough subsets, and many samples can have a BD
that is very low or zero, which can interfere with the ability to dis-
criminate the depths of different samples, and therefore [17] propose
a modified band depth (MBD), which computes the expected value of
the amount of the domain 2 for which a function g(x) lies in the band.
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Fig. 2. Examples of function band depth and function boxplots. (a) For
band depth, three different curves (in blue) form a band (in grey) against
which three other (red) curves are tested, with only the solid curve falling
in the band. (b) A set of 80 simulated, noisy curves with some outliers in
shape and position. (c) A version of the function boxplot, as proposed by
[35, 36]. (d) A conventional, pointwise, boxplot loses information about
shapes of curves in the ensemble.

This modification produces more reliable results in high variability sit-
uations, but significantly reduces the sensitivity of the method to the
shapes of functions, because irregularly shaped functions few bands
that contain them perfectly but many bands that contain them approx-
imately.

For the analysis of contours, we will generalize this definition of
band depth and propose an alternative modification for dealing with
scenarios with relatively small sample size and high variability. We
begin with a new definition of band depth, which operates on sets, and
show that this definition is equivalent to function band depth for the
special case of functions.

Consider an ensemble of sets E = {Sy,...,S,}, where S; C U, and
U is the universal set. We say that a set S € E is an element of the band
of a collection of j other sets Sy,...,S; € E if it is bounded by their
union and intersection. That is,

J J
SesB(Sy,...8;) <= [(SkcSc S 4)
k=1 k=1

From this we can define the set band depth (sBD) as the probability
that a set lies in the band of a random selection of sets from the en-

semble:
J

sBDy (S)= Y P[SesB(S),...5)]. 5)
j=2
As with the function BD, sBDj is computed by taking all appropriately
sized subsets of E.

To apply sBD to isocontours, we will consider the subsets in the
plane enclosed by those contours, as in Fig. 3a. Thus, given a set of
fields Fy (x,y),...,Fn(x,y) the algorithm for computing the sBD (for a
particular value of j) of isocontours with value g is as follows:

1. Compute the sets (represented as binary functions on a grid):
Sj = {(xy)| F(x,y) > g} fori=1,...n.

2. Fori=1ton

(a) Initialize P, =0
i. For each subset of {S1,...,S,} of size j and not con-
taining S; (call it Q)
A. Compute Sy = Ug,co Sk and Sy = s, co Sk (us-
ing min and max operations on the grid)
B. If S C S; C Sy (testing using differences on the
grid), increment P;

(a) (b)

Fig. 3.  (a) For three test contours (blue), a red contour lies in the
contour band if it encloses the intersections of the regions (grey) and
within the union of those regions (light grey). (b) For topologies in the
plane that map to the graph of a function, set band depth in the plane is
exactly equivalent to function band depth.

ii. Normalize P, by dividing by the number of subsets
((n—1)-choose-r)

3. Sort the values of P;.

Visualizations are constructed from the depth-sorted contours, as de-
scribed in the next section.

We call the application of set BD to isocontours contour band depth
(cBD). Of course, nothing in the formulation limits this method to 2D
domains. Indeed, in the results section we will show results for time
varying 2D fields, which will be treated as 3D fields, but we show them
as a 2D sequence in time. In this paper we consider the display of con-
tour boxplots only in 2D—the very challenging problem of visualizing
multiple, nested 3D surfaces is beyond the scope of this paper.

The proposed formulation of set band depth (sBD) and its appli-
cation to contours (cBD) exhibit a set of theoretical properties that
are important in understanding its behavior and potential applications.
These properties are described, with sketches of proofs, in the Ap-
pendix. First, the function BD method of [17] is a special case of
sBD, where the sets are given by regions in the plane. Thus, sBD is a
more general and broadly applicable version of band depth. Second,
while contour band depth (cBD) applies to contours or level sets gen-
erally, it is equivalent to function BD in the very special case where
the contours can be represented as functions. Thus, ¢cBD is also a gen-
eralization of function BD. Therefore, one of the contributions of this
work is our introduction of more general definitions of band depth.

This raises important questions about cBD and what properties it
exhibits with respect to contours. Here we identify two properties of
interest, both of which are described more rigorously in the Appendix.
First, even though cBD operates with respect to the sets associated
with interiors (F(x,y) > ¢) of contours, it is invariant with respect to
the definition of interior/exterior. Thus, we can say that cBD analysis
is a property of the set of contours themselves rather than the functions
from which they are generated. Second, the band requirement given
by Eq. 4 is consistent with the conditions associated with level sets in
a contour tree [4]. This is important because it means that we can use
many of the results regarding the topological structure of contour trees
to better understand cBD. Also, this suggests that the proposed formu-
lation may open possibilities for nonparametric statistical analyses of
contour trees.

As with function BD, ¢cBD will produce unsatisfactory results (e.g.,
many contours may have P = 0) if the ensemble is relatively small
and the contours vary significantly in shape. The modified band depth
approach [17] to alleviate this problem, which uses an integral of the
dependent variable for values within the band, is not immediately ap-
plicable to this context. The contour approach has no independent
variable, and thus integrals would need to be defined on contour length
in a way that accommodates different topologies. Instead, we take an
alternative approach that generalizes our set definition of band depth.
The strategy is to relax the definition of subset to allow a small per-
centage of each set to violate the classical definition. Thus we define
an epsilon subset:
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Fig. 4. Examples of how the contour band depth deals with topologi-
cal differences. A contour (red) is tested against the contour of a union
(solid) and an intersection (dashed blue). Left: two examples of differ-
ent topologies satisfy the contour band property and represent properly
nested contour trees of some continuous function. Right: two exam-
ples do not satisfy the contour band property and do not represent an
ordering consistent with any continuous function.

A—B
Ach<:>|A\:Oor| ] |<e, 6)

and the epsilon set band is

j j
S€sBe (S1,...8)) < [ Sk CeSCe | Sk 0
k=1 k=1

Likewise, sBD¢ is defined from sB¢. This allows a softer definition
of the band while retaining a sensitivity to contour shape, especially
for very small €. This does introduce the free parameter €, but, as
described in the next section, this can be determined automatically by
examining the results of the subset operations across the ensemble and
choosing € to ensure some simple, general criteria.

4 METHODS

Here we discuss several important aspects of the computation of con-
tour band depth for elements of an ensemble and the construction of
visualizations. For computation of cBD, we use J = 2 throughout this
paper. As noted in the literature on function BD, the smaller values
of J allow greater sensitivity to shape (two functions/contours of very
different shapes tend to cross and violate the band condition). Smaller
J values are significantly faster to compute. The tendency for ties in
the J = 2 case is best alleviated by using the modified definition of
band depth, sBD; for contours.

The use of sBD for contours introduces a free parameter €, which
must be set or tuned for a particular ensemble or visualization. While
some situations might benefit from exposing this parameter to users,
for this work we have developed a set of rules to define this parame-
ter automatically, incorporating some high level knowledge about the
structure of the distribution. Here we present one of many possible
ways in which € can be tuned automatically in order to produce the
most informative ordering of the data.

The proposed method is to use the loops over different J = 2 sub-
sets to compute, instead of a binary variable, the percentage of mis-
match between different set operations, |A — B|/|A| in Eq.6 (take the
worst/max of the union and intersection operations for a given compar-
ison). If there are m sets of J = 2 against which to compare n contours,
this gives an m x n matrix, which we denote as m;;. If we threshold for
a particular choice of &, the sum along column (divided by m) gives
cBDg¢ for that row/sample. We denote an element-wise threshold oper-
ation for the matrix as Tg (m; j). If we sum across the rows and columns
of T (m;;) and normalize, we get the sample mean of the band depth
for a particular choice of €.

Here we consider a simple model. A one-dimensional probability
density, p(x), has cumulative distribution ¢(x), so that ¢/(x) = p(x).
For J = 2, a particular sample x falls in the band of (i.e., between)
two randomly chosen samples if one sample is less than x and the
other sample is greater than x. Those probabilities are given by the

cumulative distribution (and its complement). Thus the expected value
for the band depth is:

Egp =

[ =cnewplaax ®)

—oo

- / (1 - c(x)) c(x)c (x)dx = é

Consequently, the expected value of the band depth is an invariant,
and for any one-dimensional probability distribution it is 1/6. We do
not know the dimensionality of the underlying distribution of a set
of contours. However, as a rule of thumb, we can say that the most
generous choice of € is the one associated with a 1D distribution of
the data. To find that threshold on the soft subset, we can perform a
binary search on € using the minimum values along the columns of
matrix m;; to satisfy:

1 n o m

1
— 3 ) Telmiy) = ¢ ©)

i=1j=1

We have found this automatic method for choosing € to produce con-
sistently useful band depth values, and have used this method for all
of the results in this paper.

As part of the visualization, we also identify outliers. From the
statistics literature, there is no precise, universal definition of an out-
lier. Some particular methods apply if one assumes a particular dis-
tribution (e.g., normal), which is not applicable to the nonparametric
approach we are taking here. Outliers are typically samples that are
rare. For this work, in order to capture rarity, we will define outliers
as samples that have zero band depth—that is, the samples that cannot
be bound (via contour bands) by any other pair of samples.

For some examples in this paper, we will perform the cBD analysis
in space and time. For this, the definitions (and theoretical results) ex-
tend quite readily. We can compute set differences and sizes on regions
in 2D and sum across time in order to perform soft thresholds. This
analysis gives us the band depth of a full time-space surface associated
with a threshold value.

All of the visualizations in this paper are of 2D domains, although
some are dynamic. Our strategy is to show a set of information re-
sembling that of a conventional boxplot of scalar data. Thus, we
trim the data, removing outliers, which are shown separately as thin,
dashed, red curves. We show bands associated with 50% and 100%
data depths. These bands are easily computed as the difference of the
union of a set of regions minus their intersection (as in the cBD def-
inition). For display we render these bands as solid, but transparent,
relatively neutral colors so that a user can see data underneath these
bands to better understand their overall position. We render the con-
tour with the greatest depth, which is the median, or the sample that
is most representative of the ensemble as a solid, yellow line. We
compute the mean of the ensemble as the contour associated with the
region contained in greater than 50% of the samples in the ensemble,
and render that as a purple line. Results of these rendering choices are
shown in the next section.

5 RESULTS AND APPLICATIONS

In this section, we discuss the experimental results using contour box-
plots based on ¢cBD to address the challenge of visualizing and in-
terpreting the variability in ensemble data using several experimental
examples. We also show comparisons against relatively simple op-
erations on fields and another state-of-the-art method for quantifying
error in isocontours. We begin with a synthetic example and then show
two examples from simulation science applications.

The synthetic ensemble consists of 80 members, each of which is an
isocontours of the implicit formulation of an ellipse with different size,
rotation, and ellipticity. Furthermore, the shapes have been contami-
nated with correlated random noise. We have added several outliers
in size as well as two examples where the shapes are generally very
close to the mean but have been corrupted by relatively large amounts
of correlated noise to simulate shape outliers. Figure 5 shows the col-
lection of contours associated with the zero level sets of these implicit
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Fig. 5. (a) Synthetic ensemble data including isocontours of 80 randomly contaminated implicit ellipses formulation. (b) A legend for the display
used in the contour boxplot. (c¢) Contour boxplot for the synthetic dataset. (d) For comparison, the isocontours of the mean of 1 standard deviation

of the implicit functions.

functions. Because the topologies of these examples are constrained,
(as illustrated in Fig. 3b), we know that this example is equivalent to
the function boxplot example in Fig. 2. The soft subset threshold, €,
is chosen automatically using Eq. 9, and we list the values of € for all
of our results in this section in Table 1. In these cases, the practical
affects of choosinge are that if we choose € = 0 (full subset relation-
ship), there is a significant fraction of the ensemble members that have
no containing bands cBD; = 0, and they are all tied for the lowest data
depth. If € is set significantly larger than zero, then we lose the sen-
sitivity to shape, and, in the very extreme case (e.g., € =~ 1), many
examples may be tied for very high depth.

Table 1. The soft subset thresholds

Experimental Example Soft Subset Threshold (€)

Synthetic Ensemble 0.0001

Fluid Simulation Ensemble 0.005
Fluid Region of Interest Ensemble 0.001
Weather Forecast Ensemble 0.009

Figure 5c illustrates the sensitivity of the cBD, even with the soft
subset concept given by Eq. 7. This example shows that using cBD
to construct contour boxplots will provide both qualitative and quan-
titative information about the variability among ensemble members
using the notion of 50% percentile band. Moreover, the contour box-
plot identifies and displays both the shape and the positional outliers.
Notice that the median (shown as a yellow curve) is not centered in
the 50% band, whereas the mean (shown as a magenta curve) is. This
is expected, because the median in these examples is a representative
contour from the ensemble, and there are no contours that are per-
fectly centered within the band. This is especially true in the context of
the multidimensional variability (in size, shape, orientation, and noise)
that we used to generate these examples. Likewise, the mean shows a
smoothness that is not typical of the population. Thus, both contours
may be useful in this context.

One of the benchmark methods against which we compare is ex-
traction of the isocontour from the averaged field data (implicit func-
tions), with bounding contours based on the standard deviation at each
pixel. This simple approach is indicative of a broad class of methods
for quantifying uncertainty in contours (e.g., [15]), which model un-
certainty as the local sensitivity of the contour/surface to variations in
the function or isovalue. Figure 5d shows the isocontours of the mean
and +1 standard deviation of our synthetic dataset. Using the sample
mean of the field removes (smoothes out) the details of the shape of
individual ensemble members. Furthermore, while outlier detection
on the fields is, in principle, possible, shape outliers are necessarily
unusual with respect to their set of field values.

Our second set of experimental results is motivated by computa-
tional fluid dynamics applications in which scientists are interested in
studying the dynamics of the fluid fields and the variability of features
they observe in the flow. As fluid passes a solid object, eddies will peri-
odically form and move along the eddy lines (i.e., the vortex street) that
form behind the object. Simulations are often compared against exper-
iments in controlled conditions. In practice, however, there are usually
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Fig. 6. Top: Contours of a pressure field for three consecutive time
points show that the obstacle sheds eddies on a cyclical pattern. Bot-
tom: Pressure values over simulation time for a single point allow one
to snapshot a consistent times in the cycle.

small deviations in parameters, such as boundary velocities and tem-
perature. For instance, the viscosity of fluid changes with temperature,
which affects the Reynolds number of the simulation—an important
parameter in vortex formation. Here we use contour boxplots to vi-
sualize the variability in shapes of the eddies among simulations with
different parameter settings. For this example, we study the scenario
of a 2D fluid moving past a solid disc, which generates a wake and
series of eddies (top and bottom) that move in a cyclical pattern down
the edges of the wake (eddy lines).

For the simulations, we use the 2D incompressible Navier-Stokes
solver as part of the Nektar++ software package [2] to generate an
ensemble with 40 members, where each ensemble member is a sim-
ulation with Reynolds number and inlet velocity chosen randomly.
The inlet velocity values are randomly drawn from a normal distri-
bution with a mean value of 1 and standard deviation of £0.01 (in
non-dimensionalized units); likewise, Reynolds numbers are gener-
ated from a normal distribution with mean value of 130 and standard
deviation of +3.

The simulations are of course dynamic, and the time courses and
eddy formation patterns of each one are slightly different. However,
because eddy formation is cyclical, we can compare simulations us-
ing snapshots for each simulation corresponding to approximately the
same point in the eddy formation cycle. This is done as follows. Af-
ter running the simulation long enough that the flow is well-developed
(i.e., beyond the transient stage), we pick a particular point, directly
behind the disc/obstacle, to observe the pressure values over time.
The center of an eddy is typically a minimum in pressure, and thus
as the eddies pass the history point, their pressure footprint through
time will have a very regular periodic behavior, as in Fig. 6, where the
red squares, at the pressure minima indicate the ensemble snapshot.
Thus, we can capture synchronized samples from a dynamic simula-
tion by timing them with this cycle, and all ensemble members are
at approximately the same phase in the vortex shedding process. We
also normalize the pressure field of each simulation using the averaged
pressure value (over time) of the history point taken in the wake of the
cylinder. Isovalues are extracted as a fixed level set value relative to
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Fig. 7. (a) Ensemble of isocontours of the pressure field (b) Contour boxplot of the fluid flow simulation using 40 ensemble members with different
perturbations in the initial conditions. (c) Demonstration of the isocontours of the mean and +1 standard deviation of the pressure field. (d) Color
mapped level set crossing probabilities of the pressure field calculated using the probabilistic marching cubes algorithm (with the mean pressure
shown as a black contour line). The boxplots are rendered over the LIC visualization of the median member of the ensemble.



To appear: IEEE VisWeek October 13-18, 2013

the calibration pressure. Figure 7a shows the contours associated with
this experiment. Figure. 7b shows the result of using contour boxplots
to visualize the variability of isocontours of the pressure field between
different ensemble members at a specific timestamp (i.e., the captured
cycles). As the 50% band suggests, the variability is mainly due to
different lengths of the wake and different distances between eddies
as they move down the eddy line. Unlike the output of the PMC al-
gorithm, which is a continuous field of values, the contour boxplot is
a set of quantitatively interpretable regions, and can be easily over-
laid on top of other visualizations. Here we render the boxplots over
a line integral convolution (LIC) flow visualization [3] of the median
member of the ensemble for context. In practice, the specifics of the
contour boxplot rendering would be adapted to the needs of a particu-
lar application.

Figures 7c—d illustrate the comparison of our proposed method with
alternative visualization schemes to convey the variability between en-
semble members. Even though isocontours of sample mean and £1
standard deviation of the pressure field (Fig. 7c) provide a quantita-
tive description of the underlying variability between ensemble mem-
bers, one can point out several problems with that approach. First,
the mean is not representative of the population. The bulges associ-
ated with individual vortices/eddies are misshapen (flattened and elon-
gated). Also, the separation of the vortices from this pressure contour
at the end of the wake is lost. The variability is also misleading. The
figure overestimates the variability perpendicular to the flow (up and
down) and underestimates it along the flow (left and right). The con-
tour boxplot captures these properties in a way that shows the proper
shape of a typical wake and depicts the variability in a way that ac-
curately represents the ensemble. Thus, this example demonstrates
the isocontours extracted from mean and +1 standard deviation of the
pressure field do not satisfy the shape preserving property.

In recent years, there has been great interest in approximating and
visualizing level-crossing probabilities [26, 28, 23, 27]. We have
chosen to compare our method with the probabilistic marching cube
(PMC) algorithm [28] as a representative of this collection of meth-
ods (here implemented in 2D) in Fig. 7d. In addition to the point-wise
variability among ensemble members, PMC also takes into account the
local spatial correlation of neighboring points. This algorithm uses a
multivariate normal approximation for each neighborhood (estimated
from the ensemble) and uses a Monte Carlo methods, with samples
from this normal distribution, to empirically estimate the probability
of an isocontour passing between 2 pixels (voxels, grid points). As in
[28] we use 4 x 4 neighborhoods. These probabilities are then shown
as an image with the color scheme proposed in [28]. Figure 7d shows
the result of using PMC for the fluid simulation ensemble. In this
rendering, blue denotes low probability values, while red and yellow
are used to denote moderate and high probabilities, respectively. The
mean suffers from problems similar to those in Figure 7c (they are
slightly different because of differences in resolution). Furthermore,
the variability, while quantitative and data driven, fails to capture es-
sential aspects of the shapes in this ensemble and consistently underes-
timates the degree to which these individual eddies can vary in position
forward and backward on the eddy line. Finally, both the field averag-
ing and PMC methods are unable to systematically detect and convey
the extreme behavior of several outliers.

In practice, such fluid simulations (as in real fluids) are only ap-
proximately cyclical. Low frequency variations (in time) will result
in slower pulsations that can persist long after the initial transient ef-
fects of a simulation. Here we use contour boxplots to visualize the
variability within a single simulation over time. For this example, the
ensemble is the set of fields from a single simulation given by the se-
quence of minima in Fig. 6. Figure 8 shows the order statistics derived
using contour boxplot for a window around the cylinder as an eddy
forms and get disconnected. We can see that there is variability, but
the distribution is geometrically symmetric and compact without any
significant outliers.

The last set of experiments uses the weather forecast data publicly
available from the National Oceanic and Atmospheric Administration
(NOAA) [1]. In climate research and weather forecast applications,

Fig. 8. Contour boxplot of a region of interest for the fluid flow simulation.
In this figure, the trimmed mean is overlapping the median and hence is
not visible in the figure.

ensemble data are formed through different runs of a simulation model
with different perturbation of the initial conditions to account for the
errors in the initial conditions and/or model parameterizations. Users
are often extracting 2D slices of the atmosphere to study specific fea-
tures such as temperature or humidity at different height levels to in-
terpret weather predictions. For this experiment, we use isocontours
of the temperature field at 500mb and a temperature = —15C of SREF-
CONUS (40km). Currently, one of the main tools available to domain
experts to interpret weather forecast ensembles is the spaghetti plots
[8] of isocontours provided by NOAA. The spaghetti plots are also
available as animations through 87 forecast hours (with 3-hour peri-
ods). Using spaghetti plots, the variability is usually inferred as the
extent to which the set of lines is spread out and how the patterns
change through time. Using contour boxplots, one can quantitatively
show the variability of the ensemble members. The dynamic version
of the contour boxplot for this example (an animation) demonstrates
also how the percentile bands evolve and expand (solutions diverge)
as the simulation progresses over forecast time.

Figure. 9b shows the spaghetti plots provided by NOAA for the
same forecast hour, and Fig. 9c shows a visualization of the isocon-
tours of the averaged temperature field along with £1 standard devia-
tion. Finally, Fig. 9d demonstrates the level-crossing probabilities of
temperature using the probabilistic marching cubes [28]. Figure 9
confirms that both of the pixel-based statistical methods lose a signif-
icant amount of detail and do not properly convey the extent to which
even the most similar subset of samples varies. On the other hand,
cBD not only preserves the details of the variability but also has the
flexibility to provide quantitative information about the shapes and re-
gions.

For all of these results, the cBD analysis was computed using MAT-
LAB, and analysis times ranged from 10 to 20 minutes. This compu-
tation time is dominated by the large number of comparisons between
different images to create bands. These computations are indepen-
dent (and therefore easily parallelizable) at the level of images (coarse
grain) and pixels (fine grain), and thus the method will run at interac-
tive rates on state-of-the-art parallel architectures.

6 SUMMARY AND CONCLUSIONS

This paper introduces contour boxplots for displaying statistical quan-
tities from ensembles of isocontours or level sets associated with en-
semble data. The method relies on the statistical notion of data depth,
and for this we have introduced a new formulation of band depth,
which is applicable to sets, generally, as well as isocontours. We
have shown results comparing against other representative, quantita-
tive methods that demonstrate that contour boxplots convey the quan-
titative and qualitative aspects of an ensemble of shapes, satisfying our
design criteria in Section 1.

Limitations of the proposed method suggest some areas for future
work. In some cases it may be important for the visualization to high-
light more detail about the underlying distribution, such as the exis-
tence of multiple modes. This may require a generalization of the
methodology to accommodate clustering [13] or mixture modeling.
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Fig. 9. (a) Contour boxplots of the temperature field at 500mb and
temperature=—15C. (b) Spaghetti plots provided by NOAA. (c) Isocon-
tours of the mean temperature field along with +1 standard deviation.
(d) Color mapped of the level-crossing probabilities of the temperature
field calculated using the probabilistic marching cubes algorithm (with
the mean temperature shown as a black contour line).

While the formulation generalizes to any dimension, we consider the
3D rendering problem as beyond the scope of this paper, but it is an
important and interesting area for future work. Likewise, for time-
critical, 3D applications, better computational strategies will become
essential.

The proposed method is intended to be quite general, and thus
we have demonstrated it in somewhat general contexts. Applications
to specific problems might entail refinement of the rendering/display
strategies including other backgrounds and contour rendering. Also
under consideration is user input, in the form of querying specific in-
stances or values and interactive control of parameters. Likewise, we
have demonstrated a particular strategy for alignment of features in
time that is specific to the fluid application, but more general strate-
gies for such alignments are another important area of research.

The definition of set band depth and contour band depth is quite
general and has a variety of applications in both the current context
and beyond. For instance, there is a growing set of machine learning
and statistical methods that rely on data depth and that are, in prin-
ciple, now applicable to sets of contours. The basic properties of the
set band depth and contour band depth warrant further investigation.
Likewise, the methods in this paper open up other visualization pos-
sibilities, such as nonparametric methods for visualizing large collec-
tions of discrete sets or categorical data.

A APPENDIX

This Appendix provides the mathematical foundations of properties
of the set and contour band depth formulations. The first proposition
establishes that the proposed set band depth (sBD) is a generalization
of function band depth as described in the literature [17].

Proposition 1: Set band depth (sBD) is equivalent to function band
depth (BD) in the special case where sBD is applied to functions.
Proof sketch: Let U = Z x % and let each element of E
correspond to the region of the graph below each function:
Si={(x,y) € 2xZ |y < fi(x)}. Given this, the union of a set of ;s
gives the region in U below the upper envelope of those functions and
the intersection gives the region below the lower envelope. Another
function g lies in the band only if it is above the lower envelope
and below the upper envelope, which is equivalent to the subset
relationship given in Eq. 4.

In special cases, the application of sBD to contours is precisely
the same as BD for functions. The following proposition shows the
relation between sBD and functional band depth:

Proposition 2: For a collection of closed contours in the plane that
is produced by an invertible transformation of an associated set of
functions, sBD applied to the regions enclosed by those contours is
equivalent to BD applied to the functions.

Proof sketch: Let sU be the region in the plane that contains all of
the contours. Let ¢ be the invertible map so that sU = ¢ oU. By
Proposition 1, BD has an equivalent set representation on U = 2 X Z.
The transformation ¢ commutes with these set operations (because
it is invertible), and all of the probabilities are identical between the
function and the contour representation. Figure 3b shows a diagram
of how this equivalence would be established.

Next we consider some specific properties of c¢cBD. The first
property shows that the method truly operates on closed contours and

is independent of the definition of inside or outside.

Proposition 3: c¢BD is invariant with respect to sign changes on

Fi(x,y).
Proof sketch: Consider a cBD analysis on F;(x,y) = ¢. If we consider
a new analysis on F/(x,y) = —F;(x,y) = g, the associated sets S} on

the new problem are the complements of their associated sets in the
original problem, S; = Slc. If we substitute the SiC into Eq. 4, we can
commute it with the intersection operator (which becomes a union)
and the union (operator), which becomes an intersection. We can then
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commute the complement with the subset operations, and they become
superset operations, and the result is the sSBD condition on the S;-s and
Fi-s. As pointed out above, care must be taken to define the subset
operations on the interiors of sets.

Finally, we show that the band definition for contours captures a

very important relevant property of the natural relationships between
contours or level sets of functions.
Proposition 4: Consider the set band applied to isocontours of a
collection of continuous, Morse functions F;, where we test whether
or not the g contour of F; lies in the contour band associated with
Fi(x,y) = q,...,Fj(x,y) = q. Let U be the contour associated with
the union and 7 be the contour associated with the intersection. Then
C ={(x,y)|Fi(x,y) = g} is in the contour set band if and only if there
exists a (continuous, Morse) function G(x,y) and € > 0 such that:

I={(x,y)|G(x,y) = g+ €}, and C = {(x,y) | G(x,y) = q},
and U = {(x,y)|G(x,y) =q—&}.

Proof sketch: This proposition derives from basic properties of con-
tour trees [4]. If a G(x,y) exists to satisfy Eq. 10, then the sets
Ig ={(x,y)|G(x,y) > g+ €}, Cr = {(x,y)|G(x,y) > ¢}, and Ug =
{(x,y)|G(x,y) > g — €} are nested, by construction, and satisfy the set
band property. If the contours satisfy the set band property, then they
are nested in a way that allows for the construction of a G(x,y). If
contours coincide, continuity in G(x,y) would hold only in the limit as
€ — 0. Figure 4 shows some examples of how these nesting relation-
ships can be satisfied or violated for different topologies of contours.
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