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Abstract Numerical methods for elliptic partial differential equations (PDEs) within both
continuous and hybridized discontinuous Galerkin (HDG) frameworks share the same general
structure: local (elemental) matrix generation followed by a global linear system assembly
and solve. The lack of inter-element communication and easily parallelizable nature of the
local matrix generation stage coupled with the parallelization techniques developed for the
linear system solvers make a numerical scheme for elliptic PDEs a good candidate for imple-
mentation on streaming architectures such as modern graphical processing units (GPUs). We
propose an algorithmic pipeline for mapping an elliptic finite element method to the GPU
and perform a case study for a particular method within the HDG framework. This study
provides comparison between CPU and GPU implementations of the method as well as high-
lights certain performance-crucial implementation details. The choice of the HDG method
for the case study was dictated by the computationally-heavy local matrix generation stage
as well as the reduced trace-based communication pattern, which together make the method
amenable to the fine-grained parallelism of GPUs. We demonstrate that the HDG method is
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well-suited for GPU implementation, obtaining total speedups on the order of 30–35 times
over a serial CPU implementation for moderately sized problems.

Keywords High-order finite elements · Spectral/hp elements · Discontinuous Galerkin
method · Hybridization · Streaming processors · Graphical processing units (GPUs)

1 Introduction

In the last decade, commodity streaming processors such as those found in graphical process-
ing units (GPUs) have arisen as a driving platform for heterogeneous parallel processing with
strong scalability, power and computational efficiency [1]. In the past few years, a number of
algorithms have been developed to harness the processing power of GPUs for a number of
problems which require multi-element processing techniques [2,3]. This work is motivated
by our attempt to find effective ways of mapping continuous and hybridized discontinuous
Galerkin (HDG) methods to the GPU. Significant gains in performance have been made when
combining GPUs with discontinuous Galerkin (DG) for hyperbolic problems (e.g. [4]); in
this work, we focus on whether similar gains can be achieved when solving elliptic problems.

Note that within a hyperbolic setting, each time step of a DG method algorithmically
consists of a single parallel update step where the inter-element communication is limited to
the numerical flux computation that is performed locally. In the case of many elliptic operator
discretizations, however, one is required to solve a linear system in order to find the values
of globally coupled unknowns. The linear system in question can be reduced in size if static
condensation (Schur Complement) technique is applied, but it has to be solved nevertheless.
Depending on the choice of linear solver, the system matrix can either be explicitly assembled
or stored as a collection of elemental matrices accompanied by the local-to-global mapping
data. In this particular work we have chosen to explicitly assemble the system matrix on the
GPU to match the CPU code used for comparison.

Due to the different structure of numerical methods for elliptic PDEs and the unavoidable
global coupling of unknowns, one usually breaks the solution process into several of stages:
local (elemental) matrix generation, global linear system matrix assembly, and global linear
system solve. If static condensation is applied and the global linear system is solved for
the trace solution (solution on the boundary of elements), there is an additional stage of
recovering the elemental solution from the trace data. Each of the stages outlined above
benefits from parallelization on the GPU to a different degree: the local matrix generation
stage benefits from parallelization much more than the assembly and global solve stages, due
to the fact that operations performed are completely independent for different elements.

The goals this paper pursues are the following: (a) to provide the reader with an intu-
ition regarding the overall benefit that parallelization on streaming architectures provides to
numerical methods for elliptic problems as well as per-stage benefits and the runtime trends
for different stages; (b) to propose a pipeline for solving 2D elliptic finite element problems
on GPUs and provide a case study to understand the benefits of GPU implementation for
numerical problems formulated within the HDG framework; (c) to propose a per-edge assem-
bly as a more efficient approach than the traditional per-element assembly, given the structure
of the HDG method and the restrictions of the current generation of SIMD hardware. The
key ingredients to our proposed approach are the mathematical nature of the HDG method
and the batch processing capabilities (and algorithmic limitations) of the GPU. The choice
of method for our case study is motivated by the fact that the local matrix generation stage,
which benefits the most from parallelization, is much more computationally intensive for the
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HDG method as opposed to the CG method. We now provide background concerning the
HDG method and discuss the batch processing capabilities of the GPU.

1.1 Background

DG methods have seen considerable success in a variety of applications due to ease of imple-
mentation, ability to use arbitrary unstructured geometries, and suitability for parallelization.
The local support of the basis functions in DG methods allows for domain decomposition at
the element level which lends itself well to parallel implementations (e.g. [5,6]). A number
of recent works have demonstrated that DG methods are well-suited for implementation on a
GPU [7,8], for reasons of memory reference locality, regularity of access patterns, and dense
arithmetic computations. Computational performance of DG methods is closely tied to poly-
nomial order. As polynomial order increases on DG methods, memory bandwidth becomes
less of a bottleneck as the floating point arithmetic operations become the dominant factor.
The increase in floating point operation throughput on GPUs has led to implementations of
high-order DG methods on the GPU [9].

However DG methods still suffer from and are often criticized for the need to employ
significantly more degrees of freedom than other numerical methods [10], which results in
a bigger global linear system to solve. The introduction of the HDG method in Cockburn
et al. [11] successfully resolved this issue by providing a method within the DG framework
whose only globally coupled degrees of freedom were those of the scalar unknown on the
borders of the elements. The HDG method uses a formulation which expresses all of the
unknowns in terms of the numerical trace of the hybrid scalar variable λ. This method greatly
reduces the global linear system size, while maintaining properties that make DG methods
apt to parallelization. The elemental nature of DG methods have encouraged many to assert
that they should be “easily parallelizable” (e.g. [4,12,13]). Due to weak coupling between
elements in the HDG method, there is less inter-element communication needed which is
advantageous for scaling the method to a parallel implementation. The combination of a
batch collection of local (elemental) problems which needs to be computed and the reduced
trace-based communication pattern of HDG conceptually makes this method well-suited
to the fine-grained parallelism of streaming architectures such as modern GPUs. It is the
local (elemental) batch nature of the decomposition which directs us to investigate the GPU
implementation of the method. In the next subsection we provide an overview of batched
operations, describe the current state of batch processing in existing software packages, and
explain why it was relevant to create our own batch processing framework.

1.2 Batched Operations

Batch processing is the act of grouping some number of like tasks and computing them
as a “batch” in parallel. This generally involves a large set of data whose elements can be
processed independently of each other. Batch processing eliminates much of the overhead
of iterative non-batched operations. “Batch” processing is well-suited to GPUs due to the
SIMD architecture which allows for high parallelization of large streams of data. Basic
linear algebra subprograms (BLAS) are a common example of large scale operations that
benefit significantly from batch processing. The HDG method specifically benefits from
batched BLAS Level 2 (matrix–vector multiplication) and BLAS Level 3 (matrix–matrix
multiplication) operations.

Finding efficient implementations for solving linear algebra problems is one of the
most active areas of research in GPU computing. The NVIDIA CUBLAS [14] and AMD
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APPML [15] are well-known solutions for BLAS functions on GPUs. While CUBLAS is
specifically designed for the NVIDA GPU architecture based on CUDA [14], the AMD
solution using OpenCL [16] is a more general cross platform solution for both GPU and
multi-CPU architectures. CUBLAS has constantly improved based on a successive number
of research attempts by Volkov [17], Dongarra [18,19] etc. This led to a speed improvement
of one to two orders of magnitude for many functions from the first release version till now.
In recent releases, CUBLAS and other similar packages have been providing batch process-
ing support to improve processing efficiency on multi-element processing tasks. The support
is, however, not complete as currently CUBLAS only supports batch mode processing for
BLAS Level 3, but not for functions within BLAS Level 1 and BLAS Level 2.

It is due to the these limitations of existing software that the authors were prompted
to create a batch processing framework. We developed a batch processing framework for
the GPU which uses the same philosophy present in CUBLAS. However, we augmented it
with additional operations such as matrix-vector multiplication and matrix inversion. The
framework is generalized such that it is not limited specifically to linear algebra operations;
however, due to the finite element context of this paper, we restricted our focus to linear
algebra operations.

1.3 Outline

The paper is organized as follows. In Sect. 2 we present the mathematical formulation of
the HDG method. In Sect. 3 we introduce all the necessary implementation building blocks:
polynomial expansion bases, matrix form of the equations from Sect. 2, trace assembly and
spread operators, etc. Sect. 4 and its subsections present details that are specific to GPU
implementation of the HDG method. First we describe the implementation pipeline followed
by the description of the local matrix generation in Sect. 4.1, the global system matrix
assembly in Sect. 4.2, and the global solve and subsequent local solve in Sect. 4.3. In Sect. 5
we present numerical results which include a comparison of CPU and GPU implementations
of HDG method. Finally, in Sect. 6 we conclude with potential directions for future research
along with a summary of the results.

2 Mathematical Formulation of HDG

In this section we introduce the HDG method for the following elliptic diffusion problem
with mixed Dirichlet and Neumann boundary conditions:

−∇2u(x) = f (x) x ∈ Ω, (1a)

u(x) = gD(x) x ∈ ∂ΩD, (1b)

n · ∇u(x) = gN (x) x ∈ ∂ΩN , (1c)

where ∂ΩD
⋃
∂ΩN = ∂Ω and ∂ΩD

⋂
∂ΩN = ∅. The formulation above can be general-

ized in many ways which can be treated in a similar manner. For example, by considering
a diffusion tensor which is given by a symmetric positive definite matrix and by adding
convection and reaction terms.

In Sects. 2.2–2.4 we define the HDG methods. We start by presenting the global weak
formulation in Sect. 2.2. In Sect. 2.3, we define local problems: a collection of elemental
operators that express the approximation inside each element in terms of the approximation
at its border. Finally, we provide a global formulation with which we determine the approx-
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imation on the border of the elements in Sect. 2.4. The resulting global boundary system is
significantly smaller than the full system one would solve without solving local problems
first. Once the solution has been obtained on the boundaries of the elements, the primary
solution over each element can be determined independently through a forward-application
of the elemental operators. However before proceeding we first define the partitioning of the
domain and the finite element spaces in Sect. 2.1.

2.1 Partitioning of the Domain and the Spectral/hp Element Spaces

We begin by discretizing our domain. We assume T (Ω) is a two-dimensional tessellation of
Ω . LetΩe ∈ T (Ω) be a non-overlapping element within the tessellation such that if e1 �= e2

then Ωe1
⋂
Ωe2 = ∅. By Nel , we denote the number of elements (or cardinality) of T (Ω).

Let ∂Ωe denote the boundary of the elementΩe (i.e. Ω̄e \Ωe) and ∂Ωe
i denote an individual

edge of ∂Ωe such that 1 ≤ i ≤ N e
b where N e

b denotes the number of edges of element e. We
then denote by Γ the set of boundaries ∂Ωe of all the elements Ωe of T (Ω). Finally, we
denote by NΓ the number of edges (or cardinality) of Γ .

For simplicity, we assume that the tessellation T (Ω) consists of conforming elements.
Note that HDG formulation can be extended to non-conforming meshes. We do not consider
the case of a non-conforming mesh in this work, as it would complicate the implementation
while not enhancing the contribution statement in any way. We say that Γ l is an interior edge
of the tessellation T (Ω) if there are two elements of the tessellation, Ωe and Ω f , such that
Γ l = ∂Ωe ∩ ∂Ω f and the length of Γ l is not zero. We say that Γ l is a boundary edge of the
tessellation T (Ω) if there is an element of the tessellation, Ωe, such that Γ l = ∂Ωe ∩ ∂Ω
and the length of Γ l is not zero.

As it will be useful later, let us define a collection of index mapping functions, that allow
us to relate the local edges of an elementΩe, namely, ∂Ωe

1 , . . . , ∂Ω
e
N e

b
, with the global edges

of Γ , that is, with Γ 1, . . . , Γ NΓ . Thus, since the j th edge of the elementΩe, ∂Ωe
j , is the lth

edge Γ l of the set of edges Γ , we set σ(e, j) = l so that we can write ∂Ωe
j = Γ σ(e, j).

Next, we define the finite element spaces associated with the partition T (Ω). To begin,
for a two-dimensional problem we set

Vh := {v ∈ L2(Ω) : v|Ωe ∈ P(Ωe) ∀ Ωe ∈ T (Ω)}, (2a)

Σh := {τ ∈ [L2(Ω)]2 : τ |Ωe ∈ Σ(Ωe) ∀ Ωe ∈ T (Ω)}, (2b)

Mh := {μ ∈ L2(Γ ) : μ|Γ l ∈ P(Γ l) ∀ Γ l ∈ Γ }, (2c)

where P(Γ l) = SP (Γ
l) is the polynomial space over the standard segment, P(Ωe) =

TP (Ω
e) is the space of polynomials of total degree P defined on a standard triangular region

and P(Ωe) = QP (Ω
e) is the space of tensor-product polynomials of degree P on a standard

quadrilateral region, defined as

SP (Γ
l) = {s p; 0 ≤ p ≤ P; (x1(s), x2(s)) ∈ Γ l ;−1 ≤ s ≤ 1},

TP (Ω
e) = {ξ p

1 ξ
q
2 ; 0 ≤ p + q ≤ P; (x1(ξ1, ξ2), x2(ξ1, ξ2)) ∈ Ωe;−1 ≤ ξ1 + ξ2 ≤ 0},

QP (Ω
e) = {ξ p

1 ξ
q
2 ; 0 ≤ p, q ≤ P; (x1(ξ1, ξ2), x2(ξ1, ξ2)) ∈ Ωe;−1 ≤ ξ1, ξ2 ≤ 1}.

Similarly Σ(Ωe) = [TP (Ω
e)]2 or Σ(Ωe) = [QP (Ω

e)]2. For curvilinear regions the
expansions are only polynomials when mapped to a straight-sided standard region [20,21].
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2.2 The HDG Method

The HDG method is defined in the following way. We start by rewriting the original problem
(1) in auxiliary or mixed form as two first-order differential equations by introducing an
auxiliary flux variable q = ∇u. This gives us:

− ∇ · q = f (x) x ∈ Ω, (3a)

q = ∇u(x) x ∈ Ω, (3b)

u(x) = gD(x) x ∈ ∂ΩD, (3c)

q · n = gN (x) x ∈ ∂ΩN . (3d)

The HDG method seeks an approximation to (u, q), (uDG, qDG), in the space Vh ×Σh ,
and determines it by requiring that

∑

Ωe∈T (Ω)

∫

Ωe

(∇v · qDG) dx −
∑

Ωe∈T (Ω)

∫

∂Ωe

v (ne · q̃DG) ds =
∑

Ωe∈T (Ω)

∫

Ωe

v f dx, (4a)

∑

Ωe∈T (Ω)

∫

Ωe

(w · qDG) dx=−
∑

Ωe∈T (Ω)

∫

Ωe

(∇ · w) uDG dx+
∑

Ωe∈T (Ω)

∫

∂Ωe

(w · ne) ũDG ds,

(4b)

for all (v,w) ∈ Vh(Ω) × Σh(Ω), where the numerical traces ũDG and q̃DG are defined in
terms of the approximate solution (uDG, qDG).

2.3 Local Problems of the HDG Method

We begin by assuming that the function

λ := ũDG ∈Mh, (5a)

is known, for any elementΩe, from the global formulation of the HDG method. The restriction
of the HDG solution to the elementΩe, (ue, qe) is then the function in P(Ωe)×Σ(Ωe) and
satisfies the following Equations:

∫

Ωe

(∇v · qe) dx −
∫

∂Ωe

v (ne · q̃e) ds =
∫

Ωe

v f dx, (5b)

∫

Ωe

(w · qe) dx = −
∫

Ωe

(∇ · w) ue dx +
∫

∂Ωe

(w · ne) λ ds, (5c)

for all (v,w) ∈ P(Ωe) × Σ(Ωe). To allow us to solve the above equations locally, the
numerical trace of the flux is chosen in such a way that it depends only on λ and on (ue, qe):

q̃e(x) = qe(x)− τ(ue(x)− λ(x))ne on ∂Ωe (5d)

where τ is a positive function. For the HDG method taking τ to be positive ensures that the
method is well defined. The results in [22–24] indicate that the best choice is to take τ to be of
order one. Note that τ is a function of the set of borders of the elements of the discretization,
and so, it is allowed to be different per element and per edge. Thus, if we are dealing with
the element whose global number is e, we denote the value of τ on the edge whose local
number is i by τ e,i .
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2.4 The Global Formulation for λ

Here we denote the solution of (5b)–(5c) when f = 0 and when λ = 0 by (Uλ, Qλ) and
(U f , Q f ), respectively, and define our approximation to be

(uHDG, qHDG) = (Uλ, Qλ)+ (U f , Q f ).

Note that for the HDG decomposition allows us to express Uλ, Qλ in terms of λwhen f = 0.
It remains to determine λ. To do so, we require that the boundary conditions be weakly

satisfied and that the normal component of the numerical trace of the flux q̃ given by (5d) be
single valued. This renders this numerical trace conservative, a highly valued property for
this type of methods; see Arnold et al. [25].

So, we say that λ is the function in Mh such that

λ = Ph(gD) on ∂ΩD, (6a)
∑

Ωe∈Th

∫

∂Ωe

μ q̃ · n =
∫

∂ΩN

μ gN , (6b)

for all μ ∈M0
h such that μ = 0 on ∂ΩD . Here Ph denotes the L2-projection into the space

of restrictions to ∂ΩD of functions of Mh .

3 HDG Discrete Matrix Formulation and Implementation Considerations

In this section, to get a better appreciation of the implementation of the HDG approach, we
consider the matrix representation of the HDG equations. The intention here is to introduce
the notation and provide the basis for the discussion in the following sections. More details
regarding the matrix formulation can be found in Kirby et al. [26].

We start by taking ue(x), qe(x) = [q1, q2]T , and λl(x) to be finite expansions in terms
of the basis φe

j (x) for the expansions over elements and the basis ψ l
j (x) over the traces of

the form:

ue(x) =
N e

u∑

j=1

φe
j (x) ûe[ j] qe

k (x) =
N e

q∑

j=1

φe
j (x) q̂e

k
[ j] λl(x) =

Nl
λ∑

j=1

ψ l
j (x) λ̂

l [ j],

where ue(x) : Ωe → R, qe(x) : Ωe → R
2 and λl(x) : Γ l → R.

In our numerical implementation, we have applied a spectral/hp element type discretiza-
tion which is described in detail in Karniadakis and Sherwin [20]. In this work we use
the modified Jacobi polynomial expansions on a triangle in the form of generalized tensor
products. This expansion was originally proposed by Dubiner [27] and is also detailed in Kar-
niadakis and Sherwin [20], Sherwin and Karniadakis [21]. We have selected this basis due to
computational considerations: tensorial nature of the basis coupled with the decomposition
into an interior and boundary modes [20,21] benefits the HDG implementation. In particu-
lar, when computing a boundary integral of an elemental basis function, edge basis function
together with edge-to-element mapping can be used. This fact will be further commented
upon in the following sections.
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3.1 Matrix Form of the Equations of the HDG Local Solvers

We can now define the matrix form of the local solvers. Following a standard Galerkin formu-
lation, we set the scalar test functions ve to be represented byφe

i (x)where i = 1, . . . , N e
u , and

let our vector test function we be represented by ekφi where e1 = [1, 0]T and e2 = [0, 1]T .
We next define the following matrices:

D
e
k[i, j] =

(

φe
i ,
∂φe

j

∂xk

)

Ωe

M
e[i, j] =

(
φe

i , φ
e
j

)

Ωe

E
e
l [i, j] =

〈
φe

i , φ
e
j

〉

∂Ωe
l

Ẽ
e
kl [i, j] =

〈
φe

i , φ
e
j n

e
k

〉

∂Ωe
l

F
e
l [i, j] =

〈
φe

i , ψ
σ(e,l)
j

〉

∂Ωe
l

F̃
e
kl [i, j] =

〈
φe

i , ψ
σ(e,l)
j ne

k

〉

∂Ωe
l

.

Note that we choose the trace expansion to match the expansions used along the edge of
the elemental expansion and the local coordinates are aligned, that is ψσ(e,l)i (s) = φk(i)(s)
(which is typical of a modified expansion basis defined earlier). With this choice, E

e
l contains

the same entries as F
e
l and similarly Ẽ

e
kl contains the same entries as F̃

e
kl .

After inserting the finite expansion of the trial functions into Eqs. (5b) and (5c), and using
the definition of the flux given in Eq. (5d), the equations for the local solvers can be written
in matrix form as:

A
eve + C

eλ̂
e = we. (7)

where f e[i] = (φi , f )Ωe , we = ( f e, 0, 0)T and ve = (ûe
, q̂e

1
, q̂e

2
)T is the concatenation of

all the unknowns into one vector.

In case of a triangular element, λ̂
e =

(
λ̂
σ (e,1)

, λ̂
σ (e,2)

, λ̂
σ (e,3)

)T
and matrices A

e and C
e

are defined as follows:

A
e =

⎛

⎜
⎜
⎝

∑N e
b

l=1 τ
(e,l)

E
e
l −D

e
1 −D

e
2

(De
1)

T
M

e 0

(De
2)

T 0 M
e

⎞

⎟
⎟
⎠ . (8)

C
e =

⎛

⎝
−τ e,1

F
e
1 −τ e,2

F
e
2 −τ e,3

F
e
3

−F̃
e
11 −F̃

e
12 −F̃

e
13

−F̃
e
21 −F̃

e
22 −F̃

e
23

⎞

⎠ (9)

We note that each block matrix A
e is invertible since every local solver involves the DG

discretization of an elemental domain with weakly enforced Dirichlet boundary conditions
λ̂

e
. Therefore each local elemental problem is well-posed and invertible.
In the following sections, in order to solve local problems (7) (express ve in terms of λe),

we will require the application of the inverse of A
e. Instead of inverting the full size matrix A

e

we have chosen to form (Ae)−1 in a block-wise fashion, which would involve the inversion
of much smaller elemental matrices:

(Ae)−1 =
⎛

⎝
Z

e
Z

e
D

e
1 (M

e)−1
Z

e
D

e
2 (M

e)−1

−(Me)−1(De
1)

T
Z

e (Me)−1[I− (De
1)

T
Z

e
D

e
1(M

e)−1] −(Me)−1 (De
1)

T
Z

e
D

e
2 (M

e)−1

−(Me)−1(De
2)

T
Z

e −(Me)−1 (De
2)

T
Z

e
D

e
1 (M

e)−1 (Me)−1[I− (De
2)

T
Z

e
D

e
2(M

e)−1]

⎞

⎠

(10)
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where

Z
e =

⎛

⎝
N e

b∑

l=1

τ (e,l)Ee
l + D

e
1 (M

e)−1 (De
1)

T + D
e
2 (M

e)−1 (De
2)

T

⎞

⎠

−1

(11)

and we have explicitly used the fact that M
e = (Me)T and Z

e = (Ze)T .

3.2 Matrix Form of the Global Equation for λ

Using the matrices from the previous section we can write the transmission condition (6b)
in a similar matrix form. First we introduce the matrices:

F̄
l,e[i, j] =

〈
ψ l

i , φ
e
j

〉

Γ l

˜̄
F

l,e
k [i, j] =

〈
ψ l

i , φ
e
j n

e
k

〉

Γ l
Ḡ

l [i, j] =
〈
ψ l

i , ψ
l
j

〉

Γ l
.

After defining gN
l [i] = 〈gN , ψ

l
i

〉
Γ l∩∂ΩN

, the transmission condition (6b) for a single edge
can be written as:

B
eve + G

eλ̂
e + B

f v f + G
f λ̂

f = gl
N
, (12)

where matrices B
e and G

e are defined as follows:

B
e =

⎛

⎝
−τ e,1(Fe

1)
T (̃F

e
11)

T (F̃
e
21)

T

−τ e,2(Fe
2)

T (F̃
e
12)

T (F̃
e
22)

T

−τ e,3(Fe
3)

T (F̃
e
13)

T (F̃
e
23)

T

⎞

⎠ (13)

G
e =

⎛

⎜
⎝

τ e,1
Ḡ
σ(e,1)

0 0

0 τ e,2
Ḡ
σ(e,2)

0

0 0 τ e,3
Ḡ
σ(e,3)

⎞

⎟
⎠ . (14)

Here we are assuming that l = σ(e, i) = σ( f, j), that is, that the elements e and f have
the common internal edge Γ l . While forming matrix B

e we use the following two identities
which relate previously defined matrices:

F
e
l =

(
F̄
σ(e,l),e

)T
F̃

e
kl =

(
˜̄
F
σ(e,l),e
k

)T

We see that the transmission condition can be constructed from elemental contributions. In
the next section, we show how to use our elemental local solvers given by Eqs. (7) and (12)
to obtain a matrix equation for λ only.

3.3 Assembling the Transmission Condition from Elemental Contributions

The last component we require to form the global trace system is the elemental trace spreading
operator Ae

H DG that will copy the global trace space information into the local (elemental)

storage denoted by λ̂
e

in Sects. 3.1 and 3.2. Let Λl denote the vector of degrees of freedom
on the edge Γ l and let Λ be the concatenation of these vectors for all the edges of the
triangulation. The size of Λ is therefore

Nλ =
∑

l∈Γ
Nl
λ,

where Nl
λ is the number degrees of freedom of λ on the interior edge Γ l .
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Fig. 1 Diagram showing the results of the spreading operation AH DG . Unique degrees of freedom of λ on
an edge are copied to their locally-indexed counterparts

We define the elemental trace space spreading operator Ae
H DG as a matrix of size

(
∑

l∈∂Ωe Nl
λ) × Nλ which “spreads” or scatters the unique trace space values to their local

edge vectors. For each element e, which consists of N e
b edges, let λ̂

e,l
denote the local copy

of the trace-space information as portrayed in Fig. 1.
With this notation in place we can replace λ̂

e
by Ae

H DGΛ in local solver Eqs. (7):

A
eve + C

eAe
H DGΛ = we (15)

We can similarly write the transmission conditions (12) between interfaces as:

|T (Ω)|∑

e=1

(Ae
H DG)

T [
B

eve + G
eAe

H DGΛ
] = g

N
(16)

where the sum over elements along with the left application of the transpose of the spreading
operator acts to “assemble” (sum up) the elemental contributions corresponding to each
trace space edge and where g

N
denotes the concatenation of the individual edge Neumann

conditions gl
N

.
Manipulating Eq. (15) to solve for ve and inserting it into Eq. (16) yields:

|T (Ω)|∑

e=1

(Ae
H DG)

T [
B

e(Ae)−1 (w − C
eAe

H DGΛ
)+ G

eAe
H DGΛ

] = g
N

which can be reorganized to arrive at matrix equation for λ:

KΛ = F, (17)

where

K =
|T (Ω)|∑

e=1

(Ae
H DG)

T
K

eAe
H DG =

|T (Ω)|∑

e=1

(Ae
H DG)

T [
G

e − B
e(Ae)−1

C
e]Ae

H DG
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Fig. 2 HDG pipeline

and

F = g
N
−
|T (Ω)|∑

e=1

(Ae
H DG)

T
B

e(Ae)−1w. (18)

We observe that K is constructed elementally through the sub-matrices K
e which can also be

considered as the Schur complement of a larger matrix system which consists of combining
Eqs. (15) and (16). We would like to remark that the “assembly” in this section is used in the
sense of an operator: system matrix K does not necessarily need to be formed explicitly but
can also be stored as a collection of elemental matrices and corresponding mappings.

4 Implementation Pipeline

We formulated our approach as a pipeline which illustrates the division of tasks between
CPU (host) and GPU (Fig. 2). Initial setup steps are handled by the CPU after which the
majority of the work is performed on the GPU and finally the resulting elemental solution
is passed back to the CPU. Initially, the host parses the mesh file to determine the number
of elements, forcing function, and mesh configuration. From this information the CPU can
generate the data set that is required by the GPU to compute the finite element solution. This
is followed by the generation of the E

e, (Me)−1,De
k elemental matrices, edge to element

mappings, global edge permutation lists and the right hand side vector F . This data is then
transferred to the GPU.

The GPU handles the bulk of the operations in our HDG implementation. The first step is
the construction of the local elemental matrices through batch processing. The local elemental
matrices Z

e,Ce,Be,Ue, and Q
e
k are formed from the mass and derivative matrices passed

over by the host.
To solve the global trace system we require the assembly of the global matrix K from the

elemental matrices K
e using the assembly process discussed in Sect. 3.3. We formulate the

construction of the elemental K
e matrices as follows:

K
e = G

e − B
e

⎡

⎢
⎢
⎣

U
e

Q
e
0

Q
e
1

⎤

⎥
⎥
⎦ .
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where U
e and Q

e
k are formulated as:

U
e = −[I 0 0](Ae)−1

C
e = −Z

e[I D
e
1 (M

e)−1
D

e
2 (M

e)−1]Ce

Q
e
0 = −[0 I 0](Ae)−1

C
e, Q

e
1 = −[0 0 I](Ae)−1

C
e

Note that that the action of (Ae)−1 can be evaluated using definition (10) and so does not
need to be directly constructed. The matrices in the first block-row of (Ae)−1 can be reused
in the formulation of the second and third block-rows, thereby reducing the computational
cost of constructing the matrix.

We next determine the trace space solution Λ = K−1 F where, as was demonstrated in
Kirby et al. [26], F can be evaluated using U

e as

F = g
N
+
|T (Ω)|∑

e=1

(Ae
H DG)

T (Ue)T f e

Finally we recover the elemental trace solution λe = Ae
H DGΛ and obtain the elemental

primitive solution ûe from Eq. (7) as

ûe = Z
e f e + U

eλe.

4.1 Building the Local Problems on the GPU

The local matrices are created using a batch processing scheme. The generation of the local
matrices can be conducted in a matrix-free manner, but we choose to construct the matrices to
take advantage of BLAS Level 3 batched matrix functions. We have found this to be a more
computationally efficient approach on the GPU. Each step of the local matrix generation
process is executed as a batch operating on all elements in the mesh. The batched matrix
operations assign a thread block to each elemental matrix. In most cases a thread is assigned
to operate on each element of a matrix, which are processed concurrently by the GPU in the
various assembly and matrix operations.

Before we proceed to discuss the details of the local matrix generation we would like to
make note of a certain implementation detail: the use of the edge to element map. As was
previously mentioned in Sect. 3.1, we choose the trace expansion to match the elemental
expansion along the element’s edge. This choice allows us to use edge expansions together
with the edge to element map to generate some of the matrices in a more efficient manner.
For example, in Eq. (11) we use the edge to element map to form a sparse matrix E

e
l [i, j] =〈

φe
i , φ

e
j

〉

∂Ωe
l

from the entries of a dense matrix Ê
e
l [m, n] = 〈ψe

m, ψ
e
n

〉
∂Ωe

l
. This approach is

also used in the formation of the Ẽ
e
kl , F

e
l and F̃

e
kl matrices.

The goal of the local matrix generation process (steps B1 and B2) is to form matrices
K

e for every element in the mesh. In order to facilitate this, the following matrices must be
generated: Z

e, block entries of (Ae)−1, C
e, B

e and G
e. The Z

e and U
e matrices will be saved

for later computations while the rest of the matrices are discarded after use to reduce memory
constraints.

The construction process first requires the Z
e matrices to be formed from the values of

the elemental mass and derivative matrices. The matrices M
e, D

e
k and E

e
l are utilized in the

formation of the (Ze)−1 matrices (Eq. 11), which is then inverted in a batch matrix inversion
process using Gaussian elimination. Pivoting is not necessary due to the symmetry of the
matrices. Next, the block entries of the (Ae)−1 matrices are formed from combinations of
the Z

e, D
e
k and (Me)−1 matrices (definition 10). The entries from the first block-row of
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(Ae)−1 are used in the formulation of the second and third block-rows and do not need
to be explicitly recomputed. The U

e and Q
e
k elemental matrices are created through the

multiplication of the block rows of (Ae)−1 and matrix C
e. Note that matrix B

e = (Ce)T Ĩ,
where

Ĩ =
⎛

⎝
1 0 0
0 −1 0
0 0 −1

⎞

⎠ ,

which simplifies the formation process of the C
e and B

e matrices.
The final step of the local matrix generation involves constructing the local K

e matrices
which are formed from the explicit matrix-matrix multiplication of the B

e matrices with the
concatenated U

e and Q
e
k matrices. This is subtracted from the diagonal G

e matrix, which
is not formed explicitly, to form K

e. Note that matrices M
e, Z

e, and K
e matrices will be

symmetric which halves the required storage space. The elemental operations at each step
are independent of each other so the batches can be broken up into smaller tiles to conform to
memory constraints or to be distributed across multiple processing units. This process results
in the local K

e matrices being generated for each element which are then used to assemble
the global K matrix.

4.2 Assembling the Local Problems on the GPU

In this section we describe the assembly of the global linear system matrix K from the
elemental matrices K

e. A typical CG or DG element-based approach to the assembly process,
when parallelized, has to employ atomic operations to avoid race conditions. In this paper
we propose an edge based assembly process that eliminates the need of expensive GPU
atomic operations and avoids race conditions by using reduction operations. The reduction
list is generated with a sorting operation which is relatively efficient on GPUs. This lock-free
approach is better suited for the SIMD architecture of the GPU where each thread is acting
on a separate edge in the mesh. In this way we avoid any race conditions during the assembly
process while still maximizing throughput on the GPU.

Next, we describe the proposed method for triangular meshes. Note that this approach can
be straightforwardly extended to quadrilateral meshes. In order to evaluate a single entry of
the global matrix K we need to determine the indices of entries to which local matrices K

e

will be assembled. To do this, we need to know which element(s) a given edge li belongs
to. Given the input triangle list that stores the global edge indices of each triangle, we can
generate the edge neighbor list that stores the neighboring triangle indices for each edge.
Having the edge neighbor list, we assign the assembly task of each row of K to a thread.
Each thread uses the edge neighbor list and the triangle list to find the element index e as well
as the entry indices of K

e to fetch the appropriate data and perform the assembly operation
on the corresponding row of K.

To give a better illustration of the assembly process, let us consider a simple mesh displayed
in Fig. 3. This mesh consists of two triangles e0 and e1 and five edges: l0 through l4. To further
simplify our example, let us assume that we have only one degree of freedom per edge. K

e is
therefore a 3× 3 matrix and K is a 5× 5 matrix. Element e0 consists of edges l0 = σ(e0, 0),
l1 = σ(e0, 1) and l2 = σ(e0, 2) and element e1 consists of edges l0 = σ(e1, 0), l4 = σ(e1, 1)
and l3 = σ(e1, 2).

For our example, the triangle list would be {0,1,2,0,4,3}. Using it we can create an edge
neighbor list {0,0,0,1,1,1} that stores the index of a triangle to which each edge from the first
list belongs. Next we sort the triangle list by edge index and permute the edge neighbor list
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Fig. 3 Mesh with two elements: e0 and e1

Fig. 4 Assembly of the 0th row
of K

according to the sorting. Now the triangle list and edge neighbor list are {0,0,1,2,3,4} and
{0,1,0,0,1,1} respectively. These new lists indicate that edge l0 neighbors triangles e0 and e1,
and that edge l1 has neighbors only one triangle e0, etc. Figure 4 demonstrates the assembly
process of the 0th row (corresponding to the l0 edge) of the K matrix from the entries of
elemental matrices K

e0 and K
e1 .

In practice, the global matrix K is Nl
λNΓ × Nl

λNΓ and usually sparse. For triangular
meshes, each row of K has at most 5Nl

λ non-zero values and all the interior edges (edges
that do not fall on Dirichlet boundary) have exactly 5Nl

λ non-zero values. The fact that the
number of non-zero entries per row of K is constant (apart from the rows corresponding
to the Dirichlet boundary edges) determines our choice of the Ellpack (ELL) sparse matrix
data structure [28] to store K. The ELL data structure contains two arrays. One consists of
column indices and the other of matrix values, both of which are of the size Nl

λNΓ × 5Nl
λ.

The former array stores the column indices of the non-zero values in the matrix, and the
latter array stores the non-zero values. For rows that have less than 5Nl

λ non-zero values,
sentinel values (−1 usually) are stored in the column-indices array. Each thread, which is
in charge of assembling one row of K, locates its neighboring triangle indices from the
edge neighbor list and then obtains the edge indices of these neighboring triangles from
the triangle list. The edge indices are then written into the column-indices array of the
ELL matrix. Lastly, the local matrix values of the neighboring triangles are assembled into
K.

The global assembly process can be summarized as follows:
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Data: Triangle List TL
\\Generate edge neighbor list EL;
for i ← 0 to NumTriangles−1 do

EL[i*3]← i ;
EL[i*3+1]← i ;
EL[i*3+2]← i ;

end
//Sort triangle list by edge index
TL← Sort(TL);
//Permute edge neighbor list according to sorted order of triangle list
EL← Permute(TL);
//Compute the Edge Count List (ECL) through reduction by key, which is the number

of neighboring triangles on each edge
ECL← ReduceByKey(TL);
//Calculate a prefix sum on the reduced list (RL) to find the offsets in the sorted triangle

list
RL← Scan(ECL);
Local-to-Global Mapping(TL, RL, EL);

Algorithm 1: Global Assembly

Data: TL, RL, EL
foreach edge e do

//Locate the neighboring triangles of edge e from the permuted edge neighbor list
and offset list

Tris← Neighbors(EL, RL, e);
TEdges← Edges(Tris);
//Obtain the global indices (GI) of the edges of these triangles from the triangle list
GI← TL[Tris*3 + 0,1,2];
//Store the global indices in the column-indices array (CI)
CI← GI;
//Compute the local indices (LI) of each edge in the neighboring triangles
LI← Local Indices(Tris);
//Locate the entries in the local matrices of the corresponding neighboring triangles

according to the local indices, and add those entries to the corresponding locations
in the the global K matrix

foreach index i in LI do
K(Map(i))← K(Map(i))+ K

e[i];
end

end
Algorithm 2: Local-to-Global Mapping

the the from the triangles from array. corresponding and add those global K

Remark 1 We would like to stress the importance of the edge-only inter-element connectivity
provided by the HDG method. This property ensures that the sparsity (number of nonzero
entries per row) of the global linear system matrix depends only on the element types used
and not on the mesh structure (e.g. vertex degree). The other benefit provided by the HDG
method is the ability to assemble the system matrix by-edges as opposed to by-elements,
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which removes the need for costly atomic assembly operations. Now, if we look at the CG
method, elements are connected through both edge degrees of freedom and vertex degrees
of freedom. This through-the-vertex element connectivity makes it both unfeasible to use the
compact ELL system matrix representation for a general mesh and makes it hard to avoid
atomic operations in the assembly process.

Remark 2 We note that there are multiple ways to address the issue of evaluating the discrete
system. A full global system need not be assembled in some cases. One can use a local matrix
approach or a global matrix approach. In the local matrix approach, a local operator matrix
is applied to each elemental matrix. This allows for on the fly assembly without the need
to construct a global matrix system. The global matrix approach assembles a global matrix
system from the local elemental contributions. Vos et al. [29] describe these approaches in
detail for the continuous Galerkin (FEM) method. In either case, information from multiple
elements must be used to compute any given portion of the final system. This requires the
use of some synchronized ordering within the mapping process. There are several methods
for handling this ordering. One such method is to use atomic operations to ensure that each
element in the final system is updated without race conditions. Another method is to use
asynchronous ordering and pass the updates to a communication interface which handles
the updates in a synchronized fashion. This is demonstrated in the work by Goddekke et al.
[30,31], in which they use MPI to handle the many-to-one mapping through asynchronous
ordering. In either case a many-to-one mapping exists and a synchronized ordering must be
used to prevent race conditions. We chose to use the global approach to compare our results
to the previous work by Kirby et al. [26], in which the authors also used the global approach.

4.3 Trace Space Solve and Local Problem Spreading on the GPU

The final steps of the process construct the elemental primitive solution ûe (B5 and B6 of
the GPU pipeline). This requires retrieving the elemental solution from the trace solution.
We form the element-wise vector of local λe coefficients by scattering the coefficients of the
global trace solution Λ produced by the sparse solve. The values are scattered back out to
the local vectors using the edge to triangle list. Each interior edge will be scattered to two
elements and each boundary edge will be scattered to one element. This is equivalent to the
operation performed by the trace space spreading operator Ae

H DG which we conduct in a
matrix free manner.

Obtaining the elemental solution involves two batched matrix–vector multiplications
across all elements followed by a vector–vector sum:

ûe = Z
e f e + U

eλe.

After the local element modes are computed they are transferred back to the CPU as a vector
grouped by element.

5 Numerical Results

In this section we discuss the performance of the GPU implementation of the HDG method
using the Helmholtz equation as a test case. In the end of the section we also provide a short
discussion of the CG method GPU implementation based on the preliminary data collected.
For verification and runtime comparison we use a CPU implementation of the Helmholtz
solver existing within the Nektar++ framework v3.2 [32]. Nektar++ is a freely-available
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Table 1 Numerical errors from
the GPU implementation of
Helmholtz solver on a 40× 40
triangular mesh

Order GPU L∞
error

Order of
convergence

GPU L2

error
Order of
convergence

1 1.59334e−02 – 3.95318e−03 –

2 4.95546e−04 5.01 8.04917e−05 5.62

3 1.10739e−05 5.48 1.3446e−06 5.90

4 1.93802e−07 5.84 1.88309e−08 6.16

5 5.71909e−09 5.08 1.07007e−09 4.14

6 1.40495e−08 −1.30 4.63559e−09 −2.12

7 2.46212e−08 −0.81 5.77189e−09 −0.32

8 5.19398e−08 −1.08 1.44714e−08 −1.33

9 1.17087e−07 −1.17 2.92382e−08 −1.01

highly-optimized finite element framework. The code is robust and efficient, and it allows
for ease of reproducibility of our CPU test results. Our implementation also takes advantage
of the GPU parallel primitives in the CUDA Cusp and Thrust libraries [33,34]. All the tests
referenced in this section were performed on a machine with a Nvidia Tesla M2090 GPU,
128 GB of memory, and an Intel Xeon E5630 CPU running at 2.53 GHz. The system was
using openSUSE 12.1 with CUDA runtime version 4.2.

The numerical simulation considers the Helmholtz equation

∇2u(x)− λu(x) = f (x) x ∈ Ω,
u(x) = gD(x) x ∈ ∂ΩD,

where λ = 1, Ω = [0, 1]2 and f (x) and gD(x) are selected to give an exact solution of the
form:

u(x, y) = sin(2πx)sin(2πy).

Tests were performed on a series of regular triangular meshes, produced by taking a uni-
form quadrilateral mesh and splitting each quadrilateral element diagonally into two triangles.
We define the level of mesh refinement by the number of equispaced segments along each
side of the domain. The notation n×n further used in this section corresponds to a mesh com-
prised of n× n quads, each split into 2 triangles. We consider meshes of size 20× 20 = 800
elements, 40× 40 = 3,200 elements, and 80× 80 = 12,800 elements. Although we tested this
method on structured meshes, the algorithm does not depend upon the mesh structure and
can easily operate over unstructured meshes. In order to help ensure that the sensitivity of
the timing routines does not influence the results, we averaged the data over 3 separate runs.

To verify the correctness of our implementations we compared our solution for the
Helmholtz equation with the corresponding analytic solution using the L2 and L∞ error
norms. The parameter τ for the HDG solver (see Eq. (5d)) was set to 1 for both CPU and
GPU implementations. We observe that our implementations produce solutions that match
that of the analytic solution to within machine precision. Numerical errors produced by the
GPU implementation are presented in Table 1.

Next we consider the total run-time comparison between GPU and CPU implementations
of the HDG method. Table 2 presents timing results of both implementations across the
entire range of test meshes as well as the relative speedup factors. Columns 2, 5 and 8
indicate the time required by the GPU implementation to complete steps A2–B6 of the HDG
pipeline, including time to transfer the data to the GPU but excluding the transfer time of
the solution vector back to the CPU. Columns 3, 6 and 9 indicate the time taken by the CPU
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Table 2 Total run time data for CPU and GPU implementation of Helmholtz problem (time is measured
in ms)

Order 20× 20 mesh 40× 40 mesh 80× 80 mesh

GPU CPU Speedup GPU CPU Speedup GPU CPU Speedup

1 117 268 2.29 231 1,427 6.19 559 9,889 17.69

2 170 483 2.84 323 2,843 8.8 858 24,459 28.5

3 264 828 3.14 480 5,145 10.71 1,508 54,728 36.28

4 383 1,414 3.69 853 8,896 10.43 2,777 105,896 38.13

5 526 2,268 4.31 1,387 15,165 10.94 4,894 180,373 36.85

6 769 3,484 4.53 2,295 24,873 10.84 8,165 289,319 35.44

7 1,136 5,251 4.62 3,550 36,869 10.39 12,879 436,217 33.87

8 1,613 7,683 4.76 5,393 54,474 10.1 20,072 630,613 31.42

9 2,214 11,451 5.17 7,489 79,604 10.63 28,481 883,340 31.02

implementation to complete the equivalent steps with no induced transfer time. It can be
observed that GPU implementation scales well with the increase in mesh size, and the GPU
implementation gains performance improvement on the order of 30× over a well optimized
serial CPU implementation. Note, that the performance of the GPU implementation can be
increased even further by moving additional code for local matrix generation from CPU to
GPU (step A2 of the pipeline). The results indicate the method demonstrates strong scaling
with respect to mesh size.

In order to provide the reader with a better intuition on the scaling of different stages
of the GPU solver with respect to mesh size and polynomial order, we broke the GPU
implementation into four stages which were individually timed. The local matrix generation
stage corresponds to steps B1 and B2 of the GPU process plus the transfer of required data
from CPU to GPU. The transfer time and processing times in this stage are additive, and there
is no concurrent processing while transferring data from the host to the GPU. This represents a
worst-case scenario for timing results as the performance would only increase with concurrent
processing while transferring data. The global assembly stage represents step B3 of the GPU
process. The global solve stage is step B4, and the local solve stage corresponds to steps B5
and B6 (not including the time to transfer the solution back to the host). We note that the GPU
implementation requires the most allocated memory in the global assembly process, during
which the Z

e,Ue,Ke, and K matrices must be allocated. This point is a memory bottleneck in
the system. Table 3 illustrates the memory constraints for each mesh size across the range of
polynomial orders. The GPU is generally more memory constrained than the CPU and it will
eventually reach a limit based on mesh size and polynomial order. The Z

e and U
e matrices

could be deallocated and recalculated again in step B6 to lower memory constraints.
Tables 4, 5 and 6 provide the timing results of the individual stages for the 20 × 20,

40×40, and 80×80 meshes respectively. As can be seen from Tables 4, 5 and 6, for smaller
problem sizes (in terms of both polynomial order and element count) global solve is the
dominating factor; however, as the problems size increases, the balance shifts in favor of
local matrix generation stage. Figure 5 demonstrates the trend in the distribution of total run-
time between different stages for a moderately sized problem: run-time taken by the local
matrix generation grows quickly as polynomial order increases, reaching approximately 50 %
of the total run-time for polynomial order P = 9 on an 80× 80 mesh.
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Table 3 GPU memory
requirements (in kB) for each
mesh and polynomial order

Polynomial
order

20× 20 mesh 40× 40 mesh 80× 80 mesh

1 685 2,727 14,869

2 1,887 7,517 41,818

3 3,968 15,821 89,211

4 7,160 28,560 162,624

5 11,693 46,656 267,633

6 17,797 71,031 409,813

7 25,703 102,605 594,740

8 35,640 142,301 827,989

9 47,840 191,040 1,115,136

Table 4 Timing data for the four
major stages of GPU
implementation on 20× 20 mesh
(time is measured in ms)

Polynomial
order

Local matrix
generation—
HDG

Global
assembly

Global solve Local solve

1 7 18 75 2

2 9 51 106 2

3 11 47 113 2

4 14 56 161 2

5 21 42 162 2

6 40 95 215 2

7 60 113 203 2

8 107 121 253 2

9 155 132 246 3

Table 5 Timing data for the four
major stages of GPU
implementation on 40× 40 mesh
(time is measured in ms)

Polynomial
order

Local matrix
generation—
HDG

Global
assembly

Global solve Local solve

1 11 29 124 3

2 14 47 128 3

3 19 61 133 4

4 28 59 191 4

5 55 57 195 5

6 94 192 257 6

7 140 139 266 7

8 249 92 346 7

9 422 137 361 8

We use batched matrix-matrix multiplication operations as the baseline comparison for
our method. The FLOPS demonstrated by homogeneous BLAS3 operations serve as an upper
bound on the the performance of the batched operations carried out in the HDG process. The
batched operations in the HDG pipeline are a combination of BLAS1, BLAS2, BLAS3, and
matrix inversion operations. BLAS3 operations demonstrate the best performance, in terms
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Table 6 Timing data for the four
major stages of GPU
implementation on 80× 80 mesh
(time is measured in ms)

Polynomial
order

Local matrix
generation—
HDG

Global
assembly

Global solve Local solve

1 18 53 210 6

2 32 88 213 7

3 44 135 239 8

4 82 159 303 9

5 194 146 355 10

6 347 236 469 10

7 537 291 551 12

8 868 322 722 13

9 1,413 405 769 17
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Fig. 5 Ratios of different stages of GPU implementation with respect to the total run time. 80× 80 mesh is
used

of FLOPS, due to to higher computational density over the other operations. Our method
demonstrates peak performance of 60 GFLOPS, which is ∼75 % of the peak FLOPS seen
by batched matrix-matrix multiplication operations using cuBLAS [35], on a GPU with 665
peak GFLOPS for double precision. The addition of matrix inversion operations, BLAS1
and BLAS2 operations lower the computational performance from that of pure BLAS3
operations.
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Figure 6 illustrates the FLOPS and bandwidth of the local matrix generation process and
provides a comparison between the rates on the CPU and GPU (with and without the transfer
time). Figure 7 provides an estimate of the FLOPS for the global solve stage. The solver
performs the conjugate gradient method on the sparse global matrix. From this we estimated
the FLOPS based on the size of K, the number of non-zero entries in the global matrix, and
the number of iterations required to converge to a solution. Our estimate may be slightly
higher than the actual FLOPS demonstrated by the solver, due to implementation specific
optimizations. Our FLOPS estimate was derived from the conjugate gradient algorithm which
requires approximately 2Nnz+3Nrows+Niter ∗ (2Nnz+10Nrows) operations, where Nnz is
the number of non-zero entries in the sparse global system (which is approximately Nl

λNΓ ×
5Nl

λ), Nrows is the number of rows (which corresponds to Nl
λNΓ ), and Niter is the number

of iterations required to converge to a solution.
The efficiency of the HDG method on the GPU is highlighted by the growth rate of the local

matrix generation stage. As polynomial order increases, this step becomes the dominant factor
in the run-time. The batch processing technique takes advantage of the independent nature
of the local (elemental) operations. The computational density per step increases with mesh
size which makes the GPU operations more efficient. At lower mesh sizes the performance
is lower due to the increased relative overhead associated and lower computational density.

We note that the global solve stage contributes a non-negligible amount of time to the
overall method. The choice of iterative solver influences the time taken by this stage. In
our CPU implementation we use a banded Cholesky solver, while the GPU implementation
uses an iterative conjugate gradient solver from the CUSP library. This CUDA library uses
a multigrid preconditioner and is a state-of-the-art GPU solver for sparse linear systems.
There are alternatives to this approach, such as the sparse matrix-vector product technique
described by Roca et al. [36]. Their method takes advantage of the sparsity pattern of the
global matrix to efficiently perform an iterative solve of the system. We chose our approach
based on the fact that the global system solve is not the focus of our method, and instead
focus on the parallelization of the elemental operations.

We would like to conclude this section with a brief discussion of the efficacy of GPU
parallelization when applied to the statically condensed CG method. Static condensation
allows the interior modes to be formulated in terms of solutions on the boundary modes
through the use of the Schur Complement (see Karniadakis and Sherwin [20] for more details).
The statically condensed CG method can therefore be formulated in a similar fashion to the
HDG method, which allows it to be implemented within our GPU pipeline. We expect the
CG method to take less time during the local matrix generation stage than in the HDG case.
This is due to the simpler formulation of the local K

e matrices, which, as demonstrated in
Kirby et al. [26], can be expressed as

K
e = (De

1)
T (Me)−1

D
e
1 + (De

2)
T (Me)−1

D
e
2 −M

e.

This is merely expressing the local elemental matrix in the form of the mass matrix subtracted
from the Laplacian matrix which derives from the Helmholtz equation.

To gain further insight into this area, we conducted some preliminary tests. We setup the
local (elemental) K

e matrix generation within our pipeline for the CG case. Table 7 provides
the timing results of the local K

e matrix generation for the HDG and CG methods within
our framework across the range of test meshes. For the statically condensed CG method
it takes 35–65 % (depending on mesh size and polynomial order) less time to compute the
K

e matrices compared to the HDG method. Our results are only preliminary, as we did not
fully implement the statically condensed CG method within our framework. However, our
conjecture is that the global assembly step will take longer due to the stronger coupling
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Table 7 Local matrix generation
time for CG and HDG methods
on GPU (time is measured
in ms)

Order 20× 20 mesh 40× 40 mesh 80× 80 mesh

HDG CG HDG CG HDG CG

1 7 4 11 7 18 14

2 9 6 14 12 32 20

3 11 10 19 15 44 32

4 14 12 28 22 82 56

5 21 16 55 36 194 116

6 40 20 94 54 347 209

7 60 30 140 91 537 338

8 107 40 249 131 868 492

9 155 59 422 205 1,413 808

between elements in the CG method. We also suspect that the global solve step may take
longer for CG as indicated in Kirby et al. [26], but it may be influenced by differences in
architecture (CPU vs. GPU) as well as the choice of solver.

6 Conclusions and Future Work

We have directly compared a CPU and GPU implementation of the HDG method for a two-
dimensional elliptic scalar problem using regular triangular meshes with polynomial orders
ranging from 1 ≤ P ≤ 9. We have discussed how to efficiently implement the HDG method
within the context of the GPU architecture, and we provide results which show the relative
costs and scaling of the stages that take place in the HDG method as polynomial order and
mesh size increase.

Our results indicate the efficacy of applying batched operations to the HDG method. We
provide an efficient way to map values from the local matrices to the global matrix during the
global assembly step through the use of a lock-free edge mapping technique. This technique
avoids atomic operations and is key for implementing an efficient HDG method on the GPU.
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The framework we suggest illustrates an effective GPU pipeline which could be adapted to
fit methods structurally similar to HDG.

Through our numerical tests we have demonstrated that the HDG method is well suited to
large scale streaming SIMD architectures such as the GPU. We consistently see a speed up of
30× or more for meshes of size 80× 80 and larger. The method demonstrates strong scaling
with respect to mesh size. With each increasing mesh size, for a given polynomial order,
the number of elements increases by 4×, and we see a corresponding increase in compute
time of roughly∼4×. As the mesh size increases, the process becomes more efficient due to
increased computational density relative to processing overhead. We have also demonstrated
that the HDG method is well-suited to batch processing with low inter-element coupling and
highly independent operations.

Let us end by indicating possible extensions to the work presented. One possible extension
could be a GPU implementation of the statically condensed CG method. The formulation of
the statically condensed CG method is similar to that of the HDG method. The structure of
the global K matrix will differ due to increased coupling between elements in the CG case
(see Kirby et al. [26] for details). This may present an additional challenge in formulating
the global assembly step in an efficient manner on the GPU, because elements are coupled
by edges and vertices. We suspect that the performance gains will not be as great as in the
HDG case.

Another possible extension could be scaling of the HDG method to multiple GPUs. The
local matrix generation and the global assembly step consist of independent operations and
would scale well with increased parallelization. The cost of the local matrix generation stage
grows at a faster rate than the other stages, and becomes the dominant factor for P ≥ 7 for
moderately sized and larger meshes. The global assembly stage would also see performance
gains, since the assembly process is performed on a per-edge basis. Each GPU could be given
a unique set of edges to assemble into the global matrix K, with some overlapping edges
being passed along to avoid cross communication. The global solve stage may prove to be
a bottleneck in a multi-GPU implementation since it cannot be easily divided up amongst
multiple processing units. However, as we have shown in our results, the computation time
for this step does not grow at the same rate as the local matrix generation step.
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