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SUMMARY

We present a new computational method by extending the immersed boundary (IB) method with a geometric
model based on parametric radial basis function (RBF) interpolation of the Lagrangian structures. Our
specific motivation is the modeling of platelets in hemodynamic flows, although we anticipate that our
method will be useful in other applications involving surface elasticity. The efficacy of our new RBF-IB
method is shown through a series of numerical experiments. Specifically, we test the convergence of our
method and compare our method with the traditional IB method in terms of computational cost, maximum
stable time-step size, and volume loss. We conclude that the RBF-IB method has advantages over the tra-
ditional IB method and is well-suited for modeling of platelets in hemodynamic flows. Copyright © 2015
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The immersed boundary (IB) Method was introduced by Charles Peskin in the early 1970s to
solve the coupled equations of motion of a viscous, incompressible fluid and one or more mass-
less, elastic surfaces or objects immersed in the fluid [1]. The IB method was originally developed
to model blood flow in the heart and through heart valves [1–3], but has since been used in
a wide variety of other applications, particularly in biofluid dynamics problems where complex
geometries and immersed elastic membranes or structures are present and make traditional compu-
tational approaches difficult. Examples include swimming of organisms [4, 5], biofilm processes [6],
mechanical properties of cells [7], cochlear dynamics [8], and insect flight [9, 10]. In this work,
we are motivated by the application of the IB method to platelet aggregation in blood clotting, but
expect our method to be useful in other applications as well.

Intravascular blood clots (thrombi) are initiated by damage to the endothelial cell lining of a
blood vessel and involve the formation on the damaged surface of clumps of cells intermixed with
a fibrous protein gel. The cells involved in this process are platelets, and the subject of this paper
is a new approach to modeling platelets in order to simulate their adhesion to the injured vascular
wall and cohesion with one another during the formation of a thrombus. The IB method is used to
describe the mechanical interactions among a collection of discrete platelets, the background fluid,
and the vessel wall. However, we now model our platelets with radial basis functions (RBFs) in
order to achieve more accurate and less costly simulations.
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In this introduction, we briefly outline the relevant biology, describe how the IB method has been
used in our previous platelet aggregation simulations, and give an overview of how use of the new
method changes this description.

1.1. Modeling the mechanics of platelet aggregation

Disruption of the endothelial cell lining exposes collagen and adsorbed von Willebrand factor
molecules in the subendothelial matrix to the blood. Platelets adhere to both molecules via specific
receptor molecules on the platelets’ surfaces. In addition to slowing or stopping platelet motion
over the subendothelium, this binding triggers intracellular signaling pathways that lead to platelet
activation [11, 12].

Our platelet aggregation models [4, 13–16] track the motion and behavior of a collection of indi-
vidual platelets as they interact with the suspending fluid, one another, and the vessel walls. We also
track fluid concentrations of platelet-activating chemicals, cell–cell and cell–surface forces, fluid
motion, and the local fluid forces on the growing thrombus. In our models, nonactivated platelets
are activated by proximity to reactive sites on the injured wall or through exposure to a sufficiently
high concentration of activator in the fluid. Activation enables a platelet to cohere with other acti-
vated platelets and to secrete additional activator. The platelets and the secreted chemical move by
advection with the fluid and diffusion relative to it. Each platelet is represented as an IB object, that
is, as a collection of elastically linked Lagrangian points that each move at the local fluid velocity.
New elastic links are created dynamically to model the adhesion of a platelet to the injured wall or
the cohesion of activated platelets to one another. Multiple links can form between a pair of acti-
vated model platelets or between a model platelet and the injured wall, and these links collectively
represent the ensemble of molecular bridges binding real platelets to one another or to the damaged
vessel. The links exert forces on the surrounding fluid to resist motions that would otherwise separate
the linked entities. Links may break if subject to sufficiently high stress. Model variables are fully
coupled: the fluid carries the activator and platelets, while the interplatelet forces, potentiated by
chemically induced activation of the platelets, determine the local flow. In this paper, we focus on
mechanical interactions, not the activation process, and so we specify the conditions under which a
platelet becomes activated and able to cohere with other activated platelets.

1.2. Motivation for the radial basis function–immersed boundary method

We model platelets as closed curves of interconnected IB points in 2D. A platelet’s area or volume
is determined by the region enclosed by the curve or surface and is preserved because of the incom-
pressibility of the fluid. Inactive platelets are approximately elliptical in 2D models, while activated
platelets are approximately circular. Piecewise linear approximations of platelets are currently used
in IB methods applied to the simulation of platelet aggregation (e.g., [4, 13, 14]).

In previous work [17], we found that interpolation with RBFs restricted to the circle (or sphere
in 3D) offered accuracy and computational cost comparable with that offered by Fourier-based
methods in modeling an infinitely smooth target shape, its normals and tension forces computed
on its surface. Furthermore, interpolation with RBFs resulted in better convergence (often an order
more) than that offered by both Fourier-based methods when the target shape had only one or two
underlying derivatives. In general, use of RBFs led to a computational cost comparable with that
of Fourier-based methods and orders of magnitude lower (for the same accuracy) than that of the
standard combination of techniques (piecewise quadratic interpolation and finite differences) used
in many IB methods. This RBF-based geometric model has since been used in a variety of applica-
tions [18–20]. It has recently been extended to the representation of open elastic curves immersed
in a purely viscous fluid for use within the method of regularized Stokeslets [21].

We now turn our attention to exploring the consequences of using this parametric RBF geometric
model within the full IB method, with platelet aggregation as our target application. We seek to
determine if the advantages inherent in the RBF interpolation of static shapes carry over to full-
fledged IB simulations, and if the RBF interpolation can give us benefits that are apparent only in
full-fledged IB simulations. In this work, we propose a new IB algorithm that utilizes the features
afforded by our RBF geometric model.
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The paper is organized as follows. In Section 2, we briefly discuss the traditional IB method
for simulating fluid–structure interaction. In Section 3, we review not only the piecewise linear
and RBF geometric modeling strategies but also the components necessary for handling immersed
elastic structures in the IB method. In Section 4, we provide details of the spatial and temporal
discretizations of both versions of the IB method. In Section 5, we present our comparison of the
RBF-IB method with the traditional IB method in terms of convergence, accuracy, area loss, and
time-step size. We also provide energy estimates for RBF-IB simulations. We then present results
from a large platelet aggregation simulation in 2D. Section 6 contains a summary of our findings
and a discussion of future research directions.

Notation: We denote vectors with as many components as the spatial dimension in bold. We
denote vectors with as many components as the number of data sites (Nd) or sample sites (Ns) by
underlining. We indicate matrices with (Nd) or (Ns) rows and two columns in bold with underlining.

2. REVIEW OF THE IMMERSED BOUNDARY METHOD

To review the IB method, we focus on a simple 2D model problem in which a single fluid-filled
closed elastic membrane is immersed in a viscous fluid. The physics of the model problem is that an
elastic membrane is under tension and exerts forces on the adjacent fluid. These forces may cause
the fluid to move and, correspondingly, cause points on the membrane to move along with the fluid.
In the IB method, the fluid is described in the Eulerian frame through a velocity field u.x; t / and
pressure field p.x; t / defined at every point x in the physical domain �. The elastic membrane is
described in the Lagrangian frame. Let the elastic membrane be parameterized by q 2 � and denote
by X.q; t/ the spatial coordinates at time t of the membrane point labeled by q. The IB equations
are the following coupled equations of motion for the fluid variables u.x; t / and p.x; t / and the
membrane configuration X.q; t/.

�.ut C u � ru/ D �rp C �r
2uC f ; r � u D 0; (1)

F .q; t/ D F

�
X.q; t/;

@

@q
X.q; t/

�
; (2)

f .x; t / D

Z
�

F .q; t/ı.x �X.q; t// dq; (3)

@X

@t
.q; t/ D

Z
�

u.x; t / ı.x �X.q; t//dx: (4)

Equation (1) is the Navier–Stokes equations that describe the dynamics of a viscous incompressible
fluid of constant density � and constant viscosity �, driven by a force density f , which here arises
because of the elastic deformation of the immersed membrane. Equation (2) specifies the elastic
force (per unit q) at each point of the IB object. The functional dependence of this force on the state
of the boundary is specified appropriately to the material being modeled. Equation (3) defines the
fluid force density f .x; t / in terms of the IB elastic force density F . Equation (4) specifies that
the velocity of each IB point equals the fluid velocity at the same location, a formulation of the no-
slip boundary condition for viscous flows. In the model problem and the platelet applications, we
assume that the IB objects are neutrally buoyant; the IB membrane itself carries no mass, and each
object’s mass is attributed to the fluid in which it sits; for more on the IB method, see [22].

3. GEOMETRIC MODELING OF PLATELETS

In this section, we review the two geometric modeling strategies to be compared in the context of
the IB method applied to platelet aggregation; for a full description of these strategies, see [17].
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3.1. Piecewise linear model

In the traditional IB method, the surfaces of platelets are represented by a collection of IB points.
We henceforth refer to the IB points in the traditional IB method as sample sites and denote them
by X s.t/ D X.q; t/ for each discrete q 2 � and at a particular time t . The surface elastic forces
of the platelets are spread from these sample sites into the neighboring fluid. Both tension and
bending forces are computed using a finite difference discretization of force models at sample sites.
An explicit piecewise linear interpolant of the surface is not formed. If other information (such as
normal vectors) is needed at the sample points, an approximation to the surface represented by the
sample sites may be formed by a piecewise quadratic interpolation of the sample sites (e.g., [23]).
After the incompressible Navier Stokes equations are solved, velocities from the portions of the
Eulerian grid surrounding the sample sites are interpolated to the sample sites using a discretization
of Equation (4) and used to move the platelets.

3.2. Parametric RBF model

The RBF method is a popular tool for approximating multidimensional scattered data; for an
overview of the theory and application of this method, see the books by Fasshauer [24] and
Wendland [25]. The restriction of the RBF method to interpolation on a circle and/or sphere is dis-
cussed by Fasshauer and Schumaker [26, §6]. When restricted to these domains, the RBF method
is referred to as the spherical basis function method [25, Ch. 17]. Several studies have provided
error estimates for RBF interpolation on circles and spheres; in fact, these interpolants can provide
spectral accuracy, provided the underlying target function is sufficiently smooth [27, 28]. The RBF
method has also been used successfully for numerically solving partial differential equations on the
surface of the sphere [29, 30], as well as more general surfaces [20, 31].

Here, we present the RBF model developed in our earlier work [17]. It is based on explicit para-
metric representations of the objects. Because our target objects are platelets, which in 2D models
are nearly elliptical or circular, we choose a polar parameterization. We use our model to define
operators necessary for the computation of geometric and mechanical quantities required by the
IB method.

We represent a platelet surface at any time t parametrically by

X.�; t/ D .X.�; t/; Y.�; t// (5)

where 0 6 � 6 2� is the parametric variable and X.0; t/ D X.2�; t/. We explicitly track a finite
set of Nd points X d

1.t/; : : : ;X
d
Nd
.t/, which we refer to as data sites. Here, X d

j .t/ WD X
�
�d
j ; t
�

,

j D 1; : : : ; Nd, and we refer to the parametric coordinates �d
1; : : : ; �

d
Nd

as the data site nodes (or
simply nodes). We construct each component of X by using a smooth RBF interpolant of the data
sites in parameter space as discussed in detail in the following. We also make use of derivatives
of the interpolant at the data sites, and we use the interpolant and its derivatives at another set of
prescribed sample points or sample sites, which correspond to Ns parameter values: �s

1; :::; �
s
Ns

.
We first explain how to construct an RBF interpolant to the X component of X using the data�
�d
1; X

d
1.t/

�
; :::;

�
�d
Nd
; Xd

Nd
.t/
�

; the construction of the Y component follows in a similar man-
ner. Let �.r/ be a scalar-valued radial kernel, whose choice we discuss in the following. Define
X.�; t/ by

X.�; t/ D

NdX
kD1

cXk �

�q
2 � 2 cos

�
� � �d

k

��
: (6)

Note that the square root term in Equation (6) is the Euclidean distance between the points on
the unit circle whose angular coordinates are � and �d

k
. We have found that the distance argu-

ment r D
q
2 � 2 cos

�
� � �d

k

�
is far more accurate for the geometric of modeling static closed

curves and surfaces than, say, r D j� � �d
k
j. In addition, recent work has shown that the periodic

distance argument gives results identical to those given by the non-periodic distance argument for
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the modeling of both static and dynamic open curves [21]. While other distance arguments could
be considered (for example, using geodesic distance in place of Euclidean distance), Fuselier and
Wright have shown that RBF interpolation can produce favorable error estimates in the interpola-
tion of functions on submanifolds of Rn even when no knowledge of the surface metric is used [32].
For these reasons, we restrict our attention to the periodic distance argument in (6). For this paper,
we use the multiquadric (MQ) radial kernel function, given by

MQ: �.r/ D
p
1C ."r/2; (7)

where " is called the shape parameter. The choice of " is discussed in Section 5. To have X.�; t/
interpolate the given data, we require that the coefficients cX

k
; k D 1; :::; Nd satisfy the following

system of equations: 2
66664
� .r1;1/ � � � � .r1;Nd/

� .r2;1/ � � � � .r2;Nd/

:::
: : :

:::

� .rNd;1/ � � � � .rNd;Nd/

3
77775

„ ƒ‚ …
A

2
66664
cX1

cX2
:::

cXNd

3
77775

„ƒ‚…
cXd

D

2
66664
Xd
1.t/

Xd
2.t/

:::

Xd
Nd
.t/

3
77775

„ ƒ‚ …
X d.t/

; (8)

where rj;k D

r
2 � 2 cos

�
�d
j � �

d
k

�
. Because rj;k D rk;j , the matrix A in this system is symmet-

ric. More importantly, for the MQ kernels, A is non-singular, with the global support and infinite
smoothness of �.r/ lending itself to spectral accuracy and convergence on smooth problems [24,
25]. One could alternatively use any of the other infinitely smooth kernels like the Gaussian or the
inverse MQ in place of the MQ kernel.

In our application, we want to be able to evaluate X.�; t/ at sample sites corresponding to
parameter values �s

1; :::; �
s
Ns

, which stay fixed over time. While we could use Equation (6) to
do this, it is much more convenient from a notational and computational perspective to con-
struct an evaluation matrix that combines the linear operations of constructing the interpolant to
X d.t/ D ŒX d.t/; Y d.t/	, for any t , and evaluating it at �s

1; :::; �
s
Ns

. The evaluation matrix can be
constructed by first noting that Equation (6) can be written as

X.�; t/ D

�
�
�q

2 � 2 cos
�
� � �d

1

��
� � � �

�r
2 � 2 cos

�
� � �d

Nd

��	
„ ƒ‚ …

b.�/T

cXd : (9)

Because cXd D A
�1X d.t/, we can write Equation (6) asX.�; t/ D b.�/TA�1X d.t/. The evaluation

of X.�; t/ at �s
1; :::; �

s
Ns

can then be obtained as follows:2
664
X
�
�s
1; t
�

:::

X
�
�s
Ns
; t
�
3
775

„ ƒ‚ …
X s.t/

D

2
664
b
�
�s
1

�T
:::

b
�
�s
Ns

�T
3
775

„ ƒ‚ …
B

A�1X d.t/ D BA�1„ƒ‚…
Es

X d.t/: (10)

So, given the data sites X d.t/ at any time t , we can interpolate their coordinates with an RBF
expansion and evaluate the interpolant at the sample site nodes �s

1; :::; �
s
Ns

to get X s.t/ by the
matrix-vector product EsX d.t/. In fact, this same procedure can be used to give values at sample
site nodes for any quantity whose values we have at data site nodes and which we represent using

an RBF expansion (e.g., Y d.t/ D
h
Y d
1 .t/ � � �Y

d
Nd
.t/
iT

). Furthermore, the evaluation matrix Es can
be precomputed once at t D 0 and used for all subsequent times.
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We also need to compute geometric quantities, such as tangent vectors, and mechanical quanti-
ties such as forces at data sites and/or sample sites. These quantities require computing derivatives
with respect to � of the platelet surface coordinates .X.�; t/; Y.�; t//. We use the RBF-based rep-
resentation of the surface to compute these derivatives, and we will express derivatives of the RBF
interpolant in matrix-vector form. Toward this end, we use similar notation to Equation (9) and
define the vector

bn�.
Q�/ WD

@n

@�n
b.�/

ˇ̌̌
ˇ
�DQ�

D

�
@n

@�n
�
�q

2 � 2 cos
�
� � �d

1

��ˇ̌̌ˇ
�DQ�

� � �
@n

@�n
�

�r
2 � 2 cos

�
� � �d

Nd

��ˇ̌̌ˇ
�DQ�

	T
;

for any 0 6 Q� 6 2� . Just as b. Q�/TA�1X d.t/ gives the value of X. Q�; t/, we can use bn�. Q�/ to obtain
the nth derivative of X.�; t/ with respect to � as

@n

@�n
X.�; t/

ˇ̌̌
ˇ
�DQ�

D bn�.
Q�/TA�1X d.t/:

The evaluation of the nth derivative ofX.�; t/ at the data site nodes �d
1; : : : ; �

d
Nd

can then be obtained
as follows: 2

66666664

@n

@�n
X.�; t/

ˇ̌̌
ˇ
�D�d

1

:::

@n

@�n
X.�; t/

ˇ̌̌
ˇ
�D�d

Nd

3
77777775
D

2
66664
bn�
�
�d
1

�T
:::

bn�

�
�d
Nd

�T

3
77775

„ ƒ‚ …
Bn
�d

A�1X d.t/ D B
n
�dA
�1„ ƒ‚ …

Dn
�d

X d.t/: (11)

In a similar manner, the evaluation of the nth derivative of X.�; t/ at the sample site nodes
�s
1; : : : ; �

s
Ns

can be obtained by

2
6666664

@n

@�n
X.�; t/

ˇ̌̌
ˇ
�D�s

1

:::

@n

@�n
X.�; t/

ˇ̌̌
ˇ
�D�s

Ns

3
7777775 D

2
66664
bn�
�
�s
1

�T
:::

bn�

�
�s
Ns

�T

3
77775

„ ƒ‚ …
Bn�s

A�1X d.t/ D B
n
�sA
�1„ ƒ‚ …

Dn�s

X d.t/: (12)

For given data sites X d.t/ at any time t , we can interpolate these values with an RBF expansion
and evaluate the nth derivative of the interpolant at the data site nodes by the matrix–vector product
Dn
�dX d.t/ and at the sample site nodes by Dn

�sX d.t/. We refer to the Nd �Nd matrices Dn
�d and the

Ns �Nd matrices Dn
�s as RBF differentiation matrices.

The matrices Dn
�d and Dn

�s can be used to give values at respective data site or sample site nodes
of the nth derivative of the RBF interpolant of any quantity whose values we have at the data site

nodes (e.g., Y d.t/ D
h
Y d
1 .t/ � � �Y

d
Nd
.t/
iT

). These matrices can also be precomputed once at t D 0

and used for all subsequent times.
Having defined the operators to compute derivatives of the RBF interpolant, we define the quantity

� WD
@

@�
X.�; t/ D

�
@

@�
X.�; t/;

@

@�
Y.�; t/

�
D .
X ; 
Y /: (13)
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The unit tangent vector to X.�; t/ is then given by

O� WD
�

k�k
D . O
X ; O
Y /: (14)

In our experiments, we assume that the Lagrangian force at a point on a platelet is the sum of a
tension force, a bending-resistant force and possibly a force due to a bond between that point and
a point on another platelet or the vessel wall. For the tension force, we use the fiber model defined
in [22], according to which the elastic tension force density at X.�i ; tk/ is given by

F T.�i ; tk/ D
@

@�
.T O�/

ˇ̌̌
ˇ
�i ;tk

; (15)

where T D kt.k�k� l0/ is the fiber tension and kt > 0 is constant. We set l0;i D k�kj�i ;t0 , where t0
is the initial time of the simulation. For a bending-resistant force, we use a linear variant of the force
defined in [33] and define the elastic force density at X.�i ; tk/ because of how much the platelet
surface there is bent to be

F B.�i ; tk/ D � kb

 
@4X

@�4
�
@4X0

@�4

!ˇ̌̌
ˇ̌
�i ;tk

: (16)

Here, X0 D X.�i ; t0/ is the initial configuration of the platelet and kb > 0 is constant. Ideally,
the constants kt and kb would be chosen to reflect values determined from experiments involving
real platelets. In our work, we choose kt and kb, which keep isolated platelets in simple shear
flows approximately rigid, and scale them as we refine the background Eulerian grid; this scaling
ensures that the mechanical properties of the elastic material converge as the background grid is
refined [34]. Despite this approximate rigidity of isolated platelets, these platelets may deform sig-
nificantly because of interactions (binding and unbinding) with other platelets, and in other models,
as a consequence of platelet activation also.

We defer discussion of how we compute the forces given by Equations (15) and (16) to the next
section (and the Appendix), because the implementation is different for the RBF and piecewise-
linear representations of the platelet boundary. However, the force acting on a platelet because of
other platelets (and/or walls) is common to both methods. We use the spring force defined in [14]:
let p1; p2; :::; pNp be the indices corresponding to the platelets in the domain. Let p1 and p2 be the

indices of two platelets, which are linked at sample sites Xp1

�
�si1

�
and Xp2

�
�si2

�
. The force at

Xp1

�
�si1

�
is then given by:

F C
p1

�
�si1 ; tk

�
D KC

�
jjXp2

�
�si2

�
�Xp1

�
�si1

�
jj � l0;C

� Xp2

�
�si2

�
�Xp1

�
�si1

�
jjXp2

�
�si2

�
�Xp1

�
�si1

�
jj
; (17)

whereKC and l0;C are the interplatelet cohesion spring stiffness and the resting length, respectively;

we also set F C
p2

�
�si2 ; tk

�
D �F C

p1

�
�si1 ; tk

�
. The formulation for platelet–wall links is similar.

4. NUMERICAL DISCRETIZATION

In this section, we present the implementation details for both IB methods. For each method, we
briefly describe the spatial discretization for both the Lagrangian and Eulerian quantities. We then
describe the time-stepping scheme for each method.

4.1. The piecewise-linear IB method

Traditionally, finite-difference approximations of Equations (15) and (16) are used in conjunction
with piecewise linear methods in 2D (e.g., [33]). We use a second-order central difference involving
sets of sample sites or IB points to discretize the derivatives involved in the computation of both the
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tension and bending forces (including tangent lengths). It is useful to think of these finite-difference
approximations to the constitutive model as Hookean springs connecting pairs of IB points. Note
that these differences are only second-order assuming a near-uniform sampling. This is one of the
sources of error for the IB method.

For the Eulerian spatial discretization, we use a second-order centered finite-difference
approximation to the Laplacian on a staggered Marker-and-Cell (MAC) grid [35]. We discretize the
advection term (in conservative form r � .uuT /) using second-order centered differences, averaging
quantities to cell edges or nodes as required. For the approximate ı-function, we use the ‘cosine’
form described by Peskin [22], which ensures that the entire IB force is transmitted to the grid, that
the force density on the grid is a continuous function of the IB point locations, and that the commu-
nication between grid and IB points is very localized. We note that one could also use other discrete
ı-functions designed to satisfy specific properties, if required [36]. To prevent leakage, the tension
stiffness kt is set sufficiently high so that the IB point spacing on the surface is approximately 0:5h
(or less), where h is the Eulerian grid cell width. After each update of the IB point locations, new
links are formed and existing ones are broken using the model’s rules for these types of events.

We use the formally second-order Runge–Kutta time-stepping scheme outlined in [37]. This time-
stepping scheme demonstrates second-order convergence in time for a smooth-forcing function, or
for an elastic material that fills the whole domain, as demonstrated in [37]. This scheme exhibits
only first-order convergence in time in the presence of a sharp interface between the fluid and the
elastic material, as is typical of IB methods. The full scheme is presented in Appendix B.

4.2. The RBF–IB method

In order to construct the operators utilized by our algorithm, we must first choose an appropriate
node set. We use Nd equally spaced values on the interval .0; 2�	 as the data site node set

®
�d
k

¯Nd

kD1
.

This gives a uniform sampling in the parametric space. We also use Ns > Nd (typically, Ns D 4Nd

or Ns D 8Nd) equally spaced points in the interval .0; 2�	 as the set of sample site nodes
°
�s
j

±Ns

jD1
because this results in a set of sample sites that are well distributed over the object. As in the
traditional IB method, we make sure to start simulations with a sample site spacing of less than
0:5h (again enforced approximately using the tension stiffness), although the data site spacing can
be much greater. In the Results section, we explore the ramifications of this choice.

We have formulated our operators to ensure that operations like evaluation of the interpolant and
computing derivatives (and therefore the constitutive model) do not require solving a linear system
for any time-step of the platelet simulation except the initial step. This is possible because although
the data sites and sample sites move over the course of the simulation, their values in parameter
space do not change. For the RBF model of the platelets, the evaluation matrix Es in Equation (10)
and differentiation matrices Dn

�d and Dn
�s in Equations (11) and (12), respectively, can be computed

using the FFT as discussed in our previous work [17]. This is possible because the data site nodes®
�d
k

¯Nd

kD1
are equally spaced, which results in the A matrix defined Equation (8) having a circulant

matrix structure. The costs and accuracy of the RBF models are elaborated upon in the discussion
of the results. The algorithm to compute forces on platelets using these operators is presented in
Appendix A.

The RBF-IB method uses the same time-stepping scheme and Eulerian discretization as the piece-
wise linear IB method, with one important difference. When computing the forces at time level
n C 1=2, we advance the data sites to time level n C 1=2, generate a set of sample sites at that
time level, and compute forces at the sample sites. Similarly, we use the mid-step approximation to
the velocity field to advance the data sites to time level n C 1. We thus generate only a single set
of sample sites every time-step, because the sample sites are only needed when the data sites are
advanced to time level nC1=2. It is clear that if the number of data sites is fewer than the number of
sample sites, this results in improved computational efficiency over the piecewise linear IB method.
However, it is important to explore the effect of our changes on the convergence of the algorithm.
We explore these questions in the Results section; for a more complete description of the RBF-IB
time-stepping scheme, see Appendix C.
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5. RESULTS

In this section, we first compare the convergence of the RBF-IB method on a canonical test problem.
We also use this test problem to explore the relationship between the number of data sites (Nd) and
the Eulerian grid spacing (h). We then compare the area loss in an elastic object simulated by each
method on the same problem and discuss the time-step sizes allowed by both methods. We follow
with a discussion of the change in energy over time in the RBF-IB method. We then provide timings
for platelet simulations and discuss both foreseen and unforeseen results of using the RBF model
within the IB method. Finally, we present the results of platelet aggregation simulations conducted
using the RBF-IB method.

Description of our standard fluid–structure interaction problem:
We describe a standard fluid–structure interaction problem on which we test both versions of the

IB method. This problem is commonly used in the IB literature (e.g., [38]). The problem involves
placing an elliptical object with its center of mass at the center of the Œ0; 1	2 physical domain. The
elliptical object has a circle of the same area as its rest configuration and attempts to attain the rest
configuration subject to a combination of tension and bending forces. The physical domain is filled
with a fluid that is initially at rest, with periodic boundary conditions in the x-direction and no-slip
Dirichlet boundary conditions in the y-direction. We set the radius of the target circle to be r D 0:1
units, with the ellipse initially having a major axis of a D 2r and a minor axis of b D 0:5r . This
test is visualized in Figure 1.

5.1. Convergence studies

In previous work [17], we compared the accuracy and convergence of both RBF and traditional
IB geometric modeling strategies for static platelet-like shapes. We now compare the accuracy and
convergence of the full RBF-IB and piecewise-linear IB (PL-IB) methods, both for the velocity field
and for the immersed elastic structure.

Figure 1. A visualization of the fluid–structure interaction test. The dashed lines show the initial ellipse,
while the filled line indicates the near-circular object at the final time t D 2:0. The small arrows indicate
the velocity field at the final time. The maximum velocity is very close to zero at this time as the object is

almost at rest.
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For the fluid, on each grid with cell width h, we define the quantity uc;h, the coarsened discrete
velocity field from the 256�256 grid. This coarsened velocity is obtained using a spline interpolation
of each component of the velocity on the finest grid, and evaluating it at the edges on the coarser
grid. For each grid point i on a grid with cell width h, we compute the quantity f hi D jju

h
i � u

c;h
i jj.

We define the l2 error in the velocity field as e2.h/ D
qP

i

�
f hi h

�2
and the l1 error in the velocity

field to be e1.h/ D maxi f hi . The convergence rate for errors e.2h/ and e.h/ is measured as

pu D log2
�
e.2h/
e.h/

�
.

We note that convergence rates of numerical solutions can be computed in an alternate manner
to the one outlined earlier. Solutions on three grids u4h, u2h, and uh are chosen; the errors e.2h/
and e.h/ are computed by comparing the 4h grid with the 2h grid, and the 2h grid to the h grid,
respectively. The rate of convergence is then once again estimated as pu D log2

�
e.2h/
e.h/

�
. While

the results shown in this section do not employ this method, we have verified that the orders of
convergence computed using this method match those presented in this section.

For the Lagrangian markers (sample sites or IB points), we adopt the following procedure:

1. Given the number of sample sites Ns and the radius of the target circle r , we define � D 2�
Ns

,
the angle subtended at the center of the circle if the points were evenly spaced.

2. We define the quantity C D 2r sin.0:5�/, the chord length between any two points in a set of
evenly spaced points on an ideal circle. We also define Cexact to be the ideal chord length for
Ns D 400.

3. We compute the actual distances di between the sample sites (or IB points) for a simulation
computed on the 256 � 256 grid with Ns D 400. We then compute the quantities s1 D
maxi jdi � Cexactj and s2 D .1=Ns/

pP
i jdi � Cexactj2.

4. We compute sNs
1 and sNs

2 for Ns D 50; 100; 200. We then define the l2 error to be e2.Ns/ D

js
Ns
2 � s2j and the l1 error to be e1.Ns/ D js

Ns
1 � s1j.

We define the convergence rate for errors e.Ns/ and e.2Ns/ to be pX D log2
�
e.Ns/
e.2Ns/

�
.

By defining the Lagrangian errors in this fashion, we circumvent the fact that the ‘correct’ sample
site spacing is unknown; our aforementioned definitions measure ‘errors’ against equally spaced
points on the circle. However, as can be seen in the following text, these errors converge at a first-
order rate (asymptotically). For full transparency, we also record the deviations of the sample sites
from an equispaced set of IB points on the finest Lagrangian ‘grid’; these are given by the quantities
s1 and s2.

Table I. Results of a refinement study with the radial basis function–immersed boundary method withNd D
25 data sites. We show the convergence of the velocity field, with errors measured against the velocity field
of a simulation on a 256�256 grid withNs D 400 sample sites,Nd D 100 data sites, and�t D 2:5�10�5.

Grid size Ns �t L2 error Order of convergence L1 error Order of convergence

32 � 32 50 2 � 10�4 1.7666e-04 8.8682e-04
64 � 64 100 1 � 10�4 1.5097e-04 0.23 5.4255e-04 0.71
128 � 128 200 5 � 10�5 8.4247e-05 0.84 3.0738e-04 0.82

Table II. Results of a refinement study with the radial basis function–immersed boundary method with
Nd D 25 data sites. We show the convergence in the sample site positions, with errors measured against the
sample site positions of a simulation on a 256� 256 grid with Ns D 400 sample sites, Nd D 100 data sites,

and �t D 2:5 � 10�5.

Ns Grid size �t L2 error Order of convergence L1 error Order of convergence

50 32 � 32 2 � 10�4 3.1188e-06 2.3238e-05
100 64 � 64 1 � 10�4 3.5898e-07 3.12 3.0048e-06 2.95
200 128 � 128 5 � 10�5 1.5310e-07 1.23 1.7905e-06 0.75

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
DOI: 10.1002/fld



AN RBF-IB METHOD FOR SIMULATING PLATELETS IN HEMODYNAMIC FLOWS

5.1.1. Convergence of the RBF-IB method forNd D 25. Here, we test the convergence of the RBF-
IB method on the fluid–structure interaction problem described earlier. We compare the velocity
field and sample site positions with those computed for the same test problem on a 256 � 256 grid
with Ns D 400 sample sites and Nd D 100 data sites. Tables I and II show the results obtained with
Nd D 25 data sites for the fluid and the object, respectively.

Table I shows that the errors produced in the RBF-IB method. We see that the RBF-IB method
for Nd D 25 shows first-order convergence asymptotically. Table II shows results for the errors on
the object. The errors on the coarsest grid are high, leading to a higher-than-expected convergence
rate in both norms when we measure the errors on a 64 � 64 grid. Once again, the convergence
rate remains close to first-order, as expected. For completion, we note that s2 D 4:3694e � 08 and
s1 D 1:1113e � 06 for the structure on the 256 � 256 grid for Nd D 25 data sites.

5.1.2. Convergence of the RBF-IB method for Nd D 50. We repeat the previous test problem with
Nd D 50 data sites. As before, we compare the velocity field and sample site positions with those
computed for the same test problem on a 256� 256 grid with Ns D 400 sample sites and Nd D 100

data sites. Tables III and IV show the results for the fluid and the object, respectively.
Examining Table III, we see that when moving to the finest grid, we have once again recovered

first-order convergence. The errors on the 128 � 128 grid for Nd D 50 with the RBF-IB method
are close to those on the same grid with Nd D 25. Table IV shows errors similar to those seen in
Table II, albeit with less erratic convergence. Indeed, we recover first-order convergence in the l2
norm and close to second-order convergence in the l1 norm.

We note that using Nd D 50 data sites does not result in significantly better convergence on
the structure than Nd D 25. There are two possible explanations. The first is that the function
representing the shape of the object is of limited smoothness (as seen in our previous work [17]),
with higher values of Nd causing the interpolation error to saturate or even increase. The alternate
(and more likely) explanation is that, because our RBFs are parameterized on the circle, Nd D 25

would already have a very high accuracy when the object becomes a circle, considering the spectral
accuracy of RBF interpolation on the circle; in such a scenario, using Nd D 50 data sites would
only serve to increase the rounding errors in the representation of the structure. The values of s2 and
s1for the structure on the 256 � 256 grid for Nd D 50 data sites are the same as those for Nd D 25

data sites.

Table III. Results of a refinement study with the radial basis function–immersed boundary method with
Nd D 50 data sites. We show the convergence of the velocity field, with errors measured against the velocity
field of a simulation on a 256 � 256 grid with Ns D 400 sample sites, Nd D 100 data sites, and �t D

2:5 � 10�5.

Grid size Ns �t L2 error Order of convergence L1 error Order of convergence

32 � 32 50 2 � 10�4 5.5617e-03 3.7404e-02
64 � 64 100 1 � 10�4 2.2436e-04 4.63 1.2403e-03 4.91
128 � 128 200 5 � 10�5 7.8934e-05 1.51 2.8859e-04 2.10

Table IV. Results of a refinement study with the radial basis function–immersed boundary method with
Nd D 50 data sites. We show the convergence in the sample site positions, with errors measured against the
sample site positions of a simulation on a 256� 256 grid with Ns D 400 sample sites, Nd D 100 data sites,

and �t D 2:5 � 10�5.

Ns Grid size �t L2 error Order of convergence L1 error Order of convergence

50 32 � 32 2 � 10�4 3.6212e-05 5.2794e-04
100 64 � 64 1 � 10�4 3.8824e-07 6.54 7.8472e-06 6.07
200 128 � 128 5 � 10�5 1.7236e-07 1.17 2.0636e-06 1.93
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5.1.3. Convergence of the RBF-IB method for Nd D 0:25Ns. In the traditional IB method, the
number of IB points depends on the grid spacing h. Typically, the number of IB points is chosen
so that the distance between any two sample sites is always less that 0:5h. In all the earlier tests,
we have maintained that relationship for the sample sites in the RBF-IB method. In the RBF-IB
method, we always use fewer data sites than sample sites, that is, Nd < Ns, with the choice of Nd

being justified by the results in previous work [17]. Furthermore, in the earlier tests, we fix Nd even
as we refine the fluid grid. For Nd D 25, this means that as we refine Ns, the distance between data
sites increases from 0:8 to 3:2h (at the start of the simulation).

In order to gain intuition on the relationship between Nd and h, we now perform a convergence
study (using the same test problem given previously) with increasing values of Nd as h is reduced.
To accomplish this, we use values of Nd D 12; 25; 50; 100 for Ns D 50; 100; 200; 400, that is, we
enforce Nd D 0:25Ns. We use the solution computed with Nd D 100 and Ns D 400 on a 256� 256
grid as our gold standard, just as we have in all the other tests. Table V shows the results for the
fluid. Clearly, the errors are higher and the convergence more erratic than for the fixedNd D 50 tests
previously presented, but varying Nd certainly seems to give better convergence than fixing it to
Nd D 25. However, the convergence in the structure is comparable, with lower errors being achieved
than both Nd D 25 and Nd D 50. This can be seen in Table VI. Unfortunately, the advantages of
varying Nd with Ns are not clear. Using Nd D 50 yields the lowest errors in the fluid on the finest
grid level, and reasonably low errors on the structure for all grid levels. Given the similarity of the
errors achieved with Nd D 50 to those achieved with increasing Nd, we choose the simpler strategy
of using a fixed value of Nd D 50 for our tests, although we present timings with Nd D 25 as well.

5.1.4. Effect of the shape parameter ". In previous work [17], we found that the RBF shape
parameter " > 0 had to be selected carefully to achieve spectral accuracy in the representation
of the elastic structure. In that work, we found that small values of " were ideal for interpolating
smooth target shapes and larger ones for rougher target shapes. In our tests, we found that the errors
depended on " even in the case of fluid–structure interaction, with smaller values of " giving the
lowest values of se2 and se1 on the 256� 256 grid. However, as we mentioned in our previous work,
lower values of " can make the RBF interpolation matrix more ill-conditioned. While methods (such
as RBF-QR and RBF-RA) have been developed to overcome this poor conditioning [39], they are
much more expensive than forming and inverting the standard RBF interpolation matrix. We thus
choose a small value of " D 1:2 for all our tests. When usingNd D 100, we use " D 2:0 (which was
verified on a static test case to be accurate to 12 digits). These are the smallest values we were able
to pick without the interpolation matrix becoming ill-conditioned, a strategy consistent with the one
used in our previous work [17].

Table V. Results of a refinement study with the radial basis function–immersed boundary method with
Nd D 0:25Ns data sites. We show the convergence of the velocity field, with errors measured against the
velocity field of a simulation on a 256 � 256 grid with Ns D 400 sample sites, Nd D 100 data sites, and

�t D 2:5 � 10�5.

Grid size Ns �t L2 error Order of convergence L1 error Order of convergence

32 � 32 50 2 � 10�4 4.7909e-04 2.4700e-03
64 � 64 100 1 � 10�4 1.5097e-04 1.67 5.4255e-04 2.19
128 � 128 200 5 � 10�5 9.0802e-05 0.73 3.3020e-04 0.72

Table VI. Results of a refinement study with the radial basis function–immersed boundary method. We
show the convergence in the sample site positions, with errors measured against the sample site positions of
a simulation on a 256� 256 grid with Ns D 400 sample sites, Nd D 100 data sites, and �t D 2:5� 10�5.

Ns Grid size �t L2 error Order of convergence L1 error Order of convergence

50 32 � 32 2 � 10�4 9.7439e-06 7.0459e-05
100 64 � 64 1 � 10�4 3.5898e-07 4.76 3.0048e-06 4.55
200 128 � 128 5 � 10�5 1.2694e-07 1.50 1.4362e-06 1.07
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5.2. Area loss and time-step size in the RBF-IB method:

In this section, we study the area loss in the RBF-IB method in a refinement study. We then explore
the maximum stable time-step size afforded by each IB method.

The PL-IB method generally attempts to maintain an IB point separation distance of 0:5h in order
to reduce area loss over the coarse of the simulation. In the RBF-IB method, while the sample site
spacing is initially set at 0:5h, we initialize the structure with a much coarser data site discretization,
with the data site separation being almost 3:2h in some cases. In addition, we use the same strategy
for interpolating velocities that we carried out in the PL-IB method, that is, we interpolate velocities
to data sites from a 4 � 4 patch of fluid around each data site. While this can result in significant
computational savings, it is important to explore the area loss in our discretization. We turn once
again to our standard fluid–structure interaction problem. We run that simulation on successively
finer grids until time t D 2. For both the RBF-IB method and the PL-IB method, we measure the
initial area of the object for the same initial configuration of points. We then measure the area at
time t D 2 and compute the percentage change in area.

In order to get an accurate estimate of the area in both methods, we fit an RBF interpolant to each
object’s Lagrangian markers (data sites for the RBF-IB method and all the IB points for the PL-
IB method). We then sample that interpolant at a fixed number of points (400 points) and use the
trapezoidal rule to compute the area. As was mentioned earlier, we ensure that the initial ellipse has
the same area as the target circle by picking its radii to be a D 2r and b D 0:5r , where r D 0:1 is
the radius of the target circle. The exact area is then �

100
. Our approach of sampling each object and

computing the area with the trapezoidal rule gives an area estimate that agrees with this value up to
seven digits at t D 0. We record the results of our refinement study in Table VII.

From the table, it is clear that the area loss for fixed Nd D 25; 50 and Nd D 0:25Ns are all close
to each other. On the coarsest grid, it appears that smaller values of Nd result in lower area loss. The
area losses for Nd D 50 match with those given by the PL-IB method (results not shown), except in
the case of the coarsest grid, where the PL-IB method gives almost a 1% area loss. The convergence
is initially second-order but quickly saturates. This saturation is likely due to two sources of error:
the first is the interpolation of velocities to the Lagrangian markers, which does not preserve the
divergence-free nature of the fluid velocity; and the second is the fact that the time-integration itself
is not specifically designed to preserve area. Nevertheless, it is clear from this study that the RBF-
IB method produces similar area losses to the PL-IB method despite using a smaller number of
Lagrangian markers to move the structure through the fluid.

Another measure of interest is the maximum stable time-step size afforded by each method. We
measure this by increasing the time-step size in small increments and observing the forces produced
on the structure in the fluid–structure interaction test. Using a time-step that is too large can result
in the forces blowing up and the simulation halting. We immediately note that the PL-IB method
allows a maximum time-step size of�t D 2�10�4 on the 32�32 grid whenNs D 50 IB points are
used, and a maximum time-step size of �t D 10�4 on the 64 � 64 grid when Ns D 100 IB points
are used. We use these values of�t as the starting point when testing for the time-step sizes allowed
by the RBF-IB method, and increase the value of �t in increments of 10�4. We found that on the
32� 32 grid, the RBF-IB method allows us to take time-steps that are 3� larger than the time-steps
allowed by the traditional IB method; on the 64 � 64 grid, the RBF-IB method can use time-steps

Table VII. Percentage area loss in the radial basis function–immersed boundary (RBF-IB) method as a
function of grid size, the number of sample sites Ns, and the time-step �t . The PL-IB method gives area
losses similar to theNd D 50 case, except on the coarsest grid, where the percentage area loss is three times

that of the RBF-IB method.

% area loss % area loss % area loss
Ns Grid size �t (Nd D 25) (Nd D 50) (Nd D Ns=4)

50 32 � 32 2 � 10�4 0.0680 0.3081 0.0450
100 64 � 64 1 � 10�4 0.0047 0.0049 0.0047
200 128 � 128 5 � 10�5 0.0023 0.0025 0.0025
400 256 � 256 2:5 � 10�5 0.0015 0.0015 0.0015
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that are 1:5� larger than the time-steps allowed by the traditional IB method. This pattern holds
both when Nd D 25 and Nd D 50 data sites are used.

In simulations involving platelet-like shapes (ellipses that attempt to maintain their elliptical con-
figuration), we found that the RBF-IB method allows time-step sizes that are 6� larger than those
allowed by the PL-IB method on a 32 � 32 grid, and 3� larger than those allowed by the PL-IB
method on a 64� 64 grid. This is likely because of the fact that platelet simulations involve smaller
deformations than those seen in the standard fluid–structure interaction test.

5.3. Energy estimates

In this section, we compute energy estimates for the RBF-IB method in the context of our standard
fluid–structure interaction problem. We run our simulation out to time t D 2:0 on two grid sizes,
32 � 32 and 64 � 64, with time-step sizes �t D 2 � 10�4 and �t D 10�4, respectively. We use
Nd D 50 data sites.

In this test, one expects the changes in energy to be mainly due to the deformation of the stiff
elastic object. Eventually, the energy of the system must damp out as the elastic object reaches its
target configuration. We compute the change in energy to demonstrate that the energy is bounded
within the RBF-IB simulation. The energy change in a time-step is computed as the sum of the
difference in kinetic energy of the fluid over the time-step and the change in potential energy of the
elastic object. This can be written as

�E D
X
fluid

�unC1 � unC1 �
X
fluid

�un � un C�t
X
X

F nC1=2 �
@X

@t

nC1=2

(18)

Here, the Lagrangian force F is computed at time level nC 1=2 at the sample sites. The @X
@t

term is
computed by applying the evaluation matrix Es to the velocities obtained at the data sites. This gives
us sample site velocities, allowing us to compute dot products with the F terms.

The results of this test are shown in Figure 2. Both plots show the change in energy of the system
for the fluid–structure interaction problem on a 32 � 32 grid (left) and a 64 � 64 grid (right). Here,
the fluid starts off stationary, so the initial kinetic energy is zero. However, the elliptical elastic

Figure 2. Change in energy per time-step as a function of time in the radial basis function–immersed
boundary method. The figure on the top left shows the change in energy over a time-step as a function of
time for the standard fluid–structure interaction test on a 32 � 32 grid. The figure on the top right shows the
same quantity on a 64�64 grid. We useNd D 50 data sites for both grid sizes. The inset plots show the initial
spikes corresponding to the change from an ellipse to a circle, which are difficult to see in the main plots.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
DOI: 10.1002/fld



AN RBF-IB METHOD FOR SIMULATING PLATELETS IN HEMODYNAMIC FLOWS

object starts off under tension because its target configuration is a circle. This means that the initial
elastic potential energy of the system is high (although negative by convention). As the elastic object
attempts to minimize its elastic potential energy, its deformation drives a change in the kinetic energy
of the fluid, causing the kinetic energy of the fluid to increase from its initial value of zero to some
maximum. However, the elastic object soon attains something close to its reference configuration,
causing the kinetic energy of the fluid to drop sharply. The spikes in both the left and right sides in
Figure 2 correspond to that rise and fall in kinetic energy and the trending of the potential energy
to zero on both grids, and can be seen more clearly in the inset plots. The viscosity of the fluid
causes the kinetic energy to eventually damp out almost completely, with minor perturbations due
to possible deformations of the elastic object. The energy of the system continues to decrease as
the object becomes more and more circular. In fact, our estimates show that the change in energy
is negative, indicating that our method is dissipative. The results are similar for Nd D 25 (not
shown), although using more data sites appears to make our method less dissipative on this particular
test problem.

5.4. Timings for platelet simulations

We now present timings of simulations involving platelet-like shapes. The setup here is different
from the standard fluid–structure interaction test. We place ellipses (r D 0:05, a D 2r , b D 0:5r)

Figure 3. Average time per time-step for 105 time-steps of each simulation method as a function of the
number of platelets. In the first row, the figure on the left shows timings on a 64 � 32 grid and the figure on
the right on a 128 � 64 grid. The figure below shows timings on a 256 � 128 grid. The time-step was set to

�t D 10�4 for the figures on the top row, and was set to �t D 10�5 for the figure on the bottom.
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at the left end of a Œ0; 2	� Œ0; 1	 domain that resembles a channel. These ellipses represent platelets,
and they attempt to maintain their elliptical shapes, that is, their configuration at time t D 0 is their
preferred configuration. We apply a background force that would result in parabolic velocity field in
the absence of the platelets, with a density � D 1:0 and a non-dimensionalized viscosity of � D 8:0.
The field has a maximum velocity value of umax D 5:0, with no-slip boundary conditions on the
top and bottom of the domain and periodic boundary conditions at the left and right ends. A platelet
is removed from the domain if its center of mass crosses the location x D 1:9.

Figure 3 shows timings for three grid sizes for each method as a function of the number of
platelets (Np) being simulated. The number of sample sites was fixed atNs D 100 for both methods,
and the number of data sites for the RBF-IB method was set to Nd D 25 for one set of tests and
then to Nd D 50 for the next set. We plot the average time per time-step as a function of the
number of platelets; this was computed by running simulations on each grid for 105 time-steps, and
dividing the total wall-clock time by the number of time-steps. We average this over three runs of
each simulation.

While the cost of platelet operations always increases as we increase the number of platelets,
the increase in cost is slower (and the absolute cost) for the RBF-IB method because of the RBF
representation. For example, for Np D 60, the PL-IB method directly spreads forces from, inter-
polates to, and moves a total of 6000 IB points (twice per time-step because of the RK2 scheme),
while the RBF-IB method with Nd D 25 data sites computes forces at 6000 points and interpolates
velocities to (and moves) only 1620 points twice per time-step. If the number of platelets is dou-
bled to Np D 120, the PL-IB method now computes forces at, spreads from, interpolates to, and
moves 12 000 points twice per time-step, whereas the RBF-IB method computes forces at 12 000
points, but interpolates velocities to and moves only 3240 points twice per time-step. The cost of
the RBF-IB method shows better than linear scaling with respect to the number of platelets on all
the tested grid sizes for these reasons. Furthermore, it is clear that there is not much of a difference
in computational cost between using Nd D 25 data sites and Nd D 50 data sites.

5.4.1. Effect of the RBF representation on the fluid solver.. In previous work [17], we showed that
using an RBF interpolant for geometric modeling is more computationally efficient (for a given
accuracy) than using piecewise quadratics and finite differences. However, that benefit alone does
not explain the computational efficiency of the RBF-IB method over the PL-IB method that we see
in Figure 3.

To fully understand the speedup seen with the RBF-IB method, it is important to understand how
the costs are distributed between the different operations (platelet operations and fluid solves) in
both IB methods. We show the results for Np D 60 platelets in Table VIII. Clearly, as h is reduced,
both IB codes spend more time in the fluid solver than on platelet operations. However, the RBF-
IB method clearly spends less time in the fluid solver than the PL-IB method does as we refine the
background Eulerian grid.

Indeed, this unexpected result is what gives the RBF-IB method an edge even when the cost of
fluid solves dominates the cost of platelet operations. We hypothesize that this may be caused by
the RBF representation producing smoother Lagrangian forces than the finite difference model used

Table VIII. Percentage of time per time-step spent in fluid solver as a function
of grid size by both methods for Np D 60 platelets. The percentages for the
radial basis function–immersed boundary (IB) method are the same for both
Nd D 25 and Nd D 50 data sites, with the total time for the latter being larger.
All results use Ns D 100 sample sites (or IB points in the PL-IB method)

per platelet.

Grid size % time in fluid solver (RBF-IB) % time in fluid solver (PL-IB)

64 � 32 33.7 32.1
128 � 64 56.2 58.0
256 � 128 65.4 79.3
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in the PL-IB method. Our experiments show that the RBF-IB code needs fewer iterations in the
linear solver used in the pressure projection–anywhere from 10� 30% fewer than the identical fluid
solver used in the PL-IB method, depending on the time-step size and the grid resolution, with larger
savings on finer grids and smaller time-step sizes.

5.5. Platelet aggregation

We now present the results of a platelet aggregation simulation with the RBF-IB simulation. We used
the same boundary conditions, domain size, fluid properties, and Poisseuille flow as in the previous
subsection, but allow platelets to form links with other platelets and a portion of the chamber wall
(x D 0:4 to x D 0:7) at the sample sites (Ns D 100 per platelet). We used Nd D 50 data sites
per platelet, making the data sites a subset of the sample sites for convenience of visualization, and
then visualize the data sites and the links between sample sites. We allowed each platelet to form
up to 10 links in total, either with the wall or with a neighbor; we allow links to cross each other for
the purpose of simplicity, although this is usually prohibited in a platelet simulation. The simulation
was run on a 128 � 64 grid with a time-step of �t D 10�4.

Each platelet is initially an ellipse with radii a D 0:06 and b D 0:015. We initialize the platelets
so that their centers of masses are at locations .0:5; 0:02/, .0:64; 0:02/, .0:78; 0:02/, .0:55; 0:07/,
.0:68; 0:07/, .0:4; 0:045/, .0:23; 0:045/, and .0:65; 0:14/. We chose these locations to ensure that
three platelets lay on the wall, with three close enough to bind to the three bound to the wall, and two
slightly further away. Each platelet attempts to maintain its initial elliptical shape. We then started
the simulation and ran it to time t D 2:4. The results are shown in Figure 4. The figure shows both
the velocity field and the platelet aggregate for a portion of Œ0; 2	 � Œ0; 1	 domain, the data sites on
each platelet and the links between the sample sites corresponding to those particular data sites on
the platelet.

There are two interesting features in Figure 4. The first is that the fluid flow becomes diverted
around the growing aggregate, a consequence of the size of the aggregate and the dynamics of the
problem that mimics what one would hope to see in a realistic platelet aggregation simulation. The
second feature is that some platelets are quite deformed, for example, the platelet with center of
mass approximately at .0:5; 0:02), or its neighbor above and to its left. This is a consequence (and
function) of the stiffness of each platelet, the shear rate of the flow, and the number of links we allow
each platelet to form. Higher platelet stiffness, lower shear rates, and fewer (or weaker) links would
lead to less deformation. The breaking model for inter-platelet and platelet–wall links can also affect
the mechanics of aggregation. We note that our RBF model did not run into any instabilities in this
simulation even when we ran it out to a time at which all the platelets (except the three closest to
the wall) had left the domain.

Figure 4. Results of a platelet aggregation simulations with the radial basis function–immersed boundary
(RBF-IB) method. The figure shows a zoomed-in snapshot of a platelet aggregation simulation achieved with
the RBF-IB method with a time-step of �t D 10�4. The snapshot was taken at simulation time t D 2:4.
The simulation was run on a 128 � 64 grid on a Œ0; 2	 � Œ0; 1	 domain. The arrows show the magnitude and

direction of the velocity field.
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6. SUMMARY

The IB method, as a numerical methodology for applications involving fluid–structure interactions,
naturally lends itself to our problem of interest: simulating platelet aggregation during blood clot-
ting. In this application, platelets are modeled as immersed elastic structures whose shapes change
dynamically in response to blood flow and chemistry. In previous work [17], we discussed several
geometric representations for platelets and compared them with the representation used within
the traditional IB method. We concluded that an RBF geometric model for platelets would prove
advantageous in several ways.

In this work, we explored the ramifications of using the RBF geometric model within the IB
method and compared the behavior of this new RBF-IB method against that of the traditional IB
method. We discussed the issue of selecting an appropriate shape parameter for the RBF-IB method.
We then presented a series of convergence studies for measuring errors and convergence both in the
velocity field and in the representation of the immersed elastic structure. We went on to compare
the computational costs incurred by both methods in the context of platelet simulations. We then
compared the area conservation properties of both methods and also the time-step restrictions on
both. We also remarked on the energy properties of our method.

We conclude the following:

� The RBF-IB method demonstrates first-order convergence, similar to that shown by the
traditional IB method.
� The RBF-IB method can be safely used both with a fixed number of data sites and with an

increasing number of data sites as the background Cartesian grid is refined; the correct strategy
is likely problem-specific;
� Through the use of a global interpolant and the dual representation (data sites and sample sites),

the RBF-IB method allows for a decoupling of accuracy in geometric modeling from accuracy
in the full fluid solve, allowing coarse Lagrangian representations when sufficient.
� The RBF-IB method is more computationally efficient than the traditional IB method, both

because of the utilization of a small number of data sites and smoother forces being spread into
the fluid, resulting in a faster convergence from the fluid solver; and
� The RBF-IB allows for larger time-step sizes than those allowed in the traditional IB method

for a given grid size.

In previous work [38], a sufficient condition for unconditional stability of an implicit IB method
was established. The proof relied on the assumption that the set of points from which IB forces are
spread is the same as that to which grid velocities are interpolated to update IB point positions. The
RBF-IB method does not meet that condition, and it remains to be seen how this would impact an
implicit version of our method. Finally, an issue with the RBF-IB method is that it is dependent on
the parameterization of the immersed elastic objects. For objects that are not easily parameterized in
terms of circles and ellipses, the use of the RBF model as presented in our work (wherein the RBFs
are restricted to the circle) may not be ideal. In the future, we thus hope to explore the use of RBFs
in a meshfree variational form within the IB method so as to be able to easily evaluate constitutive
models on arbitrary shapes.

APPENDIX A: ALGORITHM FOR COMPUTING PLATELET FORCES WITH RADIAL
BASIS FUNCTIONS

We now describe the implementation of the constitutive models outlined in Section 3. We present
algorithms for computing platelet forces in 2D.

Notation: In the description of the following algorithms, we use standard matrix–vector opera-
tions such as multiplication and non-standard operations like element-by-element multiplication of
matrices and vectors (sometimes called the Hadamard product). We denote this latter operation with
the ı operator. For example, if J and L are Nd � 2 matrices and R is a vector of length Nd, then the
i th row of J ıL and R ı J are given by
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.J ıL/i;1W2 D Œ.J /i;1.L/i;1; .J /i;2.L/i;2	

.R ıL/i;1W2 D Œ.R/i .L/i;1; .R/i .L/i;2	

where i D 1; : : : ; Nd.
We define � d D D1

�dX d.t/, the Nd � 2 matrix of tangent vectors at the data sites at time t
and k�dk, the Nd vector containing the two-norm of each row of � d. The algorithm for computing
platelet elasticity is as follows:

1. Initialization (t D t0): After creating and storing the RBF evaluation matrix as in Equation (10)
and differentiation matrices as in Equations (11) and (12), compute for each platelet:

(a) The rest lengths for the tension force at the data sites: l0 D � d D D1
�dX d.t0/.

(b) The bending-resistant force term for the platelet’s initial configuration at the data sites,
D4
�sX d.t0/.

2. For each time-step (t D tk , k > 1), compute for each platelet:

(a) The length of the tangent vectors �d D D1
�dX d.tk/ at the data sites: k�dk; and the unit

tangents at the data sites: O�d.
(b) The tension at the data sites, using the constitutive model: T d D kt.k�dk � l0/.
(c) The tension force at sample sites: F T

s D D1
�sZ d, where Z d D T d ı O� d.

(d) The bending force at sample sites: F B
s D �kb

�
D4
�sX d.tk/ �D4

�sX d.t0/
�
.

(e) The interplatelet cohesion force from Equation (17) at the sample sites: F C
s .

(f) The total Lagrangian force at the sample sites: F s D F
T
s C F

B
s C F

C
s .

APPENDIX B: TIME-STEPPING FOR THE PL-IB METHOD

Here, we present the steps of the traditional IB algorithm when used with the RK2 time-stepping
scheme from [37].

1. Advance the structure to time level tnC1=2 using the current velocity field on the grid ung . This
is carried out by updating each IB point Xq (for each q) using the equation

XnC1=2
q D Xn

q C
�t

2
U nq � X

n
q C

�t

2

X
g

ungıh
�
xg �X

n
q

�
h2; (B.1)

where h is the fluid grid spacing and ıh is a discrete approximation to a 2D ı-function. Here,
xg and XnC1=2

q are the coordinates of grid point g and IB point q, respectively
2. The resultant F nC1=2q of all of the force contributions that act on an IB point XnC1=2

q is
calculated for each q.

3. These forces are distributed to the Eulerian grid used for the fluid dynamics equations using a
discrete version of Equation (3):

f nC1=2g � f nC1=2.xg/ D
X
q

F nC1=2q ıh

�
xg �X

nC1=2
q

�
dq: (B.2)

Here, F nC1=2q is the Lagrangian force (per unit q) on the IB point, dq is the increment
in parameter q between consecutive discrete sample sites, and ıh is the same approximate
ı-function as used in Equation (B.1).

4. With the fluid force density f nC1=2g now known at each grid point, the fluid velocity is updated
taking a half step (�t=2) with a discrete Navier–Stokes solver. As in [37], we use a fractional-
step projection method. First, a backward Euler discretization of the momentum equations is
used. The pressure that enforces discrete incompressibility is determined [40]. This gives us
the velocity field unC1=2g , the mid-step approximation required in an RK2 method.
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5. Using the mid-step fluid velocity unC1=2g and the mid-step IB point positions XnC1=2
q , update

the IB points Xn
q for each q to the time level tnC1 using

XnC1
q D Xn

q C�tU
nC1=2
q � Xn

q C�t
X
g

unC1=2g ıh

�
xg �X

nC1=2
q

�
h2; (B.3)

where ıh is the same approximate ı-function we have used throughout.
6. Update the velocity ung to time-level tnC1 using the mid-step velocity unC1=2g and the force
f nC1=2g . The mid-step velocities are advected, while a Crank–Nicolson scheme is used for
time-stepping the momentum equations. The pressure projection gives us the discretely incom-
pressible velocity field unC1g . Note that this step could have been performed as soon as unC1=2g

was computed. It is independent of step (5).

APPENDIX C: TIME-STEPPING FOR THE RADIAL BASIS FUNCTION–IMMERSED
BOUNDARY METHOD

The RBF-IB method is time-stepped using the same RK2 method as earlier, with a few changes to
incorporate data sites and sample sites.

1. Advance the structure to time level tnC1=2 using the current velocity field un. This is carried
out by updating the data sites .X d/

n
j by a discrete analog of Equation (4)

.X d/
nC1=2
j D .X d/

n
j C

�t

2
.U d/

n
j � .X d/

n
j C

�t

2

X
g

ungıh
�
xg � .X d/

n
j

�
h2: (C.1)

2. Generate a new set of sample sitesX s.tnC1=2/ by applying the RBF evaluation operator to the
data sites XnC1=2

d WD X d.tnC1=2/, that is,

X s.tnC1=2/ D EsX d.tnew/: (C.2)

3. The total force at the sample sites F nC1=2s is calculated using the algorithm from Appendix A.
4. These forces are distributed to the Eulerian grid used for the fluid dynamics equations using a

discrete version of Equation (3):

f nC1=2g � f nC1=2.xg/ D
X
q

F nC1=2q ıh.xg � .X s/
nC1=2
q /dq: (C.3)

Here, xg and .X s/
nC1=2
q are the coordinates of grid point g and sample site q, respec-

tively, F nC1=2q is the Lagrangian force (per unit q) on the sample site, dq is the increment
in parameter q between consecutive discrete sample sites, and ıh is the same approximate
ı-function as used in Equation (C.1).

5. With the fluid force density f nC1=2g now known at each grid point, the fluid velocity is updated
taking a half step (�t=2) with a discrete Navier–Stokes solver. Again, we use a fractional-
step projection method, with a backward Euler discretization of the momentum equation, and
a projection to determine the pressure that enforces incompressibility [40]. This gives us the
velocity field unC1=2g , the mid-step approximation required in an RK2 method.

6. Using the mid-step fluid velocity unC1=2g and the mid-step data site positions .X d/
nC1=2
j ,

update the data sites .X d/
nC1=2
j for each j to the time level tnC1 using

.X d/
nC1
j D .X d/

n
j C�t.U d/

nC1=2
j � .X d/

n
j C�t

X
g

unC1=2g ıh

�
xg � .X d/

nC1=2
j

�
h2;

(C.4)
where ıh is the same approximate ı-function we have used throughout.
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7. Update the velocity ung to time-level tnC1 using the mid-step velocity unC1=2g and the force
f nC1=2g . The mid-step velocities are advected, while a Crank–Nicolson scheme is used
for time-stepping the momentum equations. The pressure projection gives us the discretely
incompressible velocity field unC1g .

Observe that the data sites are updated twice per time-step in the RK2 scheme, but the sample
sites are only generated once. Because the data sites are typically a fraction of the number of IB
points from the PL-IB method, the computational cost is significantly lower for the RBF-IB method,
even factoring in the interpolation and the sample site generation.
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