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Abstract. Proper characterization of uncertainty is a challenging task. Depend-
ing on the sources of uncertainty, various uncertainty modeling frameworks have
been proposed and studied in the uncertainty quantification literature. This pa-
per applies various uncertainty modeling frameworks, namely possibility theory,
Dempster-Shafer theory and probability theory to isosurface extraction from un-
certain scalar fields. It proposes an uncertainty-based marching cubes template
as an abstraction of the conventional marching cubes algorithm with a flexible
uncertainty measure. The applicability of the template is demonstrated using 2D
simulation data in weather forecasting and computational fluid dynamics and a
synthetic 3D dataset.

Keywords: Uncertainty quantification, isosurface visualization, possibility the-
ory, Dempster-Shafer theory.

1 Introduction

Uncertainty is an inevitable component of predictive simulations based on computa-
tional models since the models are often imperfect or might involve uncertain parame-
ters. As a result, understanding and quantifying the uncertainty in model output (data)
is of critical importance.

To account for the uncertainty in data, an integral component of data analysis — vi-
sualization — has been combined with uncertainty modeling frameworks to constitute
a special topic in the visualization community called uncertainty visualization. Uncer-
tainty visualization is not a new topic and various uncertainty visualization techniques
have been defined and studied [9, 13]. Most relevant one to the current work is isosur-
face extraction in the presence of uncertainty and hence, we focus only on visualization
of uncertain isosurfaces. In order to quantify and visualize the uncertainty in isosur-
faces extracted from uncertain scalar fields, parametric probabilistic models have been
used to approximate Level-Crossing Probabilities (LCP) [15,16]. The concept of level-
crossing probabilities has been deployed to extend the conventional marching cubes
algorithm, the predominant isosurface visualization scheme, for probabilistic modeling
of uncertainty in scalar fields [17, 18].

Probabilistic modeling is a well-developed approach for uncertainty when its source
is a stochastic/random process (called aleatory uncertainty). However, it requires com-
plete probability information for the random process, which could be quite difficult,
if not impossible. Modeling epistemic uncertainty, referring to the uncertainty due to
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lack of knowledge [20], requires the exploration of the alternatives of probabilistic ap-
proaches. In the past few decades, possibility theory [6] and Dempster-Shafer (DS) the-
ory [21], have been explored and studied in the uncertainty quantification literature for
a better representation of the epistemic uncertainty. Yager [22] has developed a unified
theoretical structure for uncertainty representation using various models.

In this work, we apply modern uncertainty modeling frameworks to the isosurface
extraction from uncertain scalar fields, and propose an abstraction of the conventional
marching cubes algorithm in terms of a template infrastructure that is flexible enough
to incorporate various uncertainty modeling frameworks to model uncertainty in the
spatial location of isosurfaces extracted from uncertain scalar fields. Our uncertainty-
based marching cubes template can be considered as the extension of level-crossing
probability to a general uncertainty measure.

The contributions of this work can be summarized as follows:

– We apply various uncertainty modeling frameworks to the isosurface extraction
from uncertain scalar fields.

– We provide an abstraction of the marching cubes algorithm that we call uncertainty-
based marching cubes (UMC) template. This template is amenable to deploy dif-
ferent mathematical frameworks for uncertainty modeling.

– We demonstrate the effectiveness and applicability of the template in a few exam-
ples of uncertain isosurface extraction from an ensemble of scalar fields.

The rest of the paper proceeds as follows. Section 2 is devoted to a brief intro-
duction to the various uncertainty modeling frameworks. In Section 3, we propose the
uncertainty-based marching cubes template. Section 4 demonstrates the effectiveness
of our template by presenting the results for several examples. We conclude our work
in Section 5 and provide some avenues for future investigation.

2 Mathematical Frameworks for Uncertainty Modeling

Let Y ∈ U ⊆ R denote a random quantity of interest. We assume that the probability
distribution of Y is unknown, instead, we have a finite number of possible realizations
of Y (i.e., {yi}Ni=1) available. In such a situation, it is suggested that the random variable
Y should be represented “as a mixture of natural variability (aleatory) and estimation
errors (epistemic)” since “ a finite number of samples from a population leads to epis-
temic uncertainty [8].” The goal is to model the mixed uncertainty from the ensemble
{yi}Ni=1 using uncertainty modeling frameworks. We consider the propositions in the
form of “the true value of Y is inA” for any subsetA ⊆ U , and adopt the measures from
the uncertainty modeling frameworks to quantify the strength of the support from the
evidence (i.e., the ensemble {yi}Ni=1) for proposition A. For example, the probability
measure quantifies the chance of proposition A being true.

In this section we introduce the mathematical notation used to express the various
frameworks of fuzzy measures. Note: we skip the basics of probability theory due to
the space limitations. Interested readers can consult [11].



Application of Uncertainty Modeling Frameworks to Uncertain Isosurface Extraction 3

2.1 Possibility Theory

Instead of a single measure in probability theory, possibility theory defines a dual mea-
sure (possibility and necessity) as [7]

Poss(A) = max
y∈A

πY (y), Nec(A) = 1− Poss(Ac), (1)

where πY : U → [0, 1] is a possibility distribution, and Ac is the complement of A.
The possibility distribution describes the degree to which it is possible that the element
y ∈ U is the true value of Y .

The possibility function Poss(A) measures the maximum possible support from the
evidence for proposition A whereas the necessity function Nec(A) quantifies the min-
imum support for proposition A. The length/distance between Nec(A) and Poss(A)
indicates the epistemic uncertainty regarding proposition A.

Assume that the Yjs are independent variables associated with possibility distribu-
tion πYj

(yj), the joint distribution is defined using min(·, ·) as the joint operator [10,23]

πY (y) = min(min(. . .min(πY1(y1), πY2(y2)), . . .), πYM (yM )). (2)

Although there have been a few attempts to discover the correlation between un-
certain variables in possibility theory [3], it is still an open problem to construct joint
distribution for dependent variables from ensembles. This topic lies outside the scope
of the current work, but remains an active area of research in the field of uncertainty
quantification.

Construction of Possibility Distribution: Here, we provide two examples of con-
structing a possibility distribution.
1. With assumption of triangular shape distribution (referred as parametric technique):

We construct a possibility distribution for the variable Y based on a modified ver-
sion of a triangular shape:

πY (y) =


1− (y−ymean)(1−p+)

ymax−ymean
if ymean ≤ y ≤ ymax

p+ + (y−ymin)(1−p+)
ymean−ymin

if ymin ≤ y < ymean

p+ otherwise

(3)

where ymin, ymean and ymax are the minimum, sample mean and the maximum of
the ensemble data, respectively; p+ is the upper bound of the probability of the true
value of Y falling outside the range of the ensemble data, which is estimated using
Goodman’s simultaneous confidence interval [4] as follows

p+ =
a+ 2n+

√
D

2(N + a)
, D = a(a+

4n(N − n)
N

), (4)

where a is the quartile of order 1−α of the chi-square distribution with one degree
of freedom and N is the size of the ensemble. There is no data that supports the
value of Y falling outside of the ensemble, and hence, n = 0. The probability that
the chance of “the value of Y falls outside of the ensemble range” is less than p+

is no less than 1 − α, i.e., Prob(0 ≤ Prob(Y /∈ [ymin, ymax]) ≤ p+) ≥ 1 − α
holds. Therefore, it is reasonable to assign p+ to the values outside the ensemble
range in the possibility distribution. In the current work, we take one of the usual
probability levels α = 0.025.
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2. Without assumption of shapes for distribution (referred as nonparametric tech-
nique): We construct a possibility distribution using the combination of histogram
and the probability-possibility transformation proposed by Dubois et al. [5] as fol-
lows. The transformation Prob → π is based on the principle of maximum speci-
ficity, which aims at finding the most informative possibility distribution [5].
We first construct the probability distribution Prob from the histogram of the en-
semble data {yi}Ni=1, where we fix the sample mean at the boundary of one of
the bins of the histogram. Let {xj}lj=1 be the bins and the probability values be
pj = Prob(xj). If the probability values are ordered, i.e., p1 ≥ p2 ≥ . . . ≥ pl,
then a possibility distribution can be obtained using the transformation as follows:

π1 = 1, πj =

l∑
k=j

pk. (5)

If there exist j such that pj = pj+1, there will be different possibility distributions
π(t) obtained for each permutation of the equal probability values. Then we choose
the one that minimizes the possibility values as πj = mint π

(t)
j . In order to provide

smooth transition between the values in adjacent bins, we use a Gaussian filtering
at the end for smoothing.

2.2 Dempster-Shafer Theory

Analogous to possibility theory, Dempster-Shafer (DS) theory also defines a dual mea-
sure (plausibility and belief), for ∀A ⊆ U , as

Pl(A) =
∑

B∩A 6=∅

m(B), Bel(A) =
∑
B⊆A

m(B), (6)

where m : 2U → [0, 1] is a basic belief assignment (BBA), also called m-function. An
m-function satisfies the following two conditions:

m(∅) = 0,
∑
A⊆U

m(A) = 1. (7)

The plausibility function Pl(A) and the belief function Bel(A) quantify the maxi-
mum and minimum strength of the evidence that supports the proposition, respectively.
The length between Bel(A) and Pl(A) also indicates the epistemic uncertainty regard-
ing proposition A.

Let Yjs be independent variables associated with basic belief assignmentsmYj
(Aj)

(Aj ∈ 2Uj ), the joint basic belief assignment (m-function) can be calculated by taking
the product (joint operator) over all the components of Y = {Yj}Mj=1 as [12]

m(A) = m1(A1)m2(A2) . . .mM (AM ), (8)

where the hypercube A is the Cartesian product, i.e., A = A1 ×A2 × . . .×AM .
Due to space limitations, we do not introduce further concepts for the dependent

case, but refer the interested reader to [19].
Construction of Basic Belief Assignment: We construct belief/plausibility func-

tions using the method proposed by Denœux [4] as follows. Consider two ordered con-
secutive intervals: A1 = {Y ≤ θ} and A2 = {Y > θ} (the universal set becomes
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{A1, A2}), and “ordered” means that the elements in Ai are no larger than the elements
in Aj if i < j. Let nk be the number of samples falling inside {Ak}2k=1 and

P−k =
a+ 2nk −

√
Dk

2(N + a)
, P+

k =
a+ 2nk +

√
Dk

2(N + a)
, (9)

where a andDk are computed using the relation in Eq. 4 with n = nk. LetAk,j (k ≤ j)
denote the union Ak ∪Ak+1 ∪ ... ∪Aj . Then the m-function is constructed as

m(Ak,j) = P−k , if j = k,

m(Ak,j) = P−(Ak,j)− P−(Ak+1,j)− P−(Ak,j−1), if j = k + 1,

m(Ak,j) = P−(Ak,j)− P−(Ak+1,j)− P−(Ak,j−1) + P−(Ak+1,j−1),

if j > k + 1,

(10)

where
P−(B) = max

( ∑
Ak⊂B

P−k , 1−
∑

Ak 6⊂B

P+
k

)
, ∀B 6= ∅. (11)

3 Application of Uncertainty Modeling Frameworks to Isosurface
Extraction

In this section, we apply the introduced uncertainty modeling frameworks to isosur-
face extraction and introduce our uncertainty-based marching cubes (UMC) template.
We first recall the fundamentals of the concept of level crossing in the (deterministic)
marching cubes algorithm.

3.1 Deterministic Marching Cubes Algorithm

In the absence of uncertainty, a deterministic scalar field can be considered as a discrete
representation of a continuous multivariate function g(·) using a set of deterministic
scalar values {yj}Mj=1 on a grid, where M denotes the resolution of the grid. An isosur-
face of g(·) associated with a given isovalue θ is defined as: C = {x ∈ Rd, g(x) = θ},
where d is the embedding dimension. The goal of the marching cubes algorithm (in
3D) is to extract an approximation of the isosurface based on the trilinear approxima-
tion (i.e., tensor product of linear interpolation in the univariate case) of the underlying
continuous function giving rise to the scalar field [14].

The local nature of the trilinear approximation simplifies the isosurface extraction
significantly. Trilinear approximation requires the information only at the corners of a
cell (e.g., a cube on a 3D Cartesian lattice). Therefore, the presence of a level crossing
inside each cell (i.e., cell crossing) is locally determined based on the values of the
scalar field at the corners of the cell. A cell crossing happens if at least one sign change
occurs in the set of differences {yj − θ}Mj=1 for the scalar values yj at the corners of the
cell under question. In the presence of a cell crossing, the values at the corners of the
cell also determine the (approximate) polygonal tessellation and the spatial location of
the isosurface.

In the presence of uncertainty or error associated with the scalar field, the scalar
values are no longer known deterministically. Consequently the spatial location of the
isosurface from an uncertain scalar field becomes uncertain. Therefore, the conventional
marching cubes algorithm must be extended to incorporate the uncertainty to provide
reliable information about the presence or absence of an isosurface inside a cell.
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3.2 Uncertain Cell Crossing and UMC Template

We propose an uncertainty-based marching cubes (UMC) template that encompasses
the essential concepts from the deterministic and probabilistic marching cubes algo-
rithm [18] and is flexible enough to be adopted for various uncertainty modeling frame-
works. Similar to the conventional marching cubes algorithm, the UMC template (al-
gorithm) proceeds through the uncertain scalar field, and at each cell it quantifies how
much the available information at the corners supports the incidence of a cell crossing.

To construct an abstract template, which accommodates various uncertainty mod-
eling frameworks, we adopt a generic and flexible (uncertainty) measure that we call
U-Measure to indicate the presence of cell crossing for each constituent cell of an un-
certain scalar field (i.e., uncertain cell crossing). The U-Measure lends itself to various
uncertainty modeling frameworks, and hence, the cell-crossing U-Measure value can
be computed based on the axioms of a chosen uncertainty modeling framework.

For what follows, let us define a cell-crossing proposition:

C : “there exists a level-crossing in a cell”. (12)

The goal is to evaluate the cell-crossing U-Measure values for proposition (12) (i.e.,

Fig. 1. Schematic illustration of the uncertainty-based
marching cubes template.

U-Measure(C)) for each cell in
an uncertain scalar field. Com-
putation of the U-Measure(C)
can be broken down into a few
steps.

For every cell, the first step
in computing U-Measure(C) is
to construct a joint distribution
function based on the ensemble
about the uncertain scalar values
at the corners. As discussed in
Section 2, construction of a joint
distribution function can be car-
ried out either by

– first constructing a marginal distribution function at each grid point and then
using a joint operator to define the joint distribution. For example, use Eqs. (3) or
(5) in possibility theory, and Eqs. (10) and (8) in Dempster-Shafer theory.

– or in special cases, such as in the probabilistic case [18], directly from the available
information at the corners.

The second step is to compute the cell-crossing U-Measure value(s) for propo-
sition C for a cell after construction of its joint distribution function. The value(s) of
U-Measure(C) for a cell can be evaluated using Eq. 1 for possibility theory or Eq. 6
for DS theory or Eq. (14) for probability theory. These steps constitute the building
blocks of the uncertainty-based marching cubes template that has also been demon-
strated schematically in Fig. 1.

Without loss of generality, we illustrate the idea for a 1D example (similar to the
example presented in [18]) while the concepts extend to higher dimensions.
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Consider two adjacent points as corners of an edge with associated (uncertain) scalar
variables y1 and y2, respectively. Proposition C is equivalent to considering the inci-
dence of the values (y1, y2) belonging to

A = {(y1, y2) : (y1 ≥ θ & y2 ≤ θ) | (y1 ≤ θ & y2 ≥ θ)}. (13)

Now let us consider an ensemble of tuple values (y1, y2) as the uncertain scalar values
at the endpoints of an edge. A tuple from the ensemble results in an edge crossing if
the linear interpolant connecting its endpoints crosses value θ (Fig. 2 (a)). Fig. 2 (b)
illustrates another representation (scatterplot) of the set of (tuple) scalar values in Fig. 2
(a). Fig. 2 (b) makes it more clear that if the values of a tuple belong to one of the
subregions marked as A2 = {y1 ≥ θ & y2 ≤ θ} or A4 = {y1 ≤ θ & y2 ≥ θ},
the linear interpolant associated with them will result in an edge crossing. To evaluate
the edge-crossing U-Measure values (i.e., the measure of the support for proposition C
from the available data), one needs to construct a joint distribution function (e.g., fY (y)
in Fig. 2 (c)) based on a chosen uncertainty modeling framework. The edge-crossing U-
Measure values can then be computed as discussed earlier. For instance, in probabilistic
modeling [18], probability measure is used to compute the U-Measure(C) values as

U-Measure(C) = Prob(C) =

∫
A2∪A4

fY (y), y = (y1, y2). (14)

(a) (b) (c)

Fig. 2. (a) An ensemble of linear interpolants in 1D: the linear interpolants that correspond to
the presence of an edge crossing are highlighted. (b) The values at the end points of each linear
interpolant have been demonstrated as points in R2. The highlighted points correspond to tuples
that result in presence of edge crossing in (a). (c) A joint distribution function fY (y) inferred
by fitting a multivariate Gaussian function to the data in (b). The regions corresponding to the
presence of edge crossing are highlighted in dark blue.

Note: i) The UMC template maintains a linear computational cost in terms of the
number of the cells and takes advantage of the local nature of the concept of cell cross-
ing similar to the deterministic version. However, it is important to note that the overall
computational cost of instances (instantiations) of the UMC template for different un-
certainty modeling frameworks is higher than the deterministic version due to the cost
associated with the construction of the distribution function and computation of the U-
Measure. ii) We focus only on the construction of the joint distributions that use an
independent assumption (as examples) even though our proposed framework can easily
incorporate dependence.
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4 Results and Applications

In this section, we demonstrate the utility of the UMC template with three experimental
examples from each uncertainty modeling framework. In all the examples, the colormap
has been scaled so that the highest level-crossing U-Measure value is assigned to blue
and the minimum level-crossing U-Measure value is assigned to white. The scaling of
the colormap helps to provide better color contrast.

Note: The goal of the current work is to demonstrate the applicability of the UMC
template with different mathematical uncertainty modeling frameworks. The compar-
isons among the mathematical modeling frameworks and among the corresponding iso-
contour/isosurface extraction results are beyond the scope of the current manuscript;
they represent present and future work within the uncertainty quantification field which
may in part facilitated by our template. Therefore, we present each example with spe-
cific mathematical modeling framework and the corresponding visualization results.

4.1 Temperature Forecast Example Using Possibility Theory

We demonstrate the UMC template with possibility theory using a dataset from the
weather forecast application. For this example, we use one of the publicly available
weather forecast ensembles called SREF-CONUS (40km) temperature ensemble by
NOAA [1]. This ensemble consists of 21 members that are generated by varying the
forecast model and the initial conditions to account for various sources of uncertainty
(both model and parameter uncertainty). We have chosen to use one of the predefined
temperature isovalues adopted by NOAA that is −15C at 500mb.

For this example, we use both parametric (Eq. 3) and nonparametric (Eq. 5) tech-
niques to construct possibility distributions. First two rows of Fig. 3 provides the visu-
alization of the level-crossing possibility and necessity values in both parametric and
nonparametric settings. The possibility values suggest the maximum/optimistic estima-
tion for the chance of the presence of level-crossing at each cell, and the region near
the mean isocontour (visualized in black) has a relatively higher maximum chance of
the presence of level crossing. The necessity values indicate the minimum/conservative
estimation of the chance of the presence of level crossing. Note that the colormap for
necessity values has been flipped to make them more visible. The region with paramet-
ric nonzero necessity values is coincident with the mean isocontour, which is due to (a)
the degree of possibility π(y) = 1 is assigned to the mean ensemble ymean when we
construct the possibility distribution; and (2) the relation Nec(A) 6= 0 if Poss(A) = 1.

Note that the lack of smoothness of the computed possibility/necessity values in the
nonparametric case is due to the oscillatory nature of the possibility distribution func-
tion in the nonparametric setting. Instances of the distribution functions constructed
from an ensemble at one grid location are shown in Fig. 3 (c) and Fig. 3 (f). The para-
metric technique of constructing possibility distribution has fewer degrees of freedom
compared to the nonparametric technique; therefore the resulting distribution function
from the parametric technique is less oscillatory.

4.2 Computational Fluid Dynamics Example Using DS Theory
We use DS theory as the underlying mathematical framework for instantiation of the
uncertainty-based marching cubes template, and demonstrate the results for a fluid sim-
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(c) parametric distribution function (f) nonparametric distribution function

Fig. 3. The UMC template instantiated with possibility theory. Figures (a-c) demonstrate the
results for parametric and figures (d-f) demonstrate the results for nonparametric technique. The
possibility distribution demonstrated in (c) and (f) are constructed from an ensemble at a single
point in the dataset (the ensemble values are represented with dots).

ulation example, which is motivated by the use of ensembles in computational fluid
dynamics to study structures such as vortices.

For this example, we use the simulation of flow past a circular cylinder. When the
fluid passes an obstacle, the eddies or vortices are formed in a periodic fashion and
move in the direction of the flow field shown in Fig. 4 (a). Studying the pressure of a
flow field is among the simplest approaches to study vortex structures. The center of a
vortex typically corresponds to minimum pressure values. Therefore, isocontours of the
pressure field can be used to approximate the position and size of the vortices in a flow
field. The number and the position of vortices generated is affected by variation of the
simulation parameters such as the Reynolds number, initial conditions and boundary
conditions.

For this example, we used the 2D incompressible Navier-Stokes solver as part of
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Fig. 4. (top) An example of the vortex street formed by a flow past a cylinder, (middle) cell-
crossing plausibility values, (bottom) cell-crossing belief values.

Fig. 5. An m-function constructed from an en-
semble (dots).

the Nektar++ software package [2] to
generate simulation results for fluid pass-
ing our stationary obstacle. We gener-
ated our ensemble of size 40 by random
perturbation of the inlet velocity and the
Reynolds number. After normalizing the
pressure field of each ensemble mem-
ber based on the average of the pressure
value for a unique and fixed point inside
the field behind the cylinder, we have chosen isovalue=−0.005.

We constructed the basic belief assignment (m-function) using the technique dis-
cussed in Section 2. The cell-crossing belief and plausibility values (i.e., U-Measure
in DS theory) are visualized in Fig. 4. The plausibility values indicate the maximum
chance of level crossing at each cell whereas the belief values indicate the minimum
chance. As an example, the m-function constructed from the ensemble at one grid lo-
cation is shown in Fig. 5 and is constructed as

m({y <= θ}) = 0.1306, m({y > θ}) = 0.5748, (15)
and m(A1 ∪ A2) = 1 −m(A1) −m(A2) where A1 = {y <= θ}, A2 = {y > θ}.
As Fig. 5 demonstrates, the constructed m-function is not oscillatory and hence the
resultant U-Measures values have smooth transitions.

4.3 Synthetic Example Using Probability Theory
In the last example, we show that our UMC template is applicable to a high-dimensional
dataset. Specifically, we provide the result of our UMC template on a 3D synthetic
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example given in [18] through volume rendering of the probability cell-crossing values
(i.e., the U-Measure in probability theory). The synthetic data contains an ensemble
of 45 volumetric data using the analytical formula: µ(x, y, z) = (cos(7x) + cos(7y) +

cos(7z))exp(ar) where r =
√
x2 + y2 + z2 and a = −4.5. Each ensemble member is

Fig. 6. 3D Uncertainty-based marching cubes:
with a parametric modeling assumption, the UMC
(template) translates into probabilistic marching
cubes [18].

a volumetric data of size 300×300×
250 where a has been perturbed
by adding normally distributed noise
values. For this example, we use our
UMC template with the probability-
theory-based parametric modeling
assumption. In this case, the instanti-
ation of our template is equivalent to
the probabilistic marching cubes al-
gorithm [18] and the U-Measure in
this case is the chance of the pres-
ence of level crossing (i.e., prob-
ability values). Fig. 6 shows that
probability values are much smaller
around the corners of the volumetric data compared to the values at the center.

5 Summary and Conclusions

This paper applies possibility theory and Dempster-Shafer (DS) theory as alternative
uncertainty modeling frameworks of probability theory to the isosurface extraction from
uncertain scalar fields. It proposes an uncertainty-based marching cubes template as an
abstraction of the conventional marching cubes algorithm with a flexible uncertainty
measure. The effectiveness and applicability of the template are demonstrated in a few
examples of uncertain isosurface extraction from an ensemble of scalar fields.

In the future, the proposed framework can be used to further study the choice of
different mathematical frameworks for the representation and quantification of specific
types of uncertainty (aleatoric, epistemic or their mixture) in different data formats.
Some of the limitations of the current work also suggest interesting avenues for future
research. For example, designing techniques to infer dependence structure suitable for
possibility and Dempster-Shafer theories is an interesting avenue of future research that
can potentially result in improving the quality and accuracy of uncertainty modeling
using these theories; and decision making based on visualization of the results of dual
measures could be an interesting future research direction as well.
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