Ubiquitous Verification in Centralized Ledger
Database

Xinying Yang', Sheng Wang', Feifei Lif, Yuan Zhang®, Wenyuan Yan'
Fangyu Gaif, Benquan Yu®, Likai Feng®, Qun Gaof, Yize Lif
{xinying.yang, sh.wang, lifeifei, yuenzhang.zy, daniel.ywy,
gaifangyu.gfy, benquan.ybq, likai.flk, gaoqun, yize.lyz} @alibaba-inc.com

t Alibaba Group

Abstract—Verifiability is the backbone of most ledger sys-
tems to realize credible authentication. However, existing per-
missioned blockchains and centralized ledger databases lack
rigorous verifiability to authenticate all facts (i.e., what-when-
who validation). Besides, they suffer from high verification cost
to a continually growing immutable storage. In this paper, we
introduce verification principles behind LedgerDB, a centralized
ledger database that achieves both strong external auditability
and fast verification. We coin a novel concept called Dasein
Verification that composes of three validation factors what-when-
who to formalize ledger auditing. Regarding what, LedgerDB
devises fam (fractal accumulating model) to accelerate existence
verification, and CM-Tree for efficient lineage verification. Veri-
fiable data mutations are also supported. For when, we discuss
attacks on existing time pegging protocols that compromise the
authenticity of timestamps, and propose a time notary protocol
to resolve those threats. Evaluations show that fam and CM-Tree
significantly outperform traditional approaches. Compared to
Hyperledger Fabric, LedgerDB achieves 23 x higher verification
throughput with 500 x lower latency in notarization applications,
and 3x higher throughput with 300x lower latency in lineage
tracking applications. As a public-cloud ledger service, the end-
to-end verification latencies of LedgerDB are on average 50x
and 1000x lower than that of QLDB in the above applications,
respectively.

I. INTRODUCTION

Data verification is essential for both decentralized and
centralized ledger technologies. Blockchain is the most in-
demand decentralized ledger technology (DLT) that provides
verifiable tamper-evident objects maintained by mutually dis-
trusting participants [1]-[4]. However, in the latest trend,
centralized ledger database (CLD) attracts more and more
attentions back to centralized ledger technology (CLT) [5]-
[8]. CLD systems utilize their representative ‘trust but verify’
methodology to achieve ledger’s integrity assurance and non-
repudiation clearance, but lack external auditability that needs
rigorously verifiable authentication. To solve this problem, we
designed LedgerDB [9], a centralized ledger database that
achieves both strong external auditability and fast verification.

In our earlier paper [7], we provided an overview of
LedgerDB’s architecture. The key contribution of [7] is to
show that, as a CLD system, LedgerDB not only provides su-
perior write and read performance compared to permissioned
blockchains, but also achieves the same level of auditability
as in permissionless blockchains. In this paper, we focus
on the topic of verification mechanisms in our system. We

§ Ant Group

first introduce a new concept called Dasein Verification to
better formalize verification demands behind a ledger system.
We then explain how LedgerDB becomes the first Dasein-
complete CLD system and achieves high verification effi-
ciency.

The concept Dasein is introduced by existential philosopher
Martin Heidegger [10], aiming to express the existence of
things (e.g., being and time). Similarly, we use Dasein to
embody the auditability of object existence in LedgerDB. As
the perceptive embodiment in ledger systems, the Dasein of
a piece of electronic data includes three essential elements,
which we call a what-when-who (3w) factorization — exis-
tence verification relates to what; time verification guarantees
when; and non-repudiation answers the question of who. We
call a ledger system Dasein-complete if all 3w factors of stored
data can be rigorously verified.

We argue that Dasein-completeness is indispensable to
satisfy real-world judicial auditing [11]-[13] and it covers a
wide range of use cases. For example, consider a national
Grain-Cotton-Oil (GCO) supply chain which involves multiple
corporations such as banks, oil manufacturers, cotton retailers,
suppliers, and grain warehouses. All the participants need to
append their manuscripts, invoice copies, receipts as records
on an auditable ledger. With Dasein-completeness, any record
on the ledger can be auditable by any external parties in terms
of what-when-who. Similarly, such a feature is also required
by many other applications, such as authorship and royalty no-
tarization [14] and luxury merchandise lineage [15]. However,
existing ledger systems fail to reach Dasein-complete, though
each individual factor has already been extensively considered
in many systems. We categorize existing verification mecha-
nisms and their limitations related to 3w factors of Dasein
verification as follows:

The what. To verify the existence of a transaction,
blockchains usually rely on Merkle trees [16]. Bitcoin [1]
organizes transaction digests from the same block as a Merkle
tree. Hence, a light node can verify transactions using a
simplified payment verification (SPV) approach without down-
loading the entire ledger. Ethereum [2] uses account-based
model and adopts Merkle Patricia Tree (MPT) [17] to verify
all historical balances. Since each data slot on the MPT
path should be maintained, its space overhead is also high.
The Diem blockchain [18] blurs block concept in a Merkle

accumulator model. Each transaction becomes an incremental

leaf node, which generates corresponding Merkle root hash

as its fine-grained tamper proof, rendering high storage and

verification overhead. CLD systems such as SQL Ledger [19],

QLDB [20], [21] and Oracle blockchain table [22], [23] also

use simple Merkle tree models that lead to similar problems

above.

The when. Time information is critical for many appli-
cations. However, few ledger systems consider rigorous au-
thenticity of timestamps in their designs. In permissionless
blockchains, timestamps are credible due to the peer-to-peer
architecture, but cannot be used for judicial purposes. Permis-
sioned blockchains like Hyperledger Fabric [24]-[26] fail to
provide credible time for external audit, because timestamps
on the ledger can be tampered when most peers collude.
Regarding CLD systems, QLDB does not consider malicious
behaviors from LSP (ledger service provider), who might
fabricate timestamps. ProvenDB [27] submits transaction di-
gests to a public blockchain (e.g., Bitcoin) periodically to
gain external timestamp evidence. In this case, though LSP
cannot directly tamper with a timestamp, it can still infinitely
delay its actual effective time (as discussed in § III-B1). SQL
Ledger [19] provides forward integrity [28], which assumes
LSP is trusted until the hash of modification is securely (and
immutably) stored outside of the systems. This makes them
fail to provide a rigorous when audit.

The who. It is easy for DLT systems to verify the authentic-
ity and non-repudiation of data from a user (in permissionless
blockchain) or an organization (in permissioned blockchain)
using digital signatures. In contrast, since CLD systems like
QLDB and ProvenDB do not consider the moral hazard of the
LSP, the LSP can repudiate for previous request responses by
tampering log data to fabricate a user’s operation (e.g., delete
a journal). This makes them fail to provide a rigorous who
audit.

In summary, Existing DLT systems cannot satisfy Dasein’s
when, while conventional CLD systems cannot satisfy Da-
sein’s when and who. In addition, all mentioned systems are
inefficient in what verification, especially for data lineage
verification, which is a notable real-world application. To-
wards designing a Dasein-complete CLD system with high
verification efficiency and low storage overhead, we introduce
ubiquitous verification mechanisms adopted in LedgerDB. We
summarize our main contributions as follows:

« We coin a concept of dasein verification to formalize what-
when-who validation for ledger databases, which has been
adopted in LedgerDB. To meet all Dasein factors, we
propose an overall framework and specific mechanisms with
external ledger auditability. To the best of our knowledge,
LedgerDB is the first CLD system that provides native
Dasein verification (i.e., Dasein-complete) for judicial au-
dit [11]-[13].

o To support fast what verification, we devise an advanced
transaction accumulator called fractal accumulating model
(fam) in § III-A to organize journal digests, and further en-
hance it with trusted anchors. For when verification, we first

introduce attack models that compromise the authenticity of

timestamps in existing time pegging protocols. To achieve

globally credible timestamps in action, we then propose a

time notary protocol called Time Ledger (T-Ledger), which

provides high write throughput and makes above attacks
impractical.

o To enable efficient N-lineage verification, we design a
two-layer clue merged tree (CM-Tree) that guarantees the
authenticity of application-level data lineage (§ IV). The
verification throughput of CM-Tree is 33x higher than
ccMPT used in [7] and the latency is 24 x lower. Advanced
mutation verification variants (for purge and occult) are also
provided.

« We conduct empirical evaluation to validate the verification
efficiency and completeness of LedgerDB. The results show
that LedgerDB provides excellent verification throughput
for data notarization and lineage applications, 23x and 3x
higher compared to Hyperledger Fabric. At the same time,
it achieves 500x and 300x lower latency on average. As a
public-cloud ledger service, LedgerDB gets on average 56 x
and 1000x lower latency in above applications compared to
QLDB.

The rest of this paper is organized as follows. We first give
our motivation and an overview of LedgerDB in § II. We intro-
duce the concept of Dasein verification and our corresponding
designs in § III, We describe the Dasein-complete audit in § V
and the N-lineage verification mechanism in § IV. We provide
experimental evaluations in § VI. Finally, we discuss related
work in § VII and conclude in § VIII.

II. MOTIVATION AND OVERVIEW

In this section, we first introduce verifiabilities in existing
ledger systems and their limitations, which motivate the design
of LedgerDB. After that, we present an overview to LedgerDB.

A. Ledger Systems and Limitations

We categorize ledger systems into decentralized ledger
techniques DLT (e.g., blockchain) and centralized ledger tech-
niques CLT (e.g., CLD systems) according to their distinct
architectures. However, from the perspective of verification
mechanisms being used, there is no explicit boundary between
DLT and CLD. In particular, all typical ledger systems lever-
age tree-based (e.g., Merkle tree) models to verify integrity
and signature-based models to withstand repudiation. Here we
look into ledger verification mechanisms used by both DLT
and CLD systems, and compare them from six dimensions as
summarized in Table I.

o Trusted Dependency. Permissionless blockchains are open
to the public. Anyone can join the network without involving
any central authority. Permissioned blockchains’ participants
are usually pre-registered enterprise-level entities. We call its
trusted dependency as ‘trust the consortium, but not every
single one’. CLD systems follow a centralized architecture.
This allows them to adopt a ‘trust but verify’ approach,
which means users have to fully trust the ledger service
provider (LSP). This brings in several defects when facing

TABLE I
VERIFIABILITY COMPARISONS BETWEEN LEDGERDB AND OTHER LEDGER SYSTEMS.

[System | Trusted Dependency | Dasein Support | Verify-Efficiency [Storage Overhead [Verifiable Mutation [Verifiable N-lineage |
LedgerDB TSA (non-LSP) what-when-who High Lowest v v
SQL Ledger LSP & Storage what-when-who High Medium v X
QLDB LSP what Medium Medium X X
ProvenDB LSP & Bitcoin what-when Medium Medium v X
Hyperledger Consortium what-who Low High X X
Factom Bitcoin what-when-who Medium Highest X X

a malicious LSP, where it may collude with users and tamper
with the data. To solve the problem, LedgerDB follows a
Dasein verification framework (§ III) that eliminates the
trusted dependency on LSP.

Dasein Verification. Compared to traditional database audit
that observes user actions and operation trail [29], the essen-
tial goal of Dasein verification in ledger systems is to further
ensure that all the ledger data has not been maliciously tam-
pered with according to predefined rules [7]. Factom [30]
is a typical permissionless blockchain broadly used for
electronic data notarization. It satisfies rigorous what, non-
judicial when and unrigorous who (with anonymous mech-
anism). Since permissioned blockchains do not share their
status to open participants, it is easy for them to forge
system timestamps if majority members collude, which
compromises the when factor. As mentioned previously,
existing CLD systems require full trusted dependency to
LSP. Therefore, they are insufficient for rigorous when and
who verification. To solve the problem, LedgerDB adopts
T-Ledger (§ III-B) and three-phase signing framework to
achieve Dasein-complete.

Verification Efficiency. Among these systems, there are
two typical data organization models: block- intensive model
(bim) and transaction-intensive model (tim). The bim model
(e.g., in Bitcoin, Ethereum) batches transactions into many
blocks. These blocks are cryptographically linked as a chain.
Theoretically, verifying a transaction in bim involves both
verifying block links from that block to the genesis and
verifying the Merkle tree path from that transaction to the
root. In practice, the verification to a block is often done
only once when the block is being downloaded from the
network. The previously downloaded blocks are regarded
as trusted anchors to facilitate the verification of subsequent
blocks. Hence, bim only needs to verify the Merkle tree
path for a transaction at runtime, which is quite fast. In
contrast, tim (e.g., in Diem, QLDB) abandons the con-
cept of block and adopts transaction-level entanglement
to accumulate all transactions in a single Merkle tree. Its
verification efficiency is significantly affected when its tree
height grows. LedgerDB devises a fam tree that combines
the benefit of trusted anchors from bim and fine-grained
transaction verification from #im, offering fast transaction
existence verification (§ III-A).

Storage Overhead. Both conventional DLT and CLD sys-
tems have prohibitive storage overhead due to inherent data

immutability. Since no data deletion is allowed, storage
overhead is inevitable as data volume grows. To solve the
problem, LedgerDB invents a purge operation to remove
obsolete data without compromising verifiability (§ III-A2).
Regulation Support. Regulation-violated data (e.g., data
that discloses unauthorized personal privacy) should be
allowed to delete from a ledger system, but most blockchains
and ledger databases cannot support this. To address
this problem, LedgerDB implements an occult operation
(§ II-A3) that is equipped with mutation verification mech-
anisms to retain verifiability.

Verifiable N-lineage. Data lineage is a typical feature in
ledger systems. For example, the UTXO model in Bitcoin
offers a primitive lineage support. Other systems either build
independent lineage engines on top of a ledger [31] or
deploy lineage smart contracts inside a blockchain [32].
Nevertheless, they inherently suffer from limited perfor-
mance and insufficient Dasein support as discussed above.
LedgerDB implements a native two-layer CM-Tree inside
its kernel to support fast lineage tracking and verification

(§ IV).

B. Threat Model of LedgerDB

The requirement for trusted dependency and Dasein verifi-
cation may vary under different threat models. Here we discuss
the threat model of LedgerDB. We start from introducing
two common threat scenarios for ledger databases: server-
side malicious tampering and LSP-client collusion. In the
first scenario, the adversary can be LSP or any attacker who
compromises the database server and obtains DBA authority.
The adversary might tamper with the incoming data when the
server receives a transaction request from the client (threat-
A). The adversary might also tamper with (e.g., insert, update,
delete) an existing journal, or forge system timestamps (threat-
B). In the second scenario, LSP colludes with one or more
clients as the adversary. They can collude to modify an existing
journal to cheat a third-party auditor (threat-C).

We assume cryptographic hashes and digital signature algo-
rithms, i.e., SHA256 and ECDSA, are reliable. Based on this,
we further assume the identities of all ledger participants are
authentic, i.e., they (user, LSP, TSA, and regulator) disclose
their public keys certified by a CA. We only trust TSA (Time
Stamp Authority) as an authorized third party that can attach
a credible and verifiable timestamp to a given piece of data.

C. LedgerDB Overview

LedgerDB [7] is an auditable ledger database with tamper
evidence and non-repudiation features. Due to the central-
ized architecture, its system throughput is significantly higher
(exceeding 300,000 TPS) compared to open blockchains.
LedgerDB implements a stream file system and an advanced
Merkle accumulator to manage journals. Ledger members are
registered and authenticated using their public keys (pk). They
can operate on the ledger via a set of APIs (e.g., Create,
Append, Verify) according to their assigned roles.

Figure 1 depicts the two-level Dasein-complete framework
in LedgerDB: journal-level transaction commitment (for what
and who verification) and ledger-level timestamp entanglement
with TSA [33], [34] (for when verification). For journal
insertion, the ledger client submits the transaction signed by
his/her secret key (sk) to the ledger proxy, and provides a
proof m.. The ledger proxy then sends the transaction payload
to a shared storage, and sends the proof and payload digest
to the ledger server. The server creates a journal entry for
the transaction and assigns it a unique incremental journal
sequence number (jsn). At last, the LSP generates a receipt
signed by his/her sk as a proof 74 to confirm the commitment
of that transaction, and sends it to the client. To achieve ledger-
level auditability, LedgerDB adopts a two-way time pegging
protocol between the ledger and TSA as shown in Figure 1.
The digests of the ledger are periodically submitted to TSA
who grants a precise universal timestamp and signs on the
digest-timestamp pair, which becomes a proof ;. After that,
the proof is recorded as a special time journal and is anchored
back to the ledger.

Figure 2 illustrates the data model and ledger structures
in LedgerDB. A ledger contains multiple journals, each of
which has a Ledgerinfo. Each Ledgerinfo records its unique
Jjsn, journal accumulator (whose leaf node stores the digest
of Journallnfo) root hash, and state accumulator root hash,
forming a two-layer CM-Tree (i.e., state and clue accumulators
in Figure 2). In addition, the world-state is maintained by a
single-layer state accumulator without clue accumulator. We
detail both state and clue accumulators in § III-A and § IV,
respectively.

In LedgerDB, verification can be conducted in two different
manners: 1) verified at server side when LSP can be fully
trusted (e.g., by users who demand high efficiency); 2) verified
at client side when LSP is distrusted (e.g., by anyone who can
directly access the ledger, such as external auditors).

ITIT. DASEIN VERIFICATION

As introduced in § I, Dasein verification represents 3w
factors. what means a certain data actually exists (or used to
exist). when proves the data is actually produced at a certain
timestamp. who determines the exact issuer of that operation.
A Dasein-complete system should be able to rigorously verify
all three factors. In this section, We present major verification
mechanisms that make LedgerDB Dasein-complete: how to
verify the existence (what) of transactions (§ III-A); how
to generate credible timestamps (when) that can be verified

-

Proof 7 (Who, Wh?n).- -
Journal (what,who) B I ST - >
e . e -
[Digest TSA Service
Ledger Server
Ledger Proxy Yy
\
[“-i
Shared Storage Ledger Master

Fig. 1. LedgerDB Dasein-complete Framework.

S

Ledgerinfo

journal sn (jsn)
r|__Journal Accumulator

State Accumulator i

Cluelnfo

Journalinfo

journal sn clue o
request hash clue hash

i latest journal sn
client sig value

Fig. 2. Ledger Structures in LedgerDB.

(§ II-B); and how to provide non-repudiation (who) proofs
(§ III-C).

A. Existence Verification (what)

The concept of existence includes existing (i.e., a certain
data exists on the ledger) and used fo exist (i.e., a certain
digest derived from a certain data used to be on the ledger).
Existing verification refers to the integrity check for journal
and status data. A successful pass of the verification means
that the target data exists verbatim on the ledger, while a fail
means it is a fake. For example, assume a journal with payload
‘foobar’ is appended on the ledger, an existing verification
for *foobar’ will pass and for *foopar’ will fail. Besides
the correctness, other design considerations of a good verifi-
cation mechanism are verification efficiency and storage cost,
especially when data keeps growing (§ III-A1). For used-to-
exist verification (also called mutation verification), LedgerDB
proposes purge and occult for different scenarios (§ III-A2 and
§ III-A3). The corresponding verification processes are reliable
and fast, without scanning the entire ledger.

1) Fractal Accumulating Model: Recall that block-oriented
model (bim) and transaction-oriented model (tim) have been
discussed in § II-A. Among them, bim has relatively high
verification efficiency. However, in order to limit the maximum
latency between consecutively committed blocks, there are
often a large number of blocks each containing a small number
of transactions. This leads to large storage overhead, even for
a light client that only maintains block headers. In contrast,
tim offers fine-grained verification for each transaction without

(a) Shrubs tree (b) fam tree

Fig. 3. Shrubs and fam tree verification.

storing block headers as in bim, but its verification efficiency
decreases as data grows. To solve the problem, LedgerDB
proposes a fractal accumulating model (fam) based on an
advanced Merkle tree called Shrubs [35]. The fam achieves
high verification performance as in bim, and at the same time
has low storage overhead as in tim.

The used Shrubs tree has O(1) insertion time complexity,
and its prototypical verification cost is the same as in tim
(e.g., Diem) and bAMT [7]. It provides a node-set proof
for verification before the binary tree is full, instead of
a root-node proof used in conventional Merkle trees. Take
Figure 3(a) as an example, the serial number is based on
their being sequence. The proof for cell; is {cell;} itself.
When celly arrives, the digest of cells is calculated, and
{cell3} becomes the proof for celly. When celly arrives, its
proof becomes {cells, celly}. When cell; comes, the digest
of cellg and cell; are calculated, and {cell;} becomes the
proof for cells. Similarly, the proof for cells is {cellr, cells};
the proof for celly is {cell7, cellip}; and the proof for cell;;
is {celly, cellyg, cellyy }. Finally, when celly5 is accumulated,
all digests on the path of [celly3, celly4, cellys] are calculated,
and the root hash {celly5} becomes the proof for cellys. This
approach avoids unnecessary accumulation for intermediate
nodes, making its insertion extremely fast.

On top of Shrubs tree, fam borrows the linked-block en-
tanglement used in blockchain, and refines its equally-linked
layout into fractally-organized layout according to the follow-
ing rule:

Rule 1. When the current tree of a given size is full, its root
node becomes the first leaf node of a new tree.

Figure 3(b) illustrates the derivation of a fam Merkle tree.
Normal leaf nodes store journal digests, formalizing a Merkle
accumulator. As defined in Rule 1, when the number of cells
exceeds a predefined threshold (e.g., cellg), we will initiate a
new fam that contains the root hash of the current fam as its
first leaf node. If we treat the traditional Merkle accumulating
process as a single accumulation cycle, fam divides the ac-
cumulating process into many sub-cycles recursively. We can
see a watermark cell (e.g., cellyy) would regress the fam tree
accumulation for a brand-new cycle, by resuming its current
Merkle root hash as a split cell (e.g., cellg) for the next
epoch. This makes fam’s watershed skew by the tree figure
compared to linear blocks in blockchain. Unlike normal node,
the split cell cellg carries the digest of the entire previous
sub-tree, and enters new epoch of fam sub-cycle. We call it

(a) Anchor-based fam verifica-
tion

(b) tim verification
Fig. 4. Differences between fam and tim.

a merged leaf type compared to the equal block/leaf type in
blockchains (e.g., Bitcoin, Diem). The verifying path for cell,
is {cellg, celly}. The path for celly, is {cells, celly, cells} with
its nearest epoch cellg’s root hash as proof.

To further improve the verification efficiency of fam, we use
the concept of trusted anchors as system or client specified
credible checkpoints. They indicate that all data before them
have been verified, and this facilitates subsequent verifications.
There are two typical scenarios for trusted anchors: block-
oriented anchor (boa) for light node in bim and accumulator-
oriented anchor (aoa) in tim. Note that Bitcoin has the first
prototype of boa. In it, a light client downloads block headers
with verifying its validation, and stores headers locally. These
block headers are used as boa trusted anchors, which means
that these headers are all proven to be valid. As a result, a
transaction existence verification is reduced to an SPV Merkle
path verification (§ II-A). The space complexity of boa is
O(n), which is proportional to the number of blocks.

In contrast, LedgerDB adopts an aoa model called fam-aoa,
where the integrity of data before trusted anchors is trusted
as shown in Figure 4(a). Before a new trusted anchor is set,
all earlier ledger data must be cryptographically verified. Fig-
ure 4(b) illustrates a normal tim tree compared with fam-aoa
in Figure 4(a). As can be seen, for the same celly, fam-aoa’s
Merkle path contains two nodes {r1, cell.}, while the normal
tim’s Merkle path involves three nodes {celliq, celli1, celly}.
For the fractal tree with height H, the fam-aoa tree limits the
verification path to: 1) O(H) fixed cost for all historical epochs
and 2) O(H — 1) expected cost for the current epoch. For the
normal tim tree, the cost is O(logn), increasing with the data
volume. Our implementation of fam uses a fixed fractal height.
Assume that the fixed fractal height is ¢, the total number of
journals within each sub-tree is 2°, and the latest jsn is hence
A = 251 1 2 In this case, normal aoa has three levels, which
means there are 3 sub-trees and the first two are full (i.e.,
each with 29 leaf nodes). For journal)\, the verification cost
of fam-aoa is O(2), while the cost in normal aoa is O(5 +2).

2) Purge Verification: As discussed in § II-A, high storage
overhead in current ledger systems motivates our support of
purge operation, which provides a type of mutation verifica-
tion. A purge operation erases consecutive journal entries from
genesis to a designated jsn on ledger. Here we investigate the
feasibility for purge in action. Firstly, in ledger applications,
the value of historical data mainly lies in its capability to prove
the authenticity of the current state, rather than its content
itself. For example, we seldom care about our obsolete bank

statements that were ten years ago. But we have to make sure
that our current balance is correctly derived from all historical
transactions without any mismatching (e.g., missed a roll-in
transaction). In addition, it is much easier for all users in a
CLD system to reach their agreement of purging existing data,
compared to that in permissionless blockchains.

When executing a purge operation, a pseudo genesis is
created and stored before the first unpurged block, replacing
the role of the last purged block. It replicates the data on
genesis, as well as snapshot states of the designated purge
point (e.g., clue and membership status). The purge operation
itself is recorded on ledger as a purge journal, which is doubly
linked with the new pseudo genesis for mutual proving and
fast locating. The authenticity of a purge journal is guaranteed
by Prerequisite 1 and can be verified by Protocol 1:

Prerequisite 1. Multi-signatures from DBA and all related
members (i.e., who has journals before the purge point) are
gathered for the purge journal.

Protocol 1. The latest pseudo genesis is viewed as the ledger’s
genesis block when verifying subsequent journals.

Combined with fam, the latest LedgerDB provides an option
for users to customize whether the relevant nodes on fam are
expected to be erased or not in the latest purge. For the case
that the erasure is expected, after aligning trusted anchor to
the purging point, the nodes to be retained are all latter nodes
of the next node of the purging node’s Merkle path, meaning
that all left nodes on this path can be erased. For the case that
the erasure is not allowed, the fam tree can be entirely retained
as its space consumption is acceptable (we only need digest
but not raw payload). In addition, users can specify some
milestone journals that will survive from the purge and store
them in a survival stream. In this way, these milestone journals
can be retrieved and verified to fulfill business demands (e.g.,
keep historical block trades only).

3) Occult Verification: In practice, uploaded data in the
ledger can sometimes contain regulation-violated or illegal
information. For example, if personal identities and related
information are recorded on the ledger without authorization,
it will be a violation of the law in most countries. To handle
such regulatory problems, LedgerDB has an occult operation
that supports another type of mutation verification. An occult
operation hides the journal with a designated jsn and retains
its hash digest on the ledger, which does not compromise
the ledger’s verifiability [36]. The authenticity of an occult
operation is guaranteed by Prerequisite 2 and the verification
process of an occulted journal is defined in Protocol 2:

Prerequisite 2. Multi-signatures from DBA and regulator role
holder are gathered for the occulted journal.

Protocol 2. The retained hash in an occulted journal is viewed
as the original journal when verifying subsequent journals.

The occult verification protocol is straightforward and easy
to implement. The verifier identifies the type of each journal
on the ledger: for a normal journal, we calculate its hash;

and for an occult journal, we read its retained hash instead.
In this way, the future retrieval of occulted journals becomes
impossible, but the entire ledger remains verifiable.

The latest LedgerDB provides an option to execute occult
operation either synchronously or asynchronously. A syn-
chronous occult erases the journal immediately during the
operation. In contrast, an asynchronous occult delays the
physical erasure of the journal, in case it will still be used by
other operators (e.g., occult by clue is a common case). When
occulting a journal, we first set its occult bit using an occult
bitmap index [7] without actually erasing its payload. Till now,
it is marked as deleted and can not be retrieved anymore. The
data erasing is performed by data reorganization utility during
system idle batch from the occulted anchor, which indicates
data to be erased.

B. Time Verification (when)

Reliable timestamp is important in ledger systems. To
allow rigorous third-party auditing, the ledger system needs
a reliable mechanism to provide authentic and verifiable
timestamps. Recall that the most auditable timestamp mecha-
nism in blockchains is the one used by Bitcoin. Specifically,
the winner who solves the PoW puzzle will have its new
timestamp validated before others’ acceptance. Due to its
public accessibility and large ecosystem, this coarse-grained
timestamp validation mechanism makes all timestamps on
Bitcoin credible for the real world. Hence, it attracts many
applications to anchor its timestamp onto Bitcoin. In contrast,
traditional database systems most use local system timestamps,
which are unreliable. For those CLD systems that provide
verifiable timestamps, their timestamp generation protocols are
vulnerable to several attacks as we discuss below.

1) Timestamp Attacking Analysis for CLD Systems:
ProvenDB discloses its one-way timestamp pegging protocol,
which periodically submits digests to Bitcoin [27]. This re-
alizes provable timestamps for ledger data but only to some
limited extent. In particular, there is a malicious time magni-
fication defect in this protocol — the timestamp assignment
to a sequence of data submitted to the notary can be delayed
arbitrarily as long as their relative order remains the same.
Figure 5(a) depicts this attack, which we called infinite time
amplification attack. In this figure, the relative time order is
T <To<T3<Ty <75 <Tg. A To journal is submitted for
timestamp, but is anchored at latter time 73, while the real 73
journal is anchored at 75. This is same for 74 to 7¢. We can
see that the 7, journal (whose actual time is in range (72, 73)
can be tampered during the time range (73,75). Therefore,
such a one-way timestamp pegging protocol cannot withstand
threat-B and threat-C (§ 1I-B).

To solve this infinite time amplification problem in one-way
pegging, LedgerDB proposes a two-way timestamp pegging
protocol. The protocol relies on Prerequisite 3 and is defined
in Protocol 3:

Prerequisite 3. The TSA is trusted as an independent author-
ity, and its pk is certified by CA.

------> attacking

T4 T3 T Tg
» Time
x A 7
: (:(l,'
: K Ledger
A A\
O——O—0==C ©

T LT T

(a) Infinite time amplification in one-way pegging

------> attacking
— > two-way pegging

At At At
e 3

T T I Ts G

é o — O Time
’ . Ledger

O-O—0 So—0-

T W T4 ~Ts

(b) Finite malicious time-window in two-way pegging

Fig. 5. Scenarios for timestamp attacks.

Protocol 3. The TSA 1) assigns the current timestamp to the
digest submitted by a ledger and signs the timestamp-digest
pair, and then 2) anchors the signed time journal back to that
ledger.

First, a ledger submits its digest to TSA, and TSA assigns a
timestamp and provides its signature on the digest-timestamp
pair. This endorsement proves that a certain data (which
can be derived from that digest) exists before the assigned
timestamp. Second, this TSA-signed information is anchored
back to that ledger as a time journal, which contains digest’s
authorized timestamp from TSA along with its signature. To
avoid the TSA becoming the single point of failure, we utilize
a pool of independent TSA services from different authorized
entities [33], [34] to further enhance system availability.

This protocol can reduce the malicious time window from
infinite to 2 x A7 as illustrated in Figure 5(b). Consider an
attack that starts from the time journal anchoring time ;.
The adversary holds a journal generated at 75, and submits its
digest at 73 for TSA endorsement. After TSA replies with the
time journal, the adversary holds it until 74 before anchoring
it to the ledger. We can observe that a journal between (72, 74)
can be tampered, and pretend it is generated at any time in
the current TSA-endorsed epoch (71, 73), such as at 7. In this
case, the maximum malicious time window occurs when 75 ~
71 and 74 & 75, which is approximately 2 x A7. This mitigates
threat-C in § 1I-B with 2 x A7 time-window confidence.

2) Time Ledger: To have better timestamp protection in
practice, it is however costly for each ledger to minimize
malicious time window A, as this will introduce frequent
TSA endorsement.

we propose a Time Ledger (T-Ledger) that is maintained
by the LSP as a public TSA notary anchoring service for all
ledgers. The T-Ledger records digests submitted from other
ledgers and acts as an intermediate agent between all registered
ledgers and TSA, which constitutes a two-layer time-notary
anchoring architecture. The top layer adopts the two-way
pegging protocol (Protocol 3) between TSA and T-Ledger.

T-Ledger commits a digest to TSA for each A7 time span,
which is a periodic time notary finalization. The bottom layer
adopts an advanced one-way pegging protocol (Protocol 4)
between T-Ledger and common ledger, which eliminates the
time amplification issue (§ III-B1). This protocol is defined as
follows:

Prerequisite 4. 7-Ledger acts as a public ledger containing
regular TSA journals that anyone can download and verify.

Protocol 4. 1) A common ledger issues its request containing
its digest and local timestamp 7.. 2) T-Ledger accepts the re-
quest only if the delay from 7, is tolerable within a predefined
threshold 7A against its own timestamp 7, i.e., 74 < 7, + TA.

Note that we offer a T-Ledger service on Alibaba Cloud
with public access. Its service availability is guaranteed by
its SaaS platform on Alibaba ECS (Elastic Compute Ser-
vice) [37]. Its verifiable content (e.g., notary digests, TSA
authorized timestamps, LSP signatures) and public disclosure
together provide strong credibility for when verification. A
normal ledger can submit digests to 7-Ledger with much
higher throughput compared to direct TSA interaction. 7-
Ledger seeks TSA proof every second to control A7 and
helps resolve threat-B and threat-C in action, because it is
impractical for malicious tampering within two seconds. If so,
it is more practical for the adversary to change the data before
submission, which can never be discovered.

C. Non-Repudiation Proof (who)

Besides existence and time verification, non-repudiation
proof is another foundation in Dasein verification. LedgerDB
leverages digital signatures to associate each ledger operator
with a real-world entity (e.g., a natural person or a legal
person).

There are three major types of parties in LedgerDB that
require non-repudiation proof, i.e., ledger client, LSP, TSA.
When a ledger client issues a transaction, it will pack its
payload data with metadata (e.g., ledger_uri, journal type,
nonce), and calculate a request-hash based on the entire
transaction. The client then signs this digest using its sk,
and this signature becomes the non-repudiation proof, i.e.,
m. in Figure 1. After receiving the transaction, the ledger
server calculates a tx-hash that is the digest of the server-side
Jjournal, and grants it a unique incremental jsn. Later, when
transactions fill up a block, a block-hash is calculated during
block committing. All three digests (i.e., request-hash, tx-hash,
block-hash), along with other fields (e.g., jsn, timestamp) are
packed in the final receipt. The LSP signs this receipt to
enforce its non-repudiation, and this signature is kept by the
ledger client externally as a proof, i.e., 75 in Figure 1. For the
non-repudiation of TSA, it needs to sign the submitted digest
and the timestamp before replying to LSP. This TSA-signed
time journal is recorded on T-Ledger, i.e., m; in Figure 1,
which provides a credible universal timestamp and clarifies
the non-repudiation from TSA.

IV. VERIFIABLE N-LINEAGE
A. Native lineage (N-lineage)

Lineage is a typical and widely discussed application branch
in ledger technologies [32], [38]. Business-level lineage traces
all relevant records whose integrity should be validated. A
lineage application should provide a validated batch of records
of its representative entity’s origin and journey lifecycle on
ledger. As an example of copyright protection, an artwork
is produced in 2005, whose first royalty is transferred at
2010. Another transferring happened at 2015. The lineage
verification should track all these 3 records for this artwork,
and should verify all their integrities, including the number of
records.

UTXO is the first blockchain data lineage model as dis-
cussed, it is a kind of N-lineage prototype with performance
limitation. Existing permissioned blockchain lineage solutions
often leverage database systems to manage logic data and its
blockchain reference to ensure integrity validating [31], [39],
which makes a gap between applications and blockchains.
Systematic or specific lineage smart contracts in permissioned
chain is another approach, which still remains the Dasein-
incomplete auditability issue.

Clue is a new concept introduced in our previous paper [7]
to support native business-level lineage with a friendly user-
defined (KV-like) interface. Clue tracking is a fine-grained
route on ledger that represents business logic, and facilitates
many real-world best practices. A clue (i.e., a label) is a
business logic carries on lineage which is natively supported
in LedgerDB. In the above copyright example, a specific
clue (e.g., DCI001) is assigned for the artwork by client.
Each journal appending related will take DCI001as an input
parameter through APl AppendTx(lg_id, payload,
‘DCIOO01’).DCIO001 oriented clue verification will retrieve
and verify all the 3 relevant journals by ListTx and Verify
[7]. We implemented a write-optimized clue SkipList (cSL)
index to perform fast O(1) insertion and O(log(n)) read (a
clue underlies n journals [7]) in our earlier paper, whose clue-
oriented verification is not fully optimized.

B. Clue Merged Tree

As a user-defined key that carries on lineage application
logic, clue traces various status according to the key and
records corresponding journals on ledger. This status variation
is also called the change of world-state in blockchain.

1) State Tree: A typical state tree is the MPT (Merkle-
Patricia Trie) conducted in Ethereum [2] for account balance
and contract storing and fast historical status verification. We
also proposed a dedicated clue-counter MPT (ccMPT) for a
write-intensive design that avoids additional clue-orientated
data insertion in our previous design [7]. However, it is not
well optimized for clue-oriented verification.

The main procedure in ccMPT clue verification is to verify
the integrity of the specified clue’s counter m, and then
verify all the m journal’s existences. The m journals existence
verification makes a linear expansion of the total cost. As the

Fig. 6. Verifiable Clue Merged Tree.

significant improvement from Shrubs algorithm introduced in
§ III-Al, its Merkle accumulator insertion cost is O(1), so
it is efficient to add respective clue’s own sub-accumulator
who will increase verification performance without regressing
insertion throughput. The low insertion cost in Shrubs model
is the backbone of our CM-Tree below.

2) Merkle and Merkle-Patricia merged tree: Figure 6 de-
picts our initiative design of the Merkle and Merkle-Patricia
merged tree, i.e., clue merged tree (CM-Tree), which consists
of an MPT (CM-Treel) and many subtrees for clue Merkle ac-
cumulating (CM-Tree2). The CM-Tree performs significantly
faster for verification with similar insertion cost compared to
ccMPT.

CM-Treel records all clue’s historical and current status.
The root hash of the clue MPT is calculated and recorded
in every block to capture the verifiable snapshot according to
its block version. We use SHA-3 algorithm to scatter a 32-
bytes length clue key based on its client specified string to
avoid excessive compression and keep the tree balanced. Each
CM-Treel’s non-leaf node holds 16 branches, and we keep a
configurable top layers cache in memory (e.g., top 6-layers
caching cost is around 512MB). Bottom layers including the
leaf nodes are stored on disk persistently.

As illustrated in Figure 6 (a shortened clue key and CM-
Treel layers are depicted here), clue 3359fd16 is stored
on the MPT with its non-leaf nodes and long-tail leaf node
for residual *9fd16’. The prefix in each node keeps its
storing index, which records the position of its child node in
the stream storage. The value of clue 3359£d16 leaf node
stores its CM-Tree2 root proof set as described of Shrubs tree
in § III-Al. There are 8 journals related to clue 3359fd16
as shown in the bottom CM-Tree2 in Figure 6.

3) CM-Tree Insertion: A complete CM-Tree insertion in-
volves 2 main steps: the top-down clue relevant CM-Tree2
insertion and the bottom-up CM-Treel root hash calculation.

Regarding the first step, the clue key is searched among

the MPT (up layers from memory and bottom layers from
disk) until to find the key position or insert a new leaf node
if not found. Then, search its accumulator based on value
and append the new cell at tail (for a new clue just insert this
first cell). In terms of the second step, the new CM-Tree2 root
proof is firstly calculated, so as to update the latest version of
the clue’s ‘value’ in CM-Treel. Then, a normal process for
MPT hash path calculation is performed up to its root.

C. Clue-oriented Verification

The goal of clue-oriented verification is to ensure the data
integrity of its journal entries (i.e., has not been tampered).
All relevant journals should be validated in a clue-oriented
verification, meaning that any unauthenticated proof will fail
the entire verification.

Typical clue verification has two scenes: 1) verify the entire
clue so far; 2) verify within a range specified by version (or
timestamp) boundaries. They are conducted by our Verify
API presented as:

Verify(lgid, CLUE, »{key, txdata, p, root}, level)

, where 1gid is the ledger identifier; CLUE is an enumeration
for clue; key is the specified clue; txdata are the related
Jjournal set or CM-Tree2 digest set (for semi-verification) to be
verified; p is the verifiable path to root, which is the credible
datum; and level differentiates it is operated from client side
or server side.

We apply a fast clue-oriented verification algorithm based
on CM-Tree. Given a ledger £ whose CM-Tree is A and a
specified clue o: CM-Treel of A is Ay and CM-Tree2 of A is
As. A function S (search) takes as input the clue data o, the
version boundaries v; and vy to be verified, a tree identifier
A, and outputs a number set N. A function R (retrieve) take
as input an enumerated value, a tree identifier A (e.g., A or
As), a number set N (or a clue ¢ for MPT), and outputs a cell
entry set C. A function V (validate) takes as input a clue o,
a proving path of cell set C, a CM-Tree tree identifier A, and
outputs a boolean proof m. Both path calculation functions
P, and P, take a number set N; as input, and also output
a number set N,. The client-side clue verification (i.e., the
level parameter in API is client) process is defined as
follows:

1) Ny = S(o,v1,v9, A), which computes destination leaf cell
number set Ny to be verified for clue o.

2) Ny = P;1(N;y), which calculates all needed CM-Tree2
Merkle proof paths; then, N3 = P,(Nj), which calculates
all the non-leaf cells that can be calculated using Nj.

3) N=Ns — (N3 NN3), which computes the non-leaf proofs’
positions to be retrieved for verification.

4) Fetch all the proof cells C, for o’s value on CM-Treel
according to CM-Tree2’s non-leaf proof cell positions N,
and leaf cells numbers N; by C, = R(IMT, Ay, NUNy).

5) CM-Treel proof nodes C; across layers from the bottom-up
are fetched by C; = R(M PT, A1, 0), and replied together
with C, as an entire proof set for client to verify.

6) m V(o,C, UCq, A). Client verifier first verifies the
integrity of o based on 1) C, towards its CM-Tree2, and
then 2) verifies C, towards its CM-Treel route.

A proof 7 is only true when the two layers of CM-Tree are
all proved. Any invalidation during the process will lead to
a false m. The server-side clue-oriented verification is easier
compared to above client-side algorithm, it also leverages the
first three steps above and doesn’t need to retrieve the cell
proof set back to client for his own validation (i.e., skip the
4™ and 5™ step). Instead, the last verifying 6™ step is done at
the server side.

To better illustrate the proof cell number to be retrieved in
the 3 step, we number the non-leaf cells for demonstration.
For a first 4 items’ verification of clue 3359£d16, Itis easy to
locate all the needed non-leaf proof is {cellay, cellas, cellsa},
while {cella1, cellas} is the result-set of (N3 N N3). So only
{cells2} will be replied to verifier in this case.

V. DASEIN-COMPLETE AUDIT

Audit is a serial of verifications to observe user actions and
operation trails based on predefined rules. To better formalize
the completeness of 3w verification in ledger systems, we
propose a notion called Dasein-complete, by fulfilling which
the system should be able to provide rigorous auditability to
external audit. The goal of this notion is to guarantee that
the entire ledger cannot be maliciously tampered by clients,
LSP, TSP, as well as their collusion. The definition of Dasein-
complete is as follows:

Definition 1. A Dasein-complete ledger audit passes the entire
verification for all Dasein dimensions, i.e., what, when, who
verifications.

The audit of the entire ledger takes all journals (including
purge, occult, and time journals), as well as the latest receipt
returned from LSP as input. Function V verifies the integrity
and signature of all relevant journals. It takes a set of block
B to be verified as input and outputs a proof m. Function
V' verifies the digest consistency between adjacent blocks. It
takes two adjacent blocks as input and outputs a proof 7.
Function P verifies the signature. It takes the signed object
O as input and outputs a proof II. Note that any failure of
a verification sub-task (i.e., false from function V, V' or P)
will early terminate the entire audit process and return a failed
status.

1) Prove all purge journals® validity: II; = P(0),), where O,
contains all relevant members. Prove all occult journals’
validity: I, = P(Q,), where Q, contains regulator and
DBA.

Locate all time journals n within the specified temporal
range. Prove signatures of n time journals. Retrieve n
blocks containing time journals, where we denote m; as
the block number of the i*" time journal. Locate n block
range sets to be verified: By = {B;|i € [1,m1]}, Ba
{Bili € (m1,ma]}, ... B, = {Byli € (M(n_1), M)}

2)

3) Verify each range set of B; by sequentially replaying from
start to end: m; = V(B;). Each B;’s temporal range is
successfully audited after fully validating ;.

4) Conduct block boundary verification across adjacent sets
(e.g., verify block m+1 via block m): ©’; = V'(B;, B;11).

5) Verify the digest and signature from LSP’s latest receipt
(@l)l H3 = P(@l)

6) The full audit is completed by computing: 7 = 71 A ... A
T AT Ao ATy ATI ATl A Tl3, where 7 is only frue
when all other proofs have successfully verified.

The above Dasein-complete audit process requires temporal
validation and non-repudiation proofs from all participants,
which should fulfill electronic data auditing requirements in
real-world scenarios. In addition, this process can further take
a temporal predicate to limit the scope of an audit (e.g., audit
all transactions committed before 2018-12-31).

VI. EVALUATION

We deploy LedgerDB on Alibaba Cloud and evaluate its
various verification mechanisms including Dasein, fam, and
CM-Tree. In addition, we compare LedgerDB’s end-to-end
performance with QLDB and Hyperledger Fabric in real-
world data notarization and data lineage applications. Our
experiments were conducted in an in-house cluster with two
nodes, each of which runs CentOS 7.2.1511 and is equipped
with Intel(R) Xeon(R) Platinum 2.5GHz CPU, 32GB RAM,
and 1 TB of ESSD storage (a public storage service on Alibaba
Cloud). All nodes are connected via 25Gb Ethernet.

A. Dasein Verification Breakdown

We use a workload that conducts a single audit operation on
1000 sequential journals, in order to measure the breakdown
cost of Dasein verification, i.e., existence verification (what),
time validation (when), and non-repudiation proof (who).
Figure 7 shows the verification latency of randomly picked
1000 testing sequential journals by varying timestamp-related
options, journal size, and signatures.

2500
C— Who === When =3 What
2000
0 s
2 1500 |
)
c
2
< 1000 K]
- —
500 |
0 2 2 2 Q& e & & 8
S <, (‘)o 6\5’@ % 6\5'4- (ZAR AN

Fig. 7. Latency breakdown for Dasein verification factors of what-when-who.

The left three bars focus on the when factor, which depict
three when scenarios for verifying credible timestamps. In
all cases, each journal has a payload fixed to 256B and
is single-signed (Sig-1), and the operated ledger’s anchoring
interval A7 to TSA or T-Ledger is set to one second. TSA
represents the case that the operated ledger directly interacts

250 —+— tim fam10 fam20 4 27 F —— tm === fam10=—= fam20 |
—— fam5 fam15 —o— fam25 24 I ooom famb B fami5 2223 fam25 |
200 T 21t 1
= = 18}]
3 + <
(E 150 (£ 12 4
Fo100 e 1 Fogl]
50 | T 6 1
3 . 1
0 1 1 1 0
32K M 32M 1G 32G 32K 1M 32M 1G 32G

Size of base TXs Size of base TXs

(a) Append TPS comparison (b) GetProof TPS comparison

Fig. 8. Write and verification performance evaluation and comparison
between tim and fam.

with TSA, which is inherently costly. TL-1 represents the case
that the operated ledger is being appended with a TPS of 1,
while each journal is anchored to T-Ledger. Similarly, TL-10
represents the case that the operated ledger increases its TPS
to 10 instead. As can be seen, with the help of T-Ledger, the
verification latency of when can be reduced by 50x in TL-
10 compared to using TSA pegging directly. The middle bars
focus on the what factor, which depict the verification with
different journal payload sizes under TL-I and Sig-1 setting.
The result shows that the who and what verification latencies
increase significantly when payload size increases from 256B
to 256KB (12 for who and 4 x for what). The right bars focus
on the who factor, which depict the verification for multiple-
signed journals on TL-1. We vary the number of signers from
1 to 7, and the results show that the who verification latency
scales linearly with the number of signatures.

B. fam Tree Evaluation

Recall that the design of fam benefits from the advantage
of both bim (i.e., linked block model of Bitcoin) and tim
(i.e., accumulator tree model of Diem). We evaluate write and
existence verification (i.e., GetProof) performance among
different accumulator models with the same experimental
setting above.

A fam-n represents a fam tree whose fractal height is n. We
vary the fractal heights from fam-5, fam-10, fam-15, fam-20
to fam-25, whose relative epoch threshold are 2°, 210, 215,
220 and 22° respectively. Figure 8(a) shows the throughput of
Append operation. As can be seen, fam-5 has more than 200K
TPS and fam-15 gets 100K TPS. We can observe that tim’s
throughput decreases almost linearly as ledger size increases.
When the ledger data volume grows to 32GB, #im falls to the
worst among all six models. For fam models, their append
throughput decline at first, but get stable after the data fills up
at least one full epoch. Once an epoch is filled up, fam will
setup a new epoch, so that the append cost is bounded by the
fractal threshold of a #im tree. In particular, The throughput of
fam-5 is 4x higher than that of #im on average, while fam-15
is 2x higher than tim.

Figure 8(b) shows the throughput of GetProof operation.
The test is conducted on randomly generated transaction jsns.
As can be seen, fam-5 and fam-10 get relatively stable 20K
and 12K TPS when the ledger size varies from 32K to 32G
(i.e., all five bars in Figure 8(b)). In contrast, fam-15, fam-20,
and fam-25 only have stable verification throughput from the

10

1200 10000

—+— CMT —<— CCMPT C— CMT &= CCMPT

1000 F

-

10 100 1000 10000
Clue Entries

900 [

o
o

o
& 600

15}

Latency(ms)

300

— _ _
32K ™ 32M 1G
Ledger Size

o

32G

(a) Verification throughput (b) Verification latency

Fig. 9. Clue verification performance.

last four, three, and two bars, respectively. This is because
the volumes of an epoch in these models are different, and
they only get stable performance when accumulated journals
reach their own thresholds. As expected, fim’s throughput
decreases linearly when ledger data volume grows. For the
32KB-size ledger, only fam-5 fills up its epoch with 32 leaves
each. Therefore, fam-5 performs best and others have similar
throughput for around 10 layers calculation in this case. Note
that in real applications, the ledger data can easily reach
several Gigabytes. A commonly used fam-15 (e.g., several
Megabytes per epoch) and fam-20 can get 8K and 6K TPS,
relatively 5x and 4 x higher than that in tim.

C. CM-Tree Evaluation

Clue is a subtle primitive to realize N-lineage. In this test,
we generate multiple clue keys and randomly assign 1 to 100
Jjournals to each clue. The average journal size is 1KB. We
measure both CM-Tree and ccMPT verification throughput on
a randomly selected clue.

Figure 9(a) shows the verification throughput of both ap-
proaches. As can be seen, CM-Tree sustains a high and stable
throughput at around 1000 TPS. This is because each CM-
Tree2 in clue CM-Tree is an independent accumulator sepa-
rated from the ledger accumulator, and hence its verification
cost will not increase as ledger size grows. For ccMPT, the
existence of all m journals has to be verified using its ledger
accumulator. This makes its cost complexity as O(m xlog(n))
(where n is the total number of journals), which is much
higher than CM-Tree2’s O(m). For the 32KB-size ledger, CM-
Tree is 16x faster than ccMPT. When the ledger volume grows
to 32GB, CM-Tree performs 33 x faster than ccMPT.

Figure 9(b) shows the verification latency of both ap-
proaches on a fixed 1GB ledger accumulator. As can be seen,
CM-Tree takes 0.8ms to verify a [0-entries clue compared
to 6.1ms in ccMPT, and takes 3ms for a 1000-entries clue
compared to 36.1ms in ccMPT. We observe that the more
the number of entries in the clue is, the faster the CM-Tree
performs. This is because the linear cost is proportional to
the entry number in ccMPT compared to the logarithmic cost
in CM-Tree. For the 10000-entries case, CM-Tree’s latency is
24 x better than that in ccMPT.

D. Evaluation in Applications

In this test, we evaluate application-level write and veri-
fication performance in both CLD (LedgerDB and QLDB)
and blockchain (Hyperledger Fabric) systems. We choose

11

—+— LedgerDB —*— Fabric

[LedgerDB ==Z=3 Fabric

TPS(K)

230

215 220 225 25 210 215 920 925 530

Journal Volume

210
Journal Volume
(a) Notarization Throughput (b) Notarization Latency

12
10

—+— LedgerDB —*— Fabric 10000 F = LedgerDB === Fabric
1000
100 ¢

10 ¥

TPS(K)
Latency(ms)

1k

0.1

5 10 50 100 500 1000
Clue Entries

50 100
Clue Entries

10 500 1000

(c) Lineage Throughput (d) Lineage Latency

Fig. 10. Application-level comparison between LedgerDB and Hyperledger
Fabric.

data notarization and data lineage, two typical real-world
applications of both blockchain and CLD. A data notarization
system stores various kinds of evidentiary records (i.e., blob
proofs), each of which is identified by a unique id for latter
retrieval and verification. A data lineage system stores and
entangles relevant items under corresponding keys to track
item provenance.

QLDB. Since QLDB only provides its service on public
cloud [5], we deploy both applications in QLDB [40] on AWS
and in LedgerDB on Alibaba Cloud. We ensure that the end-
to-end deployment of each application has all its clients and
servers hosted in the same region, in order to get a relatively
fair comparison from a service offering perspective.

For data notarization application, a document is a [index,
data] pair, where data is a randomly generated 32KB string.
To verify a document, we first retrieve the document contain-
ing the specified index, and then conduct the verification via
QLDB’s GetRevision API [41]. In QLDB, the latencies
for write, read, and verify are 65ms, 36ms, and 1.56s respec-
tively, as shown in Table II. They are 2.4, 1.3, 56x higher
than that in LedgerDB.

For data lineage application, we design a [key, data, prehash,
sig] schema to realize lineage logic in QLDB. The prehash
is a SHA-256 hash digest of the previous document, and sig
is an ECDSA signature on the current document’s digest. All
documents have a sig signed by the same sk. We list two cases
of a same key with different 5 and 100 versions as shown in
Table II. LedgerDB is 278x and 5197 x faster than QLDB
for above two cases.

Note that QLDB only offers public cloud service, and
the above comparison is only for the completeness of our
evaluation. It is difficult to fairly measure both systems using
identical deployment environments. In addition, we omit the
throughput comparison due to the transmission bandwidth
limit in QLDB.

Hyperledger Fabric. We also compare verification per-
formance in both applications between LedgerDB and Hy-
perledger Fabric. Hyperledger Fabric 2.2.0 is deployed in

the same setting as above. A single-channel ordering service
runs a typical Kafka orderer: 3 ZooKeeper nodes, 4 Kafka
brokers, 5 Fabric endorsers, and 3 orderers. Although there is
no explicit data verification interface in Fabric, its implicit
verification logic works when data is retrieved, i.e., in its
workflow of gathering all peer signatures of consensus. Hence,
we implement it within a smart contract using GetState in
Fabric. In LedgerDB, we implement these applications with
clues.

For data notarization application, we fix each journal pay-
load to 256B in both systems when evaluating their throughput
(Figure 10(a)), and then measure their latencies using a real
workload of 4KB payload size in average (Figure 10(b)).
Figure 10(a) shows that LedgerDB’s throughput decreases
from 52K to S0K TPS when the journal volume increase
from 2°B to 239B. In Fabric, this number decreases from
2386 to 1978 TPS. Figure 10(b) shows that LedgerDB and
Fabric retain their latency around 2.5ms and 1.2s respectively
when journal volume grows. The results show that LedgerDB
achieves 23x higher TPS than Fabric and gets around 500x
lower latency at the same time.

For data lineage application, we test the scenario of an
entire verification of a specified data key. We vary the size
of journal entries when testing their throughput and end-
to-end latency. Figure 10(c) depicts that LedgerDB reaches
much higher throughput than Fabric when clue entry number
is small, but converges with Fabric when the entry number
exceeds 50. This is because LedgerDB performs random 1/O
for each entry, while Fabric has nearly a single random 1/O for
the entire clue. In terms of verification latency, Both LedgerDB
and Fabric grow when the number of clue entries increases, as
depicted in Figure 10(d). LedgerDB’s latency is 300x lower
than that of Hyperledger Fabric on average.

VII. RELATED WORK

Blockchain. Blockchain is the on-stage DLT that maintains
decentralized immutable ledgers among mutually distrusting
participants using cryptographic primitives and verifiable tree
models [42]-[47]. Bitcoin [1] is the first blockchain system,
whose data integrity is guaranteed by Merkle tree and mutually
entangled block model (bim). Ethereum [2] implements MPT
to store and verify states, whose address keys are mapped
by original business key using a hash function. Diem [18]
presents a pure tim based Merkle accumulator. It is a fine-
grained transaction-level tree. Hyperledger Fabric [24]-[26],
[48] is a widely used permissioned blockchain. Compared
to permissionless blockchain whose open ecosystem brings
in strong auditability, majority participants in permissioned
blockchain can collude to forge timestamps and fork new
chains. Corda [49] solves such auditability issue using a secure
hardware (e.g., Intel SGX) as a neutral notary.

Ledger database. More and more innovations blur the
boundary between blockchain and database [39], [50].
BigchainDB [51] implements Tendermint to achieve Byzantine
fault tolerance on top of MongoDB [52]. BlockchainDB [53]
builds database functionality using blockchain in its storage

12

TABLE II
APPLICATION-LEVEL COMPARISON BETWEEN LEDGERDB AND QLDB.
. Latency(s)
Operation QLDB | LedgerDB
Insert 0.065 0.027
Notarization Retrieve | 0.036 0.028
Verity 1.557 0.028
Lineace 5-versions Verify 7.786 0.028
€ "T00-versions | Verify | 1559 | 0.030

layer. The thriving of ledger databases in recent years brings
in more and more blockchain-like applications back to a
centralized architecture [21], [54]. QLDB [5], [20] discloses
its transaction verification approach for an entire Merkle
tree, which limits verification efficiency when data volume
grows. SQL Ledger [19] offers forward integrity of relational
data by relying on a trusted storage outside of the system.
Oracle introduces a new database feature called blockchain
table [8], [22] recently, as well as its corresponding SQL syn-
tax and systematic packages. ProvenDB [27] invokes external
entanglement by submitting digests to Bitcoin periodically.
However, existing ledger databases also have significant space
overhead, as no obsolete transactions are allowed to delete.

Verifiable outsourced database. Query authentication in
outsourced database (ODB) is another area of data verifica-
tion [55]-[61]. It ensures data correctness of query performed
by untrusted servers (e.g., delegated servers, cloud services).
The correctness and completeness of result sets returned to
clients can be verified using authenticated data structures
(ADS) or zero-knowledge proof (ZKP) [62]. ADS [63]-[65]
usually implement Merkle tree and signature-based struc-
tures to make data integrity verifiable by small verifiable
objects (VO). However, ADS supports only limited query
patterns, while ZKP can verify a broad range of queries
with higher computation complexity. Some emerging verifiable
query schemes rely on trusted hardware [66] (e.g., Intel SGX)
and blockchain [67].

VIII. CONCLUSION

In this paper, we introduced ubiquitous verifiability and
Dasein-complete auditability achieved in LedgerDB, a high-
performance centralized ledger database. An external audit
framework is introduced that supports Dasein (i.e., what,
when, who) verification of data stored on ledger. LedgerDB
devises a fam tree based on Merkle accumulator to accelerate
existence verification. It implements 7-Ledger and a two-
way timestamp pegging protocol to eliminate the chance of
time-based attacks in real-world applications. In addition, it
implements a two-layer CM-Tree to support fast N-lineage
verification. Experimental results show that LedgerDB ver-
ification performance is significantly efficient compared to
existing ledger systems, i.e., Hyperledger Fabric and QLDB.

[1]
[2]
[3]

[5]
[6]

[7]

[8]

[9]
(10]
(11]
[12]
[13]
[14]
[15]
[16]

[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

(27
[28]

[29]

REFERENCES

Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system.
2008.

Ethereum. Ethereum is a global, open-source platform for decentralized
applications. https://www.ethereum.org, 2014.

David Schwartz, Noah Youngs, Arthur Britto, et al. The ripple protocol
consensus algorithm. Ripple Labs Inc White Paper, 5(8), 2014.

B Kusmierz. The first glance at the simulation of the tangle: discrete
model. IOTA Found. WhitePaper, pages 1-10, 2017.

Amazon Web Services. Amazon quantum ledger database (qldb). https:
/laws.amazon.com/qldb, 2018.

Gartner. Top 10 trends in data and analytics for
2020. https://www.gartner.com/smarterwithgartner/
gartner-top- 10-trends-in-data-and-analytics-for-2020/, 2020.

Xinying Yang, Yuan Zhang, Sheng Wang, Benquan Yu, Feifei Li, Yize
Li, and Wenyuan Yan. Ledgerdb: A centralized ledger database for
universal audit and verification. Proceedings of the VLDB Endowment,
13(12):3138-3151, 2020.

Oracle. Oracle blockchain blog. https://blogs.oracle.com/blockchain/,
2019.

Alibaba Cloud LedgerDB. A ledger database that provides powerful
data audit capabilities. https://www.alibabacloud.com/product/ledgerdb,
2019.

Wikipedia. Dasein. https://www.wikipedia.org/wiki/Dasein, 2020.
Government of Beijing Municipality. Beijing internet court. https://
english.bjinternetcourt.gov.cn/, 2019.

Government of Hangzhou Municipality. Hangzhou court of the internet.
https://www.netcourt.gov.cn/?lang=En, 2019.

Government of Guangzhou Municipality. Guangzhou court of the
internet. https://en.gzinternetcourt.gov.cn/en/index.html, 2019.

NCAC. National copyrights administration of the people’s republic of
china. http://en.ncac.gov.cn, 2020.

Chou Tai Fook. Chow tai fook jewellery group.
chowtaifook.com/en/, 2021.

Ralph C Merkle. Protocols for public key cryptosystems. In /1980 IEEE
Symposium on Security and Privacy, pages 122—122. IEEE, 1980.

S Matthew. Merkle patricia trie specification. Ethereum, October, 2017.
Diem Association. Diem blockchain. https://www.diem.com/en-us/,
2020.

Panagiotis Antonopoulos, Raghav Kaushik, Hanuma Kodavalla, Ser-
gio Rosales Aceves, Reilly Wong, Jason Anderson, and Jakub Szy-
maszek. SQL ledger: Cryptographically verifiable data in azure SQL
database. In Proceedings of the 2021 ACM SIGMOD international
conference on Management of data, pages 2437-2449, 2021.

A. Certain C. D. Kadt. Introduction to amazon quantum ledger database
(qldb). https://www.youtube.com/watch?v=7G9epn3BfqE, 2018.
Gartner. Amazon qldb challenges permissioned
blockchains. https://www.gartner.com/en/documents/3898488/
amazon-qldb-challenges-permissioned-blockchains, 2019.

Oracle. Oracle blockchain table. https://docs.oracle.com/en/database/
oracle/oracle-database/20/newft/oracle-blockchain-table.html, 2020.
Oracle. Blockchain tables in oracle database: Tech-
nology convergence. https://blogs.oracle.com/blockchain/
blockchain-tables-in-oracle-database:-technology-convergence, 2021.
Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-
stantinos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris,
Gennady Laventman, Yacov Manevich, et al. Hyperledger fabric: a dis-
tributed operating system for permissioned blockchains. In Proceedings
of the Thirteenth EuroSys Conference, page 30. ACM, 2018.
Hyperledger. The linux foundation. https://www.hyperledger.org/, 2019.
Parth Thakkar, Senthil Nathan, and Balaji Viswanathan. Performance
benchmarking and optimizing hyperledger fabric blockchain platform.
In 2018 IEEE 26th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS),
pages 264-276. IEEE, 2018.

ProvenDB. Provendb: A blockchain enabled database service. https:
/Iprovendb.com/litepaper/, 2019.

Mihir Bellare and Bennet Yee. Forward integrity for secure audit logs.
Technical report, Citeseer, 1997.

Narongrit Waraporn. Database auditing design on historical data. In
Proceedings of the Second International Symposium on Networking and
Network Security (ISNNS’10). Jinggangshan, China, pages 275-281,
2010.

https://www.

13

[31]

(32]

(33]
[34]

(35]

[36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]
(48]
[49]

[50]

[51]

[52]

[53]

[54]

Paul Snow, Brian Deery, Jack Lu, David Johnston, and Peter Kirby.
Factom: Business processes secured by immutable audit trails on the
blockchain. Whitepaper, Factom, November, 2014.
Alibaba. Alibaba cloud baas(blockchain as a service).
aliyun.com/product/baas, 2018.

Pingcheng Ruan, Gang Chen, Tien Tuan Anh Dinh, Qian Lin, Beng Chin
Ooi, and Meihui Zhang. Fine-grained, secure and efficient data prove-
nance on blockchain systems. Proceedings of the VLDB Endowment,
12(9):975-988, 2019.

National Time Service Center. https://ttas.ntsc.ac.cn/, 2020.

Xi’an Trusted Time Authentication Service. https://www.chinattas.com/,
2020.

Ethereum Foundation. Shrubs - a new gas efficient privacy protocol.
https://www.youtube.com/watch?v=_tqwCBrw1Xc, 2019.

Yize Li, Benquan Yu, Xinying Yang, Wenyuan Yan, and Yuan Zhang.
Managing blockchain-based centralized ledger systems, January 1 2021.
US Patent 10,904,013.

Alibaba Elastic Cloud Service. Elastic and secure virtual cloud servers
to cater all your cloud hosting needs. https://www.alibabacloud.com/
product/ecs, 2019.

Xueping Liang, Sachin Shetty, Deepak Tosh, Charles Kamhoua, Kevin
Kwiat, and Laurent Njilla. Provchain: A blockchain-based data prove-
nance architecture in cloud environment with enhanced privacy and
availability. In 2017 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), pages 468-477. IEEE,
2017.

Lindsey Allen, Panagiotis Antonopoulos, Arvind Arasu, Johannes
Gehrke, Joachim Hammer, James Hunter, Raghav Kaushik, Donald
Kossmann, Jonathan Lee, Ravi Ramamurthy, et al. Veritas: Shared
verifiable databases and tables in the cloud. In 9th Biennial Conference
on Innovative Data Systems Research (CIDR), 2019.

Amazon. Sql-compatible access to relational, semi-structured, and
nested data. https://partigl.org, 2016.

Amazon Web Services. Amazon quantum ledger database (ama-
zon qldb) - developer guide. https://docs.aws.amazon.com/qldb/latest/
developerguide/API_GetRevision.html, 2020.

Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi.
Caper: a cross-application permissioned blockchain. Proceedings of the
VLDB Endowment, 12(11):1385-1398, 2019.

C Mohan. State of public and private blockchains: Myths and reality.
In Proceedings of the 2019 International Conference on Management
of Data, pages 404-411. ACM, 2019.

Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels,
Ahmed Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Giin
Sirer, et al. On scaling decentralized blockchains. In International
conference on financial cryptography and data security, pages 106—125.
Springer, 2016.

Sheng Wang, Tien Tuan Anh Dinh, Qian Lin, Zhongle Xie, Meihui
Zhang, Qingchao Cai, Gang Chen, Beng Chin Ooi, and Pingcheng
Ruan. Forkbase: An efficient storage engine for blockchain and forkable
applications. Proceedings of the VLDB Endowment, 11(10), 2018.
Microsoft Azure. Microsoft azure blockchain service. https://azure.
microsoft.com/services/blockchain-service, 2018.

Amazon Web Services. Amazon managed blockchain.
amazon.com/blockchain/, 2018.

Oracle. Oracle blockchain enterprise edition. https://www.oracle.com/
blockchain/blockchain-platform-enterprise-edition/, 2021.

Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn.
Corda: an introduction. R3 CEV, August, 1:15, 2016.

Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens
Dittrich. Blurring the lines between blockchains and database systems:
the case of hyperledger fabric. In Proceedings of the 2019 International
Conference on Management of Data, pages 105-122. ACM, 2019.
Trent McConaghy, Rodolphe Marques, Andreas Miiller, Dimitri
De Jonghe, Troy McConaghy, Greg McMullen, Ryan Henderson,
Sylvain Bellemare, and Alberto Granzotto. Bigchaindb: a scalable
blockchain database. white paper, BigChainDB, 2016.
MongoDB. The database for modern applications.
mongodb.com/, 2016.

Muhammad El-Hindi, Carsten Binnig, Arvind Arasu, Donald Kossmann,
and Ravi Ramamurthy. Blockchaindb: a shared database on blockchains.
Proceedings of the VLDB Endowment, 12(11):1597-1609, 2019.
Senthil Nathan, Chander Govindarajan, Adarsh Saraf, Manish Sethi,
and Praveen Jayachandran. Blockchain meets database: design and

https://www.

https://aws.

https://www.

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

implementation of a blockchain relational database. Proceedings of the
VLDB Endowment, 12(11):1539-1552, 2019.

Michael Backes, Dario Fiore, and Raphael M Reischuk. Verifiable
delegation of computation on outsourced data. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications
security, pages 863-874, 2013.

Sumeet Bajaj and Radu Sion. Correctdb: Sql engine with practical query
authentication. Proceedings of the VLDB Endowment, 6(7):529-540,
2013.

Arvind Arasu, Ken Eguro, Raghav Kaushik, Donald Kossmann, Pingfan
Meng, Vineet Pandey, and Ravi Ramamurthy. Concerto: A high
concurrency key-value store with integrity. In Proceedings of the 2017
ACM International Conference on Management of Data, pages 251-266,
2017.

Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin.
Dynamic authenticated index structures for outsourced databases. In
Proceedings of the 2006 ACM SIGMOD international conference on
Management of data, pages 121-132, 2006.

Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin.
Authenticated index structures for aggregation queries. ACM Transac-
tions on Information and System Security (TISSEC), 13(4):1-35, 2010.
Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. Inte-
gridb: Verifiable sql for outsourced databases. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
pages 1480-1491, 2015.

Cheng Xu, Ce Zhang, and Jianliang Xu. vchain: Enabling verifiable
boolean range queries over blockchain databases. In Proceedings of the
2019 International Conference on Management of Data, pages 141-158.
ACM, 2019.

Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos,
and Charalampos Papamanthou. vsql: Verifying arbitrary sql queries
over dynamic outsourced databases. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 863-880. IEEE, 2017.

Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi. Authen-
ticated data structures, generically. ACM SIGPLAN Notices, 49(1):411—
423, 2014.

Roberto Tamassia. Authenticated data structures. In European sympo-
sium on algorithms, pages 2-5. Springer, 2003.

Charles Martel, Glen Nuckolls, Premkumar Devanbu, Michael Gertz,
April Kwong, and Stuart G Stubblebine. A general model for authenti-
cated data structures. Algorithmica, 39(1):21-41, 2004.

Christian Priebe, Kapil Vaswani, and Manuel Costa. Enclavedb: A secure
database using sgx. In 2018 IEEE Symposium on Security and Privacy
(SP), pages 264-278. IEEE, 2018.

Yanqing Peng, Min Du, Feifei Li, Raymond Cheng, and Dawn Song.
Falcondb: Blockchain-based collaborative database. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of
Data, pages 637-652, 2020.

14

