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Introduction

e We are inundated with a large collection of RDF (Resource
Description Framework) data.
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Introduction

e We are inundated with a large collection of RDF (Resource
Description Framework) data.

o DBpedia, Uniprot, Freebase etc

Internally ...

<rdf:RDF
xmlns:rdf=http: //www.w3.org/1999/02/22-rdf-syntax-ns#
xmlns:dcterms="http://purl.org/dc/terms/” >
<rdf:Description rdf:about="urn:x-states:New York” >
<dcterms:alternative>NY < /dcterms:alternative>
< /rdf:Description>
</rdf:RDF>
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Description Framework) data.

o DBpedia, Uniprot, Freebase etc
o A large graph and encode rich semantics

Internally ...

<rdf:Description rdf:about="urn:x-states:New York”>
<dcterms:alternative>NY < /dcterms:alternative>
< /rdf:Description>

Triple format:
<http://.../New York> <http://purl.org/dc/terms/alternative> "NY” .

subject predicate object

Query language: SPARQL
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Introduction

e We are inundated with a large collection of RDF (Resource
Description Framework) data.

o DBpedia, Uniprot, Freebase etc
o A large graph and encode rich semantics

@ Available engines to manage RDF data?

o RDBMS: Migrate RDF, e.g., Sesame, JenaSDB etc.
o Generic RDF stores: e.g., RDF3X, JenaTDB etc.

[VPO7] D.J. Abadi, et al. Scalable semantic web data management using vertical partitioning. In VLDB, 2007.

[HEX08] C. Weiss, et al. Hexastore: sextuple indexing for semantic web data management. In VLDB, 2008.

[RDF3X] T. Neumann, G. Weikum. RDF-3X: a RISC-style engine for RDF. In VLDB, 2008.

[SJPO9] T. Neumann, G. Weikum. Scalable Join Processing on Very Large RDF Graphs. In SIGMOD, 2009.

[BM10] M. Atre, et al. Matrix "Bit" loaded: A Scalable Lightweight Join Query Processor for RDF Data. In WWW, 2010.
[SSQ11] J. Huang, et al. Scalable SPARQL Querying of Large RDF Graphs. In VLDB, 2011.
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Introduction

e Observation: queries share common parts
e Multi-query optimization
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Introduction

@ A tempting choice: turn to MQO in relational databases
[MQO88][MQO90][MQO00]
o SPARQL<srelational algebra [EPS08][FSRO7].
o Exist quite a few relational solutions for RDF store.

[MQO90] T. Sellis, et al. On the Multiple-Query Optimization Problem. In TKDE, 1990.

[MQOB88] T. Sellis, et al. Multiple-query optimization. In TODS, 1988.

[MQOO0] P. Roy, et al. Efficient and extensible algorithms for multi query optimization. In SIGMOD, 2000.
[EPSO08] R. Angles, et al. The Expressive Power of SPARQL. In ISWC, 2008.

[FSRO7] A. Polleres, et al. From SPARQL to rules (and back). In WWW, 2007.
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Introduction

@ A tempting choice: turn to MQO in relational databases
[MQO88][MQO90][MQO00]
o SPARQL<srelational algebra [EPS08][FSRO7].
o Exist quite a few relational solutions for RDF store.

@ For SPARQL and RDF, new issues arise in practice.

o Convert SPARQL to SQL: not all engines use RDBMS
o Conversion to SQL — a large number of joins
o Store dependent solution
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Preliminary

@ We foucs on two types of queries

Type 1: Q := SELECT RD WHERE GP
Type 2: Qopr := SELECT RD WHERE GP (OPTIONAL GPgpr)™

subj pred obj

pl name  "Alice”

pl zip 10001

pl mbox  alice@home

pl mbox  alice@work

pl www http://home/alice
p2 name  "Bob”

p2 zip 10001

p3 name  "Elld"”

p3 zip 10001

p3 www http://work/ella
p4 name "Tim"

p4 zip "11234"

(a) triple table D

SELECT ?name
WHERE { ?x name ?name, ?x zip 10001,

}

(b) Example query Qopt

name
" Alice”
"Bob"
"Ella”
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Preliminary

@ We foucs on two types of queries

Type 1: Q := SELECT RD WHERE GP
Type 2: Qopr := SELECT RD WHERE GP (OPTIONAL GPgpr)™

subj pred obj

pl name  "Alice”

pl zip 10001

pl mbox  alice@home

pl mbox  alice@work

pl www http://home/alice
p2 name  "Bob”

p2 zip 10001

p3 name  "Elld"”

p3 zip 10001

p3 www http://work/ella
p4 name "Tim"

p4 zip "11234"

(a) triple table D

SELECT ?name , ?mail, ?hpage

WHERE { ?x name ?name, 7x zip 10001,
OPTIONAL {?x mbox ?mail }
OPTIONAL {?x www ?hpage }}

(b) Example query Qopt

name
" Alice”
"Bob"
"Ella”
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Preliminary

@ We foucs on two types of queries

Type 1: Q := SELECT RD WHERE GP
Type 2: Qopr := SELECT RD WHERE GP (OPTIONAL GPgpr)™

SlibJ pred ’?XJI' a SELECT ?name , ?mail, ?hpage
Pl name loo'gf WHERE { ?x name ?name, ?x zip 10001,
gl P < alice@home OPTIONAL {?x mbox ?mail }
? ?
pl mbox  alice@work OPTIONAL {7x www ?hpage }}
pl www http://home/alice
p2 name "Bob” (b) Example query QOPT
p2 zip }OOO} name mail hpage
p3 name gl "Alice”  alice@home  http://home/alice
p3 zp 10001 "Alice”  alice@work http://home/alice
p3 www http://work/ella " Bob”
pi name ,,11';34,, "Ella"” http://work/ella
N (c) Output Qopr(D)

(a) triple table D

22/113



Preliminary

@ We foucs on two types of queries

Type 1: Q := SELECT RD WHERE GP
Type 2: Qopr := SELECT RD WHERE GP (OPTIONAL GPgpr)™

@ Problem statement.

23 /113



Preliminary

@ We foucs on two types of queries

Type 1: Q := SELECT RD WHERE GP
Type 2: Qopr := SELECT RD WHERE GP (OPTIONAL GPgpr)™

@ Problem statement.
o Input: a set Q of Type 1 queries and a data graph G

24 /113



Preliminary

@ We foucs on two types of queries

Type 1: Q := SELECT RD WHERE GP
Type 2: Qopr := SELECT RD WHERE GP (OPTIONAL GPgpr)™

@ Problem statement.

o Input: a set Q of Type 1 queries and a data graph G
o Output: a set of rewritten queries, Qopr of Type 1 and Type 2 queries

25 /113



Preliminary

@ We foucs on two types of queries

Type 1: Q := SELECT RD WHERE GP
Type 2: Qopr := SELECT RD WHERE GP (OPTIONAL GPgpr)™

@ Problem statement.

o Input: a set Q of Type 1 queries and a data graph G
o Output: a set of rewritten queries, Qopr of Type 1 and Type 2 queries
o Requirements:

o soundness and completeness: Qopr(G)=9Q (G).

@ cost: 7T’(Q)7{ (Té()gm) <1

26 /113



Our approach

© Our approach
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Motivating example

(a) Query Q, (b) Query Qo
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Motivating example

(a) Query Q, (b) Query Qo

O: constant O: variable
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Motivating example

(a) Query Q, (b) Query Qo
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Motivating example

(a) Query Q, (b) Query Qo

SELECT * D)— (D)
WHERE { ?x P1 7z, 7y P, ?z, P,
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Motivating example

(a) Query Q, (b) Query Qo

SELECT *
WHERE { ?x Py 7z, 7y P, ?z,
OPTIONAL {?y P3s ?w, 7w P4 v1 }

(1) Structure only Qopr
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Motivating example

(a) Query Q, (b) Query Qo

SELECT *
WHERE { ?x Py ?z, 7y P, 7z,
OPTIONAL {?y Ps 7w, 7w P4 v }
OPTIONAL {7t P3s ?x, 7t Ps vi, 7w Py »; }
}

(1) Structure only Qopr
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Motivating example

(a) Query Q, (b) Query Qo

Evaluated once—potential saving

SELECT * -7 oS
WHERE { ?x Py 7z, 7y P, 7z, \
OPTIONAL {?y P3 ?w, ?w Ps v1 } P g
OPTIONAL {?t P3 ?x, ?t Ps vi, 7w P4 v1 } N 0
} P Py
g

(1) Structure only Qopr
OPTIONALSs are evaluated on top of the common substructures

(intermediate results cached by engine).
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Motivating example

(a) Query Q, (b) Query Qo

pattern p | a(p)
?x P17z | 30%
7y P2 7z | 20%
7y Ps 7w | 18%
?W P4 %1 1%
7t Ps » 2%

*Max common subquery is not selective

(1) Using cost in optimization
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Motivating example

(a) Query Q, (b) Query Qo

pattern p | a(p)
?x P17z | 30%
7y P2 7z | 20%
7y Ps 7w | 18%
?W P4 %1 1%
7t P5 Vi 2%

*Max common subquery is not selective

(1) Using cost in optimization
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Motivating example

(a) Query Q, (b) Query Qo

SELECT *

WHERE { ?w P4 v,
OPT|ONAL {?Xl P1 ?Zl, ?y1 P2 ?21, ?y1 P3 ?W }
OPTIONAL {?X2 P1 ?22, ?}/2 P2 ?ZQ, ?tz P3 ?Xz, ?tz P5 Vi }

}

(1) Using cost in optimization
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Our approach

Q:{CIL aQ,..., qn}
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Our approach

Q:{q17 @, ..., CIn} <— They often do not share one common subquery
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Our approach

Q:{ql7 qz, ..., qn}

!

Paritition input queries

e Similar queries can be optimized together

‘Group 1‘ ‘Group 2‘ L] ‘Group k‘
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Our approach

Q:{CIL qz, ..., qn}

!

Paritition input queries

‘Group 1‘ ‘Group 2‘ L] ‘Group k‘

e Similar queries can be optimized together
e finding structure similarity is expensive
e group by predicates
o distance: Jaccard similarity of predicate sets
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!

Paritition input queries

‘Group 1‘ ‘Group 2‘ L] ‘Group k‘

‘Rewriting ‘ ‘ Rewriting‘ LRC) ‘ Rewriting ‘
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Our approach

Q:{q17 Q... qn}

!

Paritition input queries

‘Group 1‘ ‘Group 2‘ L] ‘Group k‘

[Rewriting | [ Rewriting |« « [ Rewriting | #— ® Recursively rewrite a subset of type 1 queries
(hierarchically)— a set of type 2 queries

e finding common edge subgraphs

e optimizations to avoid bad efficiency

e cost: guard against bad rewritings
e approx. by the min selectivity in common subquery
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Our approach

Q:{CIL a, ..., qn}

!

Paritition input queries

‘Group 1‘ ‘Group 2‘ L] ‘Group k‘

[Rewriting | [ Rewriting |« « [ Rewriting | #— ® Recursively rewrite a subset of type 1 queries
(hierarchically)— a set of type 2 queries

e finding common edge subgraphs

e optimizations to avoid bad efficiency

e cost: guard against bad rewritings
e approx. by the min selectivity in common subquery

pattern p | a(p)
P17z | 30%
?y Py 7z | 20%
7y P3 ?w | 18%
?W P4 Vi 1%
A tPsvi | 2%

45 /113



Our approach

O={q1,q,...,q}

!

Paritition input queries

‘Group 1‘ ‘Group 2‘ L ‘Group k‘

‘Rewriting ‘ Rewriting LR ‘ Rewriting
Execution
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Our approach

O={q1,q,...,q}

!

Paritition input queries

‘Group 1‘ ‘Group 2‘ L ‘Group k‘

‘Rewriting ‘ Rewriting LR ‘ Rewriting
Execution

!

Result distribution

r(qaﬁi'\«qn)
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Our approach

@ Related issues
o Distributing results, i.e., Type 2 query—Type 1 queries

X 'Y Z
a

b c
d e

f g

RD of a Type 1 query: e.g.,, X and Z
N

columns from results of the Type 2 rewriting
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Our approach

@ Related issues
o Distributing results, i.e., Type 2 query—Type 1 queries

XY Z

a RD of a Type 1 query: e.g.,, X and Z

b c N

d e columns from results of the Type 2 rewriting
f g

o Soundness and completeness
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Our approach

@ Related issues
o Distributing results, i.e., Type 2 query—Type 1 queries

XY Z

a RD of a Type 1 query: e.g.,, X and Z

b c N

d e columns from results of the Type 2 rewriting
f g

o Soundness and completeness

o Extensibility of the solution: more general queries

@ handle variable predicates
o OPTIONAL queries
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@ Implementation highlights

o C++
o 64-bit Linux, 2GHz Xeon(R) CPU, 4GB memory
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@ Implementation highlights

o C++

e 64-bit Linux, 2GHz Xeon(R) CPU, 4GB memory
@ Dataset

o Extend LUBM benchmark generator:
randomness in structure, variances of sel.

[ |

Selective Non-selective
S
z10°
=
©
K3}
[
(7]

1 5 10 15 20 25 30 35 40 45 50

Predicate ID
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@ Implementation highlights

o C++
o 64-bit Linux, 2GHz Xeon(R) CPU, 4GB memory

o Dataset

o Extend LUBM benchmark generator:
randomness in structure, variances of sel.

@ RDF stores: Jena TDB 0.85 etc
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@ Implementation highlights

o C++
o 64-bit Linux, 2GHz Xeon(R) CPU, 4GB memory

Dataset

o Extend LUBM benchmark generator:
randomness in structure, variances of sel.

RDF stores: Jena TDB 0.85 etc

Queries
Ensure randomness in structure, e.g., star, chain and circle
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Experiments

@ Implementation highlights

o CH++
o 64-bit Linux, 2GHz Xeon(R) CPU, 4GB memory
o Dataset
o Extend LUBM benchmark generator:
randomness in structure, variances of sel.
@ RDF stores: Jena TDB 0.85 etc
@ Queries
Parameter Symbol Default Range
Dataset size D 4M 3M to 9M
Number of queries e 100 60 to 160
Size of query (num of triple patterns) Q| 6 5to9
Number of seed queries K 6 5 to 10
Size of seed queries | Gemn| ~1Q|/2 | 1to5
Max selectivity of patterns in Q amax(Q) | random 0.1% to 4%
Min selectivity of patterns in Q amin(Q) | 1% 0.1% to 4%
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Experiments

@ Implementation highlights

o CH++
o 64-bit Linux, 2GHz Xeon(R) CPU, 4GB memory
o Dataset
o Extend LUBM benchmark generator:
randomness in structure, variances of sel.
@ RDF stores: Jena TDB 0.85 etc
@ Queries
Parameter Symbol Default Range
Dataset size D 4M 3M to 9M
Number of queries e 100 60 to 160
Size of query (num of triple patterns) Q| 6 5to9
Number of seed queries K 6 5 to 10
Size of seed queries | Gemn| ~1Q|/2 | 1to5
Max selectivity of patterns in Q amax(Q) | random 0.1% to 4%
Min selectivity of patterns in Q amin(Q) | 1% 0.1% to 4%

@ Rewriting w/ structure: MQO-S; rewriting w/ structure and cost: MQO
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@ Time on rewriting
MQO-S-C: structure based rewriting

MQO-C: rewriting integrating with cost
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@ Time on rewriting
MQO-S-C: structure based rewriting

MQO-C: rewriting integrating with cost

=
a1

5 &#MQO-S-C*MQO-C

ey

60 80 10|0Q|120 140 160

=
)
1

*Costly/bad rewritings are rejected
—more rounds of comparisons.

=

o
o1

Time (seconds)

o
N9y
a1

(63

(=)
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@ Time on distributing results
MQO-S-P: parsing results from MQO-S

MQO-P: parsing results with MQO
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@ Time on distributing results
MQO-S-P: parsing results from MQO-S

MQO-P: parsing results with MQO

1.5/ BMQO-S-PS*MQO-P

=
)
1

*Non-selective common subqueries
increase the set of results.

=

o
o1

Time (seconds)

o
N9y
a1

(63

60 80 10|0Q|120 140 160

(=)
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@ Time on distributing results
MQO-S-P: parsing results from MQO-S

MQO-P: parsing results with MQO

1.5/ & MQO-S-P#MQO-P
—~
% 125 *Non-selective common subqueries
c increase the set of results.
o 1r
o
0 0.75
£ 0.5
[ i |
O 25 V/VM *Both rewriting and parsing
v ) ) ) ) ) are efficiently doable

60 80 10|%2|120 140 160
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@ Varying num of queries in a batch
No-MQO: no optimization
MQO-S: optimization based on structural rewriting
MQO: integrating cost
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@ Varying num of queries in a batch
No-MQO: no optimization
MQO-S: optimization based on structural rewriting
MQO: integrating cost

BMINo-MQOIMQO-S[IMQO

[EEN
al
o

*Both reduce the num of
queries to be exectued

Ul
=

Number of queries
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o
o
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@ Varying num of queries in a batch
No-MQO: no optimization
MQO-S: optimization based on structural rewriting
MQO: integrating cost

400! ©No-MQO-EMQO-SMQQ |

w
o
Q

N
o
Q

Time (seconds)

[ERN
o
=

o

60 80 100,120 140 160
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@ Varying min. selectivity in seed queries
No-MQO: no optimization
MQO-S: optimization based on structural rewriting
MQO: integrating cost
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@ Varying min. selectivity in seed queries
No-MQO: no optimization
MQO-S: optimization based on structural rewriting
MQO: integrating cost

" BINo-MQOEIMQO-S[CIMQO
2 100 :
S
o 15
B *MQO: reject more bad rewritings;
B 50’ MQO—é: njot sensitive '
E
S 25’
Pz
0

01 05 1 (%) 4

Umin (QCmn )
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@ Varying min. selectivity in seed queries
No-MQO: no optimization
MQO-S: optimization based on structural rewriting
MQO: integrating cost

©No-MQOEMQO-S*MQO

w
o
Q

Time (seconds)
= N
o o
o o

0.1 05 .1, .2 4
amin(Qcmn) (%)

(=)

68 /113



@ Varying seed size
MQO-S: optimization based on structural rewriting
MQO: integrating cost

__ Te(common subquery) 0
percentage= = 2TER SR 100%
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@ Varying seed size
MQO-S: optimization based on structural rewriting
MQO: integrating cost
percentage= Ze(common subquery) . 750

n(Qopt)

FFMQO-STFMQO
< 100;
g e
()
C%) —ET/
E 80 _____ E’_——‘ *MQO-S: up to 25% time on optional
o) o----- =
2
)

 —— = No-OPTIONAL

1 2 3 4 5

|qcmn |
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Conclusions

@ In dealing RDF data on the Web, store independency is important

@ Combining SPARQL language and graph algorithms can achieve
MQO, i.e., by rewriting queries

@ Cost must be taken in consideration during rewriting
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The End

Thank You

Q and A
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@ Partition input queries
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o Object: similar queries can be optimized together in rewriting
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Our approach

@ Partition input queries

o Object: similar queries can be optimized together in rewriting

P n 2 P P s
B Ps
S
P2 P2 P1 P2 ps Po e ™ po Po 4
q1 92 q3 94 9s 96
I P2 P2 D4 pr s
P P2 p »
v P4 e i ps e pr pr
12 3 3 D3 P2 ( s Do
P
d 72
q7 98 dg 910 qi1 q12
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Our approach

@ Partition input queries
o Object: similar queries can be optimized together in rewriting

P n j2 jd P s
» Ps
' s

P2 P2 D1 P2 ps Do e o Po |
q1 92 q3 94 gs 96

m P D2 D4 pr s

P3 P2 p »
v P4 e i ps e pr pr
12 » 3 3 D3 P2 ( s Do
4 '3

q7 qs 55 q10 q11 q12

Distance: Jaccard similarity on predicates
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Our approach

@ Partition input queries
o Object: similar queries can be optimized together in rewriting

1 92 q3 qa 95 96
{p1.p2,ps} {p1.p2ps} {p1.p2:ps} {p7.ps:po} {pr.ps:po} {pr.ps:po.pro}
q7 qs d9 q10 q11 q12
{ P1,P2,p3 -,PA} { P23 JL\} {171 sP2:P3 JM} {171 P2 vP.rx} {117 P8 ~P9} {1)5 P6:P7 vPQ}

Distance: Jaccard similarity on predicates
@ Represent each query as a set of predicates.

@ Measure the similarity of a pair of queries by set similarity

78 /113



Our approach

@ Partition input queries
o Object: similar queries can be optimized together in rewriting

q1 92 q3 q4 9s 96
{p1.p2,ps} {p1.p2ps} {p1.p2:ps} {p7.ps:po} {pr.ps:po} {pr.ps:po.pro}
q7 98 dg 910 qi1 q12
{ P1,P2,p3 -,PA} { P23 JL\} {171 sP2:P3 JM} {171 P2 vP.rx} {117 P8 ~P9} {1)5 P6:P7 vPQ}

Distance: Jaccard similarity on predicates
@ Represent each query as a set of predicates.

@ Measure the similarity of a pair of queries by set similarity

o Grouping: k-means
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Our approach

@ Partition input queries
o Object: similar queries can be optimized together in rewriting

—~

9s 96
{P7,Px ~Pu} {PmPng-pm}

q1 92 q3 q4
{p1.p2.ps} {p1.p2.p3} {p1.p2.p3} {p7.ps,p0}

q11 q12

q7 qs 99 910
{pr.ps:po} {m-,P:vaMU

{p1.p2.p3.ps} {p2.p3.p4} {171 D2,D3:Da} {pl,pz,m}

Distance: Jaccard similarity on predicates
@ Represent each query as a set of predicates.

@ Measure the similarity of a pair of queries by set similarity

o Grouping: k-means
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Our approach

@ Hierarchical rewriting and clustering (inside a group)
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Our approach

@ Hierarchical rewriting and clustering (inside a group)

Rewrite pairs of queries bottom up

OO %)O OO OO OO0 OO
Qo Qb Qe qa o e oo T Qs
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Our approach

@ Hierarchical rewriting and clustering (inside a group)

Rewrite pairs of queries bottom up

[6)e) OO OO0 00 OO0 OO|

Qo @b Qe Qo cieeceieet q q
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Our approach

@ Hierarchical rewriting and clustering (inside a group)

Rewrite pairs of queries bottom up
Pair up queries with max Jaccard similarity

00000000 OO OO|

Qo Gp Qe Qo =i
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Our approach

@ Hierarchical rewriting and clustering (inside a group)

Rewrite pairs of queries bottom up
Pair up queries with max Jaccard similarity

Qo Qb Ge Qi e @ Gs
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Our approach
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@ Find maximal cliques in the product graph [CLQ02][CLQO3]

[CLQO2] Patric R.J. Ostergard. A fast algorithm for the maximum clique problem. In Discrete Applied Mathematics, 2002.

[CLQO3] E. Tomita et al. An efficient branch-and-bound algorithm for finding a maximum clique. In Discrete Mathematics and
Theoretical Computer Science, LNCS, 2003.
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[CLQO2] Patric R.J. Ostergard. A fast algorithm for the maximum clique problem. In Discrete Applied Mathematics, 2002.

[CLQO3] E. Tomita et al. An efficient branch-and-bound algorithm for finding a maximum clique. In Discrete Mathematics and
Theoretical Computer Science, LNCS, 2003.

@ Integrate cost into rewriting

Structure: maximize size of the common subquery in a rewriting
Evaluation on cost: guard against bad rewritings

Measure: min selectivity in the common subquery for approximation
Cost: discard bad rewritings, keep good ones in hierarchical rewriting

Stop when the selectivity
drops

Gabed
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o Distributing results, i.e., Type 2 query—Type 1 queries

name mail hpage
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"Bob"
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RD of a Type 1 query

N

columns from results of the Type 2 rewriting
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name mail hpage

" Alice” alice@home http://home/alice
" Alice” alice@work http://home/alice
"Bob"

" Ella” http:/ /work /ella

e Soundness and completeness

RD of a Type 1 query

N

columns from results of the Type 2 rewriting

o Extensibility of the solution: more general queries

@ handle variable predicates
@ nested OPTIONALs
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