Scalable Multi-Query Optimization for SPARQL

Wangchao Le¹ Anastasios Kementsietsidis² Songyun Duan² Feifei Li¹

¹University of Utah

²IBM Research

April 2, 2012

Outline

- Introduction
- 2 Preliminary
- Our approach
- 4 Experiments
- Conclusions

Outline

- Introduction
- 2 Preliminary
- 3 Our approach
- 4 Experiments
- Conclusions

 We are inundated with a large collection of RDF (Resource Description Framework) data.

- We are inundated with a large collection of RDF (Resource Description Framework) data.
 - DBpedia, Uniprot, Freebase etc

Internally ...

```
<rd><rdf:RDF
xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#
xmlns:dcterms="http://purl.org/dc/terms/">
<rdf:Description rdf:about="urnx-states:New York">
<dcterms:alternative>NY</dcterms:alternative>
</rdf:RDF></rdf:RDF></rdf:RDF>
```

- We are inundated with a large collection of RDF (Resource Description Framework) data.
 - DBpedia, Uniprot, Freebase etc

Internally ...

<rdf:RDF
xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns7
xmlns:dcterms="http://purl.org/dc/terms/">

Triple format:

<http://.../New York> <http://purl.org/dc/terms/alternative> "NY"
subject predicate object

- We are inundated with a large collection of RDF (Resource Description Framework) data.
 - DBpedia, Uniprot, Freebase etc
 - A large graph and encode rich semantics

Internally ...

<rdf:RDF

xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns# xmlns:dcterms="http://purl.org/dc/terms/">

Triple format:

<http://.../New York> <http://purl.org/dc/terms/alternative> "NY"
subject predicate object

- We are inundated with a large collection of RDF (Resource Description Framework) data.
 - DBpedia, Uniprot, Freebase etc
 - A large graph and encode rich semantics

Internally ...

<rdf:Description rdf:about="urn:x-states:New York"> <dcterms:alternative>NY</dcterms:alternative> </rdf:Description>

Triple format:

 "NY". subject predicate object

Query language: SPARQL

- We are inundated with a large collection of RDF (Resource Description Framework) data.
 - DBpedia, Uniprot, Freebase etc
 - A large graph and encode rich semantics
- Available engines to manage RDF data?

- We are inundated with a large collection of RDF (Resource Description Framework) data.
 - DBpedia, Uniprot, Freebase etc
 - A large graph and encode rich semantics
- Available engines to manage RDF data?
 - RDBMS: Migrate RDF, e.g., Sesame, JenaSDB etc.
 - Generic RDF stores: e.g., RDF3X, JenaTDB etc.

[VP07] D.J. Abadi, et al. Scalable semantic web data management using vertical partitioning. In VLDB, 2007.
[HEX08] C. Weiss, et al. Hexastore: sextuple indexing for semantic web data management. In VLDB, 2008.
[RDF3X] T. Neumann, G. Weikum. RDF-3X: a RISC-style engine for RDF. In VLDB, 2008.
[SJP09] T. Neumann, G. Weikum. Scalable Join Processing on Very Large RDF Graphs. In SIGMOD, 2009.
[BM10] M. Atre, et al. Matrix "Bit" loaded: A Scalable Lightweight Join Query Processor for RDF Data. In WWW, 2010.
[SSQ11] J. Huang, et al. Scalable SPARQL Querying of Large RDF Graphs. In VLDB, 2011.

- Observation: queries share common partsMulti-query optimization

- A tempting choice: turn to MQO in relational databases [MQO88][MQO90][MQO00]
 - SPARQL↔relational algebra [EPS08][FSR07].
 - Exist quite a few relational solutions for RDF store.

```
[MQO90] T. Sellis, et al. On the Multiple-Query Optimization Problem. In TKDE, 1990.
[MQO88] T. Sellis, et al. Multiple-query optimization. In TODS, 1988.
[MQO00] P. Roy, et al. Efficient and extensible algorithms for multi query optimization. In SIGMOD, 2000.
[EPS08] R. Angles, et al. The Expressive Power of SPARQL. In ISWC, 2008.
[FSR07] A. Polleres, et al. From SPARQL to rules (and back). In WWW, 2007.
```

- A tempting choice: turn to MQO in relational databases [MQO88][MQO90][MQO00]
 - SPARQL↔relational algebra [EPS08][FSR07].
 - Exist quite a few relational solutions for RDF store.
- For SPARQL and RDF, new issues arise in practice.

- A tempting choice: turn to MQO in relational databases [MQO88][MQO90][MQO00]
 - SPARQL↔relational algebra [EPS08][FSR07].
 - Exist quite a few relational solutions for RDF store.
- For SPARQL and RDF, new issues arise in practice.
 - Convert SPARQL to SQL: not all engines use RDBMS
 - \bullet Conversion to SQL \to a large number of joins

- A tempting choice: turn to MQO in relational databases [MQO88][MQO90][MQO00]
 - SPARQL↔relational algebra [EPS08][FSR07].
 - Exist quite a few relational solutions for RDF store.
- For SPARQL and RDF, new issues arise in practice.
 - Convert SPARQL to SQL: not all engines use RDBMS
 - \bullet Conversion to SQL \to a large number of joins
 - Store dependent solution

Outline

- Introduction
- 2 Preliminary
- 3 Our approach
- 4 Experiments
- Conclusions

```
Type 1: Q := SELECT RD WHERE GP Type 2: Q_{OPT} := SELECT RD WHERE GP (OPTIONAL GP_{OPT})<sup>+</sup>
```

• We foucs on two types of queries

Type 1: Q := SELECT RD WHERE GP Type 2: $Q_{OPT} := SELECT RD WHERE GP (OPTIONAL GP_{OPT})^+$

subj	pred	obj
p1	name	"Alice"
p1	zip	10001
p1	mbox	alice@home
p1	mbox	alice@work
p1	www	http://home/alice
p2	name	"Bob"
p2	zip	10001
р3	name	"Ella"
р3	zip	10001
р3	www	http://work/ella
p4	name	"Tim"
p4	zip	"11234"
(a) triple table D		

```
SELECT ?name WHERE { ?x name ?name, ?x zip 10001,
```

(b) Example query Q_{OPT}

```
name
"Ella"
```

• We foucs on two types of queries

Type 1: Q := SELECT RD WHERE GPType 2: $Q_{OPT} := SELECT RD WHERE GP (OPTIONAL GP_{OPT})^+$

subj	pred	obj
p1	name	"Alice"
p1	zip	10001
p1	mbox	alice@home
p1	mbox	alice@work
p1	www	http://home/alice
p2	name	"Bob"
p2	zip	10001
р3	name	"Ella"
р3	zip	10001
р3	www	http://work/ella
р4	name	"Tim"
p4	zip	"11234"
	(a) tri	ple table D

SELECT ?name , ?mail, ?hpage WHERE $\{ ?x \text{ name } ?name, ?x \text{ zip } 10001,$ OPTIONAL {?x mbox ?mail } OPTIONAL {?x www ?hpage }}

(b) Example query Q_{OPT}

• We foucs on two types of queries

Type 1: Q := SELECT RD WHERE GPType 2: $Q_{OPT} := SELECT RD WHERE GP (OPTIONAL GP_{OPT})^+$

subj	pred	obj
p1	name	"Alice"
p1	zip	10001
p1	mbox	alice@home
p1	mbox	alice@work
p1	www	http://home/alice
p2	name	"Bob"
p2	zip	10001
р3	name	"Ella"
р3	zip	10001
р3	www	http://work/ella
р4	name	"Tim"
p4	zip	"11234"
(a) triple table D		

```
SELECT ?name , ?mail, ?hpage
WHERE { ?x name ?name, ?x zip 10001,
       OPTIONAL {?x mbox ?mail }
       OPTIONAL {?x www ?hpage }}
```

(b) Example query Q_{OPT}

name	mail	hpage
"Alice"	alice@home	http://home/alice
"Alice"	alice@work	http://home/alice
"Bob"		
"Ella"		http://work/ella
(c) Output O (D)		

We foucs on two types of queries

```
Type 1: Q := SELECT RD WHERE GP Type 2: Q_{OPT} := SELECT RD WHERE GP (OPTIONAL GP_{OPT})+
```

• Problem statement.

```
Type 1: Q := SELECT RD WHERE GP 
Type 2: Q_{OPT} := SELECT RD WHERE GP (OPTIONAL GP_{OPT})<sup>+</sup>
```

- Problem statement.
 - \bullet Input: a set ${\cal Q}$ of Type 1 queries and a data graph G

```
Type 1: Q := SELECT RD WHERE GP 
Type 2: Q_{OPT} := SELECT RD WHERE GP (OPTIONAL GP_{OPT})+
```

- Problem statement.
 - \bullet Input: a set ${\cal Q}$ of Type 1 queries and a data graph G
 - ullet Output: a set of rewritten queries, $\mathcal{Q}_{\mathsf{OPT}}$ of Type 1 and Type 2 queries

```
Type 1: Q := SELECT RD WHERE GP 
Type 2: Q_{OPT} := SELECT RD WHERE GP (OPTIONAL GP_{OPT})+
```

- Problem statement.
 - \bullet Input: a set ${\cal Q}$ of Type 1 queries and a data graph G
 - ullet Output: a set of rewritten queries, $\mathcal{Q}_{\mathsf{OPT}}$ of Type 1 and Type 2 queries
 - Requirements:
 - soundness and completeness: $Q_{OPT}(G) \equiv Q(G)$.
 - $\bullet \ \, \mathsf{cost:} \ \, \frac{\mathcal{T}_r(\mathcal{Q}) + \mathcal{T}_e(\mathcal{Q}_\mathsf{opt})}{\mathcal{T}_e(\mathcal{Q})} \leq 1$

Our approach

- Introduction
- 2 Preliminary
- Our approach
- 4 Experiments
- Conclusions


```
SELECT * WHERE { ?x P_1 ?z, ?y P_2 ?z,}
```



```
SELECT * WHERE { ?x P_1 ?z, ?y P_2 ?z, OPTIONAL {?y P_3 ?w, ?w P_4 v_1 } } ?y P_3 ?w, ?w P_4 v_1 }
```



```
SELECT * WHERE { ?x \ P_1 \ ?z, ?y \ P_2 \ ?z, OPTIONAL {?y \ P_3 \ ?w, ?w \ P_4 \ v_1 } OPTIONAL {?t \ P_3 \ ?x, ?t \ P_5 \ v_1, ?w \ P_4 \ v_1 } P_2 \ P_3 \ P_4 \ P_4 \ P_5 \ P_5 \ P_6 \ P
```


Evaluated once \rightarrow potential saving

```
SELECT *

WHERE { ?x P<sub>1</sub> ?z, ?y P<sub>2</sub> ?z,

OPTIONAL {?y P<sub>3</sub> ?w, ?w P<sub>4</sub> v<sub>1</sub> }

OPTIONAL {?t P<sub>3</sub> ?x, ?t P<sub>5</sub> v<sub>1</sub>, ?w P<sub>4</sub> v<sub>1</sub> }

(I) Structure only Q<sub>OPT</sub>
```

OPTIONALs are evaluated on top of the common substructures (intermediate results cached by engine).

pattern p	$\alpha(p)$
?x P ₁ ?z	30%
?y P ₂ ?z	20%
?y P ₃ ?w	18%
?w P ₄ v ₁	1%
?t P ₅ v ₁	2%

^{*}Max common subquery is not selective

(II) Using cost in optimization

pattern p	$\alpha(p)$
?x P ₁ ?z	30%
?y P ₂ ?z	20%
?y P ₃ ?w	18%
?w P ₄ v ₁	1%
?t P ₅ v ₁	2%

^{*}Max common subquery is not selective

(II) Using cost in optimization

Motivating example


```
SELECT * WHERE { ?w P_4 v_1, OPTIONAL {?x_1 P_1 ?z_1, ?y_1 P_2 ?z_1, ?y_1 P_3 ?w } OPTIONAL {?x_2 P_1 ?z_2, ?y_2 P_2 ?z_2, ?t_2 P_3 ?x_2, ?t_2 P_5 v_1 } }
```

(II) Using cost in optimization

$$Q=\{q_1,q_2,\ldots,q_n\}$$

 $\mathcal{Q} = \{q_1, q_2, \dots, q_n\}$ They often do not share one common subquery

• Similar queries can be optimized together

- Similar queries can be optimized together
 - finding structure similarity is expensive
 - \bullet group by predicates
 - distance: Jaccard similarity of predicate sets

- Recursively rewrite a subset of type 1 queries (hierarchically) \rightarrow a set of type 2 queries
 - finding common edge subgraphs
 - optimizations to avoid bad efficiency
 - cost: guard against bad rewritings
 - approx. by the min selectivity in common subquery

- Recursively rewrite a subset of type 1 queries (hierarchically) → a set of type 2 queries
 - finding common edge subgraphs
 - optimizations to avoid bad efficiency
 - cost: guard against bad rewritings
 - approx. by the min selectivity in common subquery

Related issues

- Related issues
 - Distributing results, i.e., Type 2 query→Type 1 queries

Χ	Υ	Z
a		
b		С
d	е	
f		g

RD of a $\mbox{\bf Type~1}$ query: e.g., X and Z $\uparrow \downarrow$ columns from results of the $\mbox{\bf Type~2}$ rewriting

- Related issues
 - Distributing results, i.e., Type 2 query→Type 1 queries

Х	Υ	Z
а		
b		С
d	е	
f		g

RD of a **Type 1** query: e.g., X and Z $\uparrow \downarrow$ columns from results of the **Type 2** rewriting

Soundness and completeness

- Related issues
 - Distributing results, i.e., Type 2 query→Type 1 queries

Х	Υ	Z
а		
b		С
d	е	
f		g

RD of a Type~1 query: e.g., X and Z $\uparrow \downarrow$ columns from results of the Type~2 rewriting

- Soundness and completeness
- Extensibility of the solution: more general queries
 - handle variable predicates
 - OPTIONAL queries

- Implementation highlights
 - C++
 - 64-bit Linux, 2GHz Xeon(R) CPU, 4GB memory

- Implementation highlights
 - C++
 - 64-bit Linux, 2GHz Xeon(R) CPU, 4GB memory
- Dataset
 - Extend LUBM benchmark generator: randomness in structure, variances of sel.

- Implementation highlights
 - C++
 - 64-bit Linux, 2GHz Xeon(R) CPU, 4GB memory
- Dataset
 - Extend LUBM benchmark generator: randomness in structure, variances of sel.
- RDF stores: Jena TDB 0.85 etc

- Implementation highlights
 - C++
 - 64-bit Linux, 2GHz Xeon(R) CPU, 4GB memory
- Dataset
 - Extend LUBM benchmark generator: randomness in structure, variances of sel.
- RDF stores: Jena TDB 0.85 etc
- Queries
 Ensure randomness in structure, e.g., star, chain and circle

- Implementation highlights
 - C++
 - 64-bit Linux, 2GHz Xeon(R) CPU, 4GB memory
- Dataset
 - Extend LUBM benchmark generator: randomness in structure, variances of sel.
- RDF stores: Jena TDB 0.85 etc
- Queries

Parameter	Symbol	Default	Range
Dataset size	D	4M	3M to 9M
Number of queries	Q	100	60 to 160
Size of query (num of triple patterns)	Q	6	5 to 9
Number of seed queries	κ	6	5 to 10
Size of seed queries	q cmn	$\sim Q /2$	1 to 5
Max selectivity of patterns in Q	$\alpha_{max}(Q)$	random	0.1% to 4%
Min selectivity of patterns in Q	$\alpha_{min}(Q)$	1%	0.1% to 4%

- Implementation highlights
 - C++
 - 64-bit Linux, 2GHz Xeon(R) CPU, 4GB memory
- Dataset
 - Extend LUBM benchmark generator: randomness in structure, variances of sel.
- RDF stores: Jena TDB 0.85 etc
- Queries

Parameter	Symbol	Default	Range
Dataset size	D	4M	3M to 9M
Number of queries	Q	100	60 to 160
Size of query (num of triple patterns)	Q	6	5 to 9
Number of seed queries	κ	6	5 to 10
Size of seed queries	q _{cmn}	$\sim Q /2$	1 to 5
Max selectivity of patterns in Q	$\alpha_{max}(Q)$	random	0.1% to 4%
Min selectivity of patterns in Q	$\alpha_{min}(Q)$	1%	0.1% to 4%

Rewriting w/ structure: MQO-S; rewriting w/ structure and cost: MQO

 Time on rewriting MQO-S-C: structure based rewriting MQO-C: rewriting integrating with cost

 Time on rewriting MQO-S-C: structure based rewriting MQO-C: rewriting integrating with cost

*Costly/bad rewritings are rejected \rightarrow more rounds of comparisons.

 Time on distributing results MQO-S-P: parsing results from MQO-S MQO-P: parsing results with MQO

 Time on distributing results MQO-S-P: parsing results from MQO-S MQO-P: parsing results with MQO

*Non-selective common subqueries increase the set of results.

 Time on distributing results MQO-S-P: parsing results from MQO-S MQO-P: parsing results with MQO

*Non-selective common subqueries increase the set of results.

*Both rewriting and parsing are efficiently doable

Varying num of queries in a batch

No-MQO: no optimization

 $\ensuremath{\mathsf{MQO}\text{-}\mathsf{S}}\xspace$ optimization based on structural rewriting

MQO: integrating cost

Varying num of queries in a batch

No-MQO: no optimization

MQO-S: optimization based on structural rewriting

MQO: integrating cost

*Both reduce the num of queries to be exectued

Varying num of queries in a batch

No-MQO: no optimization

MQO-S: optimization based on structural rewriting

MQO: integrating cost

Varying min. selectivity in seed queries

No-MQO: no optimization

MQO-S: optimization based on structural rewriting

MQO: integrating cost

Varying min. selectivity in seed queries

No-MQO: no optimization

MQO-S: optimization based on structural rewriting

MQO: integrating cost

*MQO: reject more bad rewritings;

MQO-S: not sensitive

Varying min. selectivity in seed queries

No-MQO: no optimization

MQO-S: optimization based on structural rewriting

MQO: integrating cost

• Varying seed size MQO-S: optimization based on structural rewriting MQO: integrating cost percentage= $\frac{\mathcal{T}_e(\text{common subquery})}{\mathcal{T}_e(Q_{out})} \times 100\%$

 Varying seed size MQO-S: optimization based on structural rewriting MQO: integrating cost percentage— Te(common subquery) × 100%

*MQO-S: up to 25% time on optional

Conclusions

- In dealing RDF data on the Web, store independency is important
- Combining SPARQL language and graph algorithms can achieve MQO, i.e., by rewriting queries
- Cost must be taken in consideration during rewriting

The End

Thank You

 \mathbb{Q} and \mathbb{A}

• Partition input queries

- Partition input queries
 - Object: similar queries can be optimized together in rewriting

- Partition input queries
 - Object: similar queries can be optimized together in rewriting

- Partition input queries
 - Object: similar queries can be optimized together in rewriting

- Partition input queries
 - Object: similar queries can be optimized together in rewriting

- Partition input queries
 - Object: similar queries can be optimized together in rewriting

- Represent each query as a set of predicates.
- Measure the similarity of a pair of queries by set similarity

- Partition input queries
 - Object: similar queries can be optimized together in rewriting

- Represent each query as a set of predicates.
- Measure the similarity of a pair of queries by set similarity
- Grouping: k-means

- Partition input queries
 - Object: similar queries can be optimized together in rewriting

- Represent each query as a set of predicates.
- Measure the similarity of a pair of queries by set similarity
- Grouping: k-means

• Hierarchical rewriting and clustering (inside a group)

• Hierarchical rewriting and clustering (inside a group)

Rewrite pairs of queries bottom up

• Hierarchical rewriting and clustering (inside a group)

Rewrite pairs of queries bottom up

• Hierarchical rewriting and clustering (inside a group)

Rewrite pairs of queries bottom up Pair up queries with max Jaccard similarity

• Hierarchical rewriting and clustering (inside a group)

Rewrite pairs of queries bottom up Pair up queries with max Jaccard similarity

Hierarchical rewriting and clustering (inside a group)

Rewrite pairs of queries bottom up Pair up queries with max Jaccard similarity

- ullet Rewriting o finding maximal common triple patterns
- In the language of graph ...

Hierarchical rewriting and clustering (inside a group)

Rewrite pairs of queries bottom up Pair up queries with max Jaccard similarity

- ullet Rewriting o finding maximal common triple patterns
- In the language of graph ...

[CLQ01] I. Koch. Enumerating all connected maximal common subgraphs in two graphs. In Theoretical Computer Science, 2001.

Hierarchical rewriting and clustering (inside a group)

Rewrite pairs of queries bottom up Pair up queries with max Jaccard similarity

- ullet Rewriting o finding maximal common triple patterns
- In the language of graph ...

[CLQ01] I. Koch. Enumerating all connected maximal common subgraphs in two graphs. In Theoretical Computer Science, 2001.

maximal common connected edge subgraphs

Hierarchical rewriting and clustering (inside a group)

Rewrite pairs of queries bottom up Pair up queries with max Jaccard similarity

- ullet Rewriting o finding maximal common triple patterns
- In the language of graph ...

 $[{\tt CLQ01}] \ I. \ Koch. \ Enumerating \ all \ connected \ maximal \ common \ subgraphs \ in \ two \ graphs. \ In \ {\it Theoretical \ Computer \ Science, \ 2001}.$

- maximal common connected edge subgraphs
 - → maximal common connected *induced* sugraphs in *linegraphs*

Hierarchical rewriting and clustering (inside a group)

Rewrite pairs of queries bottom up Pair up queries with max Jaccard similarity

- ullet Rewriting o finding maximal common triple patterns
- In the language of graph ...

 $[{\tt CLQ01}] \ I. \ Koch. \ Enumerating \ all \ connected \ maximal \ common \ subgraphs \ in \ two \ graphs. \ In \ {\it Theoretical \ Computer \ Science, \ 2001}.$

- maximal common connected edge subgraphs
 - → maximal common connected *induced* sugraphs in *linegraphs*
 - \rightarrow maximal cliques in the product graph

- Linegraph: invert vertices and edges
- $\bullet \ \mathsf{sub-sub}: \ell_0, \ \mathsf{sub-obj}: \ell_1, \ \mathsf{obj-sub}: \ell_2, \ \mathsf{obj-obj}: \ell_3 \\$
- product graph: simultaneous walk

- Linegraph: invert vertices and edges
- $\bullet \ \mathsf{sub-sub}: \ell_0, \ \mathsf{sub-obj}: \ell_1, \ \mathsf{obj-sub}: \ell_2, \ \mathsf{obj-obj}: \ell_3$
- product graph: simultaneous walk

- Linegraph: invert vertices and edges
- $\bullet \ \mathsf{sub-sub}{:}\ell_0, \ \mathsf{sub-obj}{:}\ell_1, \ \mathsf{obj-sub}{:}\ell_2, \ \mathsf{obj-obj}{:}\ell_3$
- product graph: simultaneous walk
- blowup in size, esp. > 2 queries affect clique detection
- optimize the product graph

- prune non-common predicates
- check the constants

- Linegraph: invert vertices and edges
- $\bullet \ \mathsf{sub-sub}{:}\ell_0, \ \mathsf{sub-obj}{:}\ell_1, \ \mathsf{obj-sub}{:}\ell_2, \ \mathsf{obj-obj}{:}\ell_3$
- product graph: simultaneous walk
- blowup in size, esp. > 2 queries affect clique detection
- optimize the product graph

- prune non-common predicates
- check the constants
- prune vertices with non-common neighborhoods

- Linegraph: invert vertices and edges
- $\bullet \ \mathsf{sub-sub}: \ell_0, \ \mathsf{sub-obj}: \ell_1, \ \mathsf{obj-sub}: \ell_2, \ \mathsf{obj-obj}: \ell_3 \\$
- product graph: simultaneous walk
- blowup in size, esp. > 2 queries affect clique detection
- optimize the product graph

- prune non-common predicates
- check the constants
- prune vertices with non-common neighborhoods

Find maximal cliques in the product graph [CLQ02][CLQ03]

Find maximal cliques in the product graph [CLQ02][CLQ03]

- Find maximal cliques in the product graph [CLQ02][CLQ03]
 - [CLQ02] Patric R.J. Östergård. A fast algorithm for the maximum clique problem. In Discrete Applied Mathematics, 2002.
 [CLQ03] E. Tomita et al. An efficient branch-and-bound algorithm for finding a maximum clique. In Discrete Mathematics and Theoretical Computer Science, LNCS. 2003.
- Integrate cost into rewriting

- Find maximal cliques in the product graph [CLQ02][CLQ03]
 - [CLQ02] Patric R.J. Östergård. A fast algorithm for the maximum clique problem. In Discrete Applied Mathematics, 2002.
 [CLQ03] E. Tomita et al. An efficient branch-and-bound algorithm for finding a maximum clique. In Discrete Mathematics and Theoretical Computer Science, LNCS, 2003.
- Integrate cost into rewriting
 - Structure: maximize size of the common subquery in a rewriting
 - Evaluation on cost: guard against bad rewritings

Find maximal cliques in the product graph [CLQ02][CLQ03]

- Integrate cost into rewriting
 - Structure: maximize size of the common subquery in a rewriting
 - Evaluation on cost: guard against bad rewritings
 - Measure: min selectivity in the common subquery for approximation

Find maximal cliques in the product graph [CLQ02][CLQ03]

- Integrate cost into rewriting
 - Structure: maximize size of the common subquery in a rewriting
 - Evaluation on cost: guard against bad rewritings
 - Measure: min selectivity in the common subquery for approximation
 - Cost: discard bad rewritings, keep good ones in hierarchical rewriting

Find maximal cliques in the product graph [CLQ02][CLQ03]

- Integrate cost into rewriting
 - Structure: maximize size of the common subquery in a rewriting
 - Evaluation on cost: guard against bad rewritings
 - Measure: min selectivity in the common subquery for approximation
 - Cost: discard bad rewritings, keep good ones in hierarchical rewriting

- Find maximal cliques in the product graph [CLQ02][CLQ03]
 - [CLQ02] Patric R.J. Östergård. A fast algorithm for the maximum clique problem. In Discrete Applied Mathematics, 2002.
 [CLQ03] E. Tomita et al. An efficient branch-and-bound algorithm for finding a maximum clique. In Discrete Mathematics and Theoretical Computer Science, LNCS, 2003.
- Integrate cost into rewriting
 - Structure: maximize size of the common subquery in a rewriting
 - Evaluation on cost: guard against bad rewritings
 - Measure: min selectivity in the common subquery for approximation
 - Cost: discard bad rewritings, keep good ones in hierarchical rewriting

Related issues

- Related issues
 - Distributing results, i.e., Type 2 query→Type 1 queries

name	mail	hpage
"Alice"	alice@home	http://home/alice
"Alice"	alice@work	http://home/alice
"Bob"		
"Ella"		http://work/ella

RD of a Type 1 query $\uparrow \downarrow$ columns from results of the Type 2 rewriting

- Related issues
 - Distributing results, i.e., Type 2 query→Type 1 queries

name	mail	hpage
"Alice"	alice@home	http://home/alice
"Alice"	alice@work	http://home/alice
"Bob"		
"Ella"		http://work/ella

RD of a Type 1 query $\uparrow \downarrow$ columns from results of the Type 2 rewriting

Soundness and completeness

- Related issues
 - Distributing results, i.e., Type 2 query \rightarrow Type 1 queries

name	mail	hpage
"Alice"	alice@home	http://home/alice
" Alice"	alice@work	http://home/alice
"Bob"		
"Ella"		http://work/ella

- Soundness and completeness
- Extensibility of the solution: more general queries
 - handle variable predicates
 - nested OPTIONALs