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ABSTRACT
Smart databases are adopting artificial intelligence (AI) technologies

to achieve instance optimality, and in the future, databases will come

with prepackaged AI models within their core components. The

reason is that every database runs on different workloads, demands

specific resources, and settings to achieve optimal performance.

It prompts the necessity to understand workloads running in the

system along with their features comprehensively, which we dub

as workload characterization.

To address this workload characterization problem, we propose

our query plan encoders that learn essential features and their cor-

relations from query plans. Our pretrained encoders captures the

structural and the computational performance of queries indepen-
dently.We show that our pretrained encoders are adaptable to work-

loads that expedites the transfer learning process. We performed

independent assessments of structural encoder and performance en-

coders with multiple downstream tasks. For the overall evaluation

of our query plan encoders, we architect two downstream tasks (i)

query latency prediction and (ii) query classification. These tasks

show the importance of feature-based workload characterization.

We also performed extensive experiments on individual encoders

to verify the effectiveness of representation learning, and domain

adaptability.
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1 INTRODUCTION
Database Management Systems (DBMS) are general-purpose sys-

tems that aim to provide solutions to as many applications as possi-

ble. Database designers expose many configuration settings to facili-

tate end-users in managing complex workloads efficiently. However,

there is no single configuration that works for all workloads, and
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finding the optimal configuration setting is very dependent on the

workload characteristics.

In the usual process, DBAs first need to learn about the database

queries that frequently run on their database system and then dig

deeper to characterize these queries. It requires in-depth knowledge

and a robust understanding of the queries and their execution fea-

tures. It is a challenging and laborious task for DBAs to comprehend

the execution features of queries and their relations with config-

uration knobs. Furthermore, the large number of possible DBMS

configurations settings make it a daunting task for DBAs. Advanced

DBAs apply simple data mining techniques and hand-tweaked fea-

ture engineering to understand the nature of the workload, but this

requires domain expertise, which is rare.

Nowadays, many small to medium businesses (SMBs) manage

their databaseswith cloud services. Cloud database service providers

can now obtain and analyze large amounts of anonymized workload

data. Managing database resources efficiently is indispensable for

providing quality services. Each database instance runs a different

workload. Applying data science can help identify workloads with

similar characteristics, and then it can be used in downstream tasks,

e.g., query optimization, configuration recommendation, and index

recommendation. Essentially, it raises a requirement of database

workload characterization, i.e., the ability to describe the distinctive

nature and features of queries in a workload.

Previous work [32] shows with TPC-H benchmarks how each

database query behaves differently with changes in database con-

figuration settings. For example, query Q18 and query Q7 in TPC-

H benchmark responds to knob changes shared_buffers vs.

effective_cache_size very differently w.r.t. query latency. Each
query possesses distinct features, and the demands for computa-

tional resources are also different. It suggests that each query needs

to be treated uniquely and based on their characteristic. Recent

research works [10, 11, 17] leverages query plans as the feature de-
scription of queries and use it for tasks like index recommendation

[10, 11] and configuration knob tuning [17].

In the natural language domain, a word is a structural and func-

tional unit of a meaningful sentence. Similarly, in the database

domain, a query is the structural unit, and a database query plan

is the functional unit of a workload. With the advancement in the

distributed representation of words, the downstream tasks like sen-

tence similarity, question answering, and textual entailment have

improved dramatically [9, 21, 39]. Likewise, we foresee that down-

stream tasks like workload similarity, index recommendation, and
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database configuration recommendation can benefit from the study

of workload characterization.

We propose a scalable data-driven artificial intelligence (AI) ap-

proach for workload characterization with a distributed representa-

tion of query plans. One of the benefits of AI deep learning models

is automatic feature engineering and auto-correlation among fea-

tures. It is a non-trivial arduous task and possesses many challenges

in achieving the aim of workload characterization. Some of the chal-

lenges that make it very different from other entity representation

learning are Query Independence, Diverse Query Structure, Model-
ing Computational Complexity, and Data Dependence. We present a

constructive detail for each aforementioned challenges in §2.3.

Our Approach. In our work, we first propose a query plan dis-

tributed representation model that captures the inherent character-

istics such as structure, computational demand, and feature manifests
embedded within a query plan structure. Hence, we created two

parts for query plan representation, (i) Structure Representation,
(ii) Computational Performance Representation. The two representa-

tions, either separately or collectively, can be used in downstream

tasks to understand a query comprehensively. As an example, we

demonstrate an approach to perform query latency prediction with

the help of query representations. It can help in offline profiling

of workloads and aid in tuning database settings. We believe that

instance optimality of a database can only be achieved with the in-

depth understanding of queries running in a system, and suggests

the introduction of workload characterization component for it.

In our choice of design for distributed representation, we can

either use a fixed-embedding or a pretrained encoder approach. Fixed
embedding is useful where the set of elements is complete, and after

model training, we get a fixed representation for all the elements in

the set. This approach is instrumental in domains like graph embed-

ding. On the other hand, a pretrained encoder is a learned model

that can output embedding on receiving the input by featurizing the

input attributes and learned weights from previous observations.

We follow the pretrained encoder approach for adaptability and

transfer of knowledge.

Furthermore, we follow a bidirectional encoder strategy with

both feature-based and finetuning-based approach inspired by the

language models [9]. In this approach, the embedding obtained

from the pretrained encoder is trained to learn features, and then

the feature embedding output can be fed to multiple task-specific

models. The approach aims to alleviate the requirement of task-

specific representation and facilitate the reuse of already learned

features from the encoder to multiple domain-specific tasks. A

pretrained plan representation model also simplifies the transfer

learning process when trained on a large dataset and fine-tuned for

a specific data and problem set.

We summarize the contribution of this paper.

• We propose plan encoders for distributed representation of

query plans. The general feature-based encoders capture

inherent characteristics of query plans.

• We capture two aspects of the query plans independently

with two classes of encoders. The structure , and the compu-
tation of query plans.

• The structure encoder is inspired by the natural language

model, representing a tree structure of heterogeneous op-

erators in a latent multidimensional space. Consequently,

we evaluate our structure encoder model with similar query

classification and regression tasks on multiple datasets.

• Our computational encoder is a collection of encoder in-

stances. Each encoder corresponds to a database operator

such as scan, join, sort, aggregate, etc., optimizing for multi-

ple metrics to capture the computational features. The en-

coder uses statistical information and data distribution of the

underlying relational data along with the explicitly specified

plan features and database configurations.

• We suggest a pretraining approach for our encoders with

a large dataset of diverse query plans and database bench-

marks. We then introduce a finetuning-based approach that

can quickly adapt to new data distribution with limited data

resources. It is essential for increment learning and fast do-

main adaptation with new workloads.

• To show the overall effectiveness of our encoders, we per-

formed query latency prediction and query classification

tasks. In query latency prediction, given a query plan and

a database configuration setting, the downstream model

predicts the query latency using our plan encoders. In the

query classification task, we use our plan encoders to classify

closely related queries.

The rest of the paper is organized as follows. §2 provides back-

ground and challenges we face while performing query plan repre-

sentation, respectively. In §3, we present our structure encoder and

performance encoder, followed by downstream tasks using plan

encoders in §4. We present experiments and results of our down-

stream tasks with plan encoders in §5, and analysis of individual

encoders in §6. We present a brief section on related works in §7,

followed by conclusion in §8.

2 PRELIMINARIES
Recently we are noticing a trend of utilizing the power of Artificial

Intelligence (AI) in buffer resource tuning, indexing, and query opti-

mizer [15, 19, 31]. Soon, we expect database systems packaged with

pretrained AI models and dedicated cloud servers with embedded

AI accelerators to facilitate the processing. Our proposed workload

characterization with a distributed representation of query plans

can empower database core components to operate efficiently with

in-depth insights on workloads.

2.1 Workload, Query and Query Plan.
Wedefine a databaseworkload asW = {(q1,θ1), (q2,θ2), .., (qn ,θn )},
where qi is the database query, and θi is a normalized weight of

importance of qi in workloadW such that

∑n
i=1 θi = 1. The weight

θi can be as simple as the frequency of appearance of qi inW or can

be arbitrarily decided by the DBA. Generally, database users mostly

run a set of predefined template queries with seldom ad-hoc queries

on databases. A data-driven smart database should collect query

frequencies and resource usages (e.g., memory, latency, cost, blocks

read/write, etc.) to determine popular (transactional/analytics in-

tensive) workloads for choosing optimal database configuration.

For each query qi , one can obtain the corresponding query plan

pi from the database system. Also, to note that a querywith a similar

template can generate a different query execution plan or query-
plan based on the meta-information of a table in a database. Let us
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Figure 1: A query execution plan from TPC-H[33].

say, qi generates two query plan pk and query plan pl on different

instances. It is safe to assume and treat both the queries differently

from the functional point of view in our approach. Hence, there

can be a one-to-many mapping from queries to query plans.

Alternatively, we can now define workload asW = {(p1,θ1),
(p2,θ2), . . . , (pm ,θm )}, where pi is the database query-plan, and θi
is a normalized weight of importance of pi in workloadW such

that

∑n
i=1 θi = 1. For readability, we will refer a query-plan as a

plan in the paper from now.

A plan is a tree structure with heterogeneous functional operator

nodes like Seq Scan, Index Scan, Bitmap Heap Scan, Nested Loop, Hash
Join, Aggregate, Sort, Filter etc. Each operator node contains a set

of execution properties. We present an example of a plan in Figure

1 of query Q5 from the TPC-H benchmark with operator types. All

operators have a set of common properties, and in addition, a few

contain specific properties based on their functions. These operator

properties carry valuable information about their execution. Based

on the functions of each operator, we grouped all operators into five

exclusive groups, i.e., Scan, Join, Aggregate, Join and others. In Table

1, we lay out the properties common to all groups as ’All’ and the

properties exclusive to Scan, Join, Sort, and Aggregate operators.

These operator properties are used for computational performance

representation of the plan. Please note that we do not use properties

like Total Cost, Actual Total Time, Actual Startup Cost because we
use them as labels in our prediction tasks. We describe it in §3.2.

For any plan pi as input to our Structural Encoder and Computa-
tional Encoder, the models outputs the structural embedding S (pi )
and the computational performance embedding C (pi ), respectively.
These embeddings are used by downstream models for different

fine-tuning tasks.

2.2 Deep Neural Networks (DNNs)
DNNs are widely used computational frameworks for many AI

applications. DNNs are layers of neuron thoughtfully structured

that performs a weighted sum computation of the input values

Table 1: The properties from query execution plan that are
common to all the operators and a few specific to major op-
erators like Scan, Join, Sort and Aggregate.

Operator Plan Properties or Features

All

Actual Loops , Actual Rows , Local Dirtied Blocks , Local

Hit Blocks , Local Read Blocks , Local Written Blocks , Plan

Rows , Plan Width , Shared Dirtied Blocks , Shared Hit

Blocks , Shared Read Blocks , SharedWritten Blocks , Temp

Read Blocks , Temp Written Blocks , Parent Relationship ,

Plan Buffers

Scan

Relation Name, Scan Direction, Index Name, Index Condi-

tion, Scan Condition, Filter, Rows Removed, Heap Blocks,

Parallel, Recheck Condition

Join

Join Type, Inner Unique, Merge Condition, Hash Condi-

tion, Rows Removed by Join Filter, Parent Relationship,

Hash Algorithm, Hash Algo, Hash Buckets, Hash Batches,

Peak Memory

Sort

Sort Type, Sort Method, Sort Space, Sort Key, Sort Space

Type, Sort Space Used, Peak Memory

Aggregate

Strategy, Hash Algo, Hash Buckets, Hash Batches, Parallel

Aware, Partial Mode, Peak Memory

at each neuron. A structure of DNNs or model is also an instance

of a machine learning algorithm that learns patterns from data

with inferences and then by readjusting weights to minimize error.

DNNs are very efficient in reducing high dimensional data into

low dimensional code, or features [14]. DNN hardly requires fea-

ture engineering and can learn complex relations among multiple

features. In our paper, we are specifically interested in the entity

representation learning capability of DNNs. Moreover, we focus

our attention on Autoencoder (an Encoder-Decoder approach) for

learning the structural representation model. A particular kind of

Autoencoder called Denoising Autoencoder can capture robust gen-

eralized features from original data [37]. We applied an advanced

feature-based encoding and learning technique inspired by natural

language models. Recent applications of encoder architectures on

language models are very successful in capturing structural and

statistical properties [9, 39]. Query plans are structurally complex,

and properties of plan operators are implicitly correlated. Hence,

we adapted the autoencoder approach in our representation mod-

els. For the computational performance representation, we used a

supervised learning approach to learn metrics from features.

2.3 Challenges and Mitigation Strategies
Traditional machine learning approaches encode entities into a

fixed-length features before feeding them into any model for pre-

diction tasks. We provide a consolidated set of challenges we face

while performing workload characterization with plan encoders

because of heterogeneous nature, diverse shape, and varying depth

of plans.

• Query Independence: Each query is unique and independent.

Even if the queries are from the same benchmark or work-

load; they are seldom similar in structural and computational

complexity. Unlike other entity embeddings where contex-

tual appearances of entities play pivotal importance (such

as word embedding), in workload contextual or temporal

appearance of queries are not related.

• Diverse Query Structure: The structure of query plans is rep-

resented as a tree of functional operator nodes, e.g., scan, join,
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sort etc. It is a non-trivial task to represent a tree structure

containing attribute features at every node.

• Modeling Computational Complexity: Each query has a spe-

cific demand for computational resources based on their

functional operations. Moreover, the resource demand of

each functional operator is different. An open question arises

whether to implement an operator-level model or a single

primary model for encoding.

• Data Dependence: In databases, the generation of query plans

from a query depends on many factors, such as index avail-

ability, statistical information on data. A complete query

plan can only capture basic information about underlying

data. It raises the question of whether it is enough or we

need to incorporate more information.

• Encoding Multiple Properties: Database plans contain interre-

lated properties and information that give hints about query

performance and their execution metrics such as latency and

throughput. It is a challenge to unify and discover complex

correlations among the properties and features explicitly

obtained from plans.

• Domain Adaptation: The encoder models trained on a set of

workloads are likely to encounter a different unseen work-

load in the prediction phase. It is a challenge to quickly adapt

to a new workload setting (with less training data) using the

prior pretrained weights of the models.

We adopted specific strategies in our approach addressing the

above challenges. We purposefully design a feature-based query

plan encoder for learning the individual characteristics from dif-

ferent query plans. For modeling the performance complexity, we

incorporate meta-information (e.g., data distribution, selectivity,

cardinality) of database tables and attributes used in queries pro-

viding a detailed picture of the data access pattern.

It is a not trivial attempt to incorporate all the relevant meta-

information and capture relevant features in our plan performance

representation. Still, it is reasonable to assume that if we can incor-

porate all the required information to the encoders, we might be

able to learn the influencing factors contributing to the evaluation

metrics of query plans. After all, query optimizers are universally

designed logical components that generate query plans. The en-

coders producing a distributed representation of query plans can

facilitate many downstream tasks and enhance the performance of

core components. It encourages us to keep the encoder as general as

possible and capture the correlation among properties well enough

in the query plan representation. We aim to create a pretrained

encoder model that learns from large and diverse datasets to learn

plan features with a data-driven approach. In the ideal scenario, we

want pretrained encoders to quickly adapt to new domains with

less dataset, expediting domain transfer.

3 QUERY PLAN REPRESENTATION
In this section, we present our Structure Encoder and Computational
Performance Encoder for plans. Each node in the tree is a functional

operator with multiple properties, and nodes are ordered and con-

nected via unlabeled edges depicting the dependence relation. For

structural representation, we mainly study the operator type of

each node and leaving the performance-related properties for com-
putational performance representation in §3.2. When sketching our

encoders, we realize that keeping separate structure, and compu-
tational performance representation enables downstream tasks to

choose and weigh each representation independently in their model

and introduces modular design. It also helps us in evaluating the

structure and performance encoders separately.

For both Structure Encoder and Computational Encoder, we aim

that our pretrained model can easily be adapted by new applica-

tions. Hence, we study both of them on a two-stage framework:

pretraining and finetuning. In this section, we mainly introduce

the pretraining tasks and model architectures for them. Then we

outline our finetuning evaluation in §3.3.

3.1 Structure Encoder
We first try to give a clear picture of the diverse types of operators

in plans and how we define a taxonomy for them. Same functional

operators can use different strategies to fulfill their operations.

There are multiple types of Scan operators like Sequential Scan,

Index Scan, Bitmap Heap Scan, etc. Again, the same strategy is

often used in multiple functional operators, like, Hash Join and

Hash Aggregate use Hash strategy. We organized each type of

operator into three sub-level types as a taxonomy of operators.

The top-level Level 1 mostly suggest functional properties such as

Sort, Insert, Union, Scan, Join, etc. FLevel 2 and Level 3 are grouped
based on mutually exclusive strategy types such as Hash, Index,

Heap, etc. Table 2 shows all three levels of operator sub-type for

defining a real operator. We define all operator with three sub-type

as ⟨Level 1⟩-⟨Level 2⟩-⟨Level 3⟩. For example, operator Bitmap Heap
Scan and Left Merge Join is represented as Scan-Heap-Bitmap and

Join-Merge-Left, respectively. All these operator types form the tree

structure as shown in Figure 1, we need to find a way to encode the

tree. Notice that workload analysis based on similar query plans

can help DBAs in optimal utilization of database resources, e.g.,

buffers and configuration, by utilizing historical experiences from

other databases. Furthermore, encoders enable the clustering of

similar-featured queries learned from a large set of queries without

actually sharing any private/sensitive query information. Inspired

by this goal, we propose a plan-pair similarity regression task to

guide structural representation learning.

3.1.1 Plan-pair Similarity Regression. For pretraining our structure
plan encoder, we need a dataset of plan pairs with their similarity

scores, but obtaining such a dataset is challenging because this is a

graph similarity matching and scoring problem [40]. We came up

with a method to generate a bootstrapping training dataset, using

a widely used graph similarity metric for natural language repre-

sentation domain: Smatch [6]. It calculates the degree of overlap

between two graph structures, defined as the maximum F1-score

obtainable via a one-to-one matching of each node in two graphs.

Hence it is a value from 0 to 1, 0 means very different, while 1

means exactly the same. In this task, we treat the optimal Smatch

score as the similarity of the two plans. The Smatch score between

two tree-structure plans can be computed by graph matching opti-

mization algorithm, such as Integer Linear Programming (ILP) or

Hill-climbing methods. After we get the Smatch scores si j of each
plan-pair ⟨pi ,pj ⟩, this can easily form a large dataset with Smatch
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Figure 2: Plan Structure Encoder Model. Serialized plan pi
and pj with node positional information denoted with O.

score as the similarity supervision. We first train our structure en-

coder to predict the Smatch score of each plan pair. To note that the

idea is not to learn the Smatch but to learn contrast features from

plans. Later in our experiments on the downstream applications,

we show that the structure encoder pretrained from this task can

be easily finetuned for a new task or domain.

3.1.2 Model Architecture. We can keep the plan tree structure

intact and use tree-encoding architecture (such as, tree-LSTMs [30])

or use serialize methods to treat it as a sequence encoding problem

with positional encodings. In tree-LSTMs information, flows are

only through immediate neighbors, and it needs separate attention

mechanism for contexts among the nodes of sibling subtrees [1,

26]. For query plans (with many join and select permutations),

we encourage keeping wider contexts from a neighbor sub-tree

siblings, and that’s why find self-attention model with positional

encodings a simple and better approach.

We use the depth root first traversal to serialize plans, with a

simple yet ingenuity hack by adding hierarchical brackets for each

non-terminal node in the tree. An open bracket always encapsulates

sub-trees at the start and a closing bracket at the end; this is less

ambiguous than simple BFS and DFS tree traversal strategies. These
brackets preserve positional information of the structure and are

then utilized inherently by our self-attentive encoder with posi-

tional encoding. We present a running example of our DFS-Bracket
strategy in Table 3 for the plan in Figure 1.

Self-attentive Encoder Layer. We employ the multi-head, multi-

hop attention mechanism used in Transformer networks [36] pic-

torially presented in Figure 2. Due to space constraints, we refer

readers to the original work for details. We use same Q: attention
query

1
, K: key, V: value matrices notation from the original paper.

The multi-head attention is defined as,

Multihead(Q,K,V) = [head1 ◦ . . . ◦ headh]W
O

(1)

headi = softmax

*..
,

QWQ
i

(
KWK

i

)T
√
d

+//
-
VWV

i (2)

1
Note that attention query Q is different from query plan pi

Table 2: The taxonomy of operator types for every node

Level Operator Sub-types

Level 1

Aggregate, Append, Count, Delete, Enum, Gather, Aggre-

gate (Group, GroupAggregate), Hash, Insert, Intersect, Join

(Nested Loop), Limit, LockRows, Loop, ModifyTable, Net-

work, Result, Scan, Sequence, Set(SetOp), Sort, Union, Unique,

Update, Window, WindowAgg, Materialize

Level 2

And, CTE (Common Table Expressions), Except, Exists, For-

eign, Hash, Heap, Index, IndexOnly, LoopHash, Merge, Or,

Query, Quick, Seq, SetOp, Subquery, Table, WorkTable

Level 3 Anti, Bitmap, Full, Left, Parallel, Partial, Partition, Right, Semi,

XN (parallel operators)

Table 3: Running examples for DFS-Bracket traversal Strate-
gies. We use hyphens to connect 3 subtypes. When no sub-
type for the node, we denote it asNIL type, here we use blank
space for it to save table space. For example, the first node
Filter- actually means the first subtype is Filter, the second
and the third subtype is NIL.

Strategy Node Sequence

DFS

Bracket

(Filter–, (Sort–, (Aggregate–, (Join-Hash-, (Loop–Nested,

(Join-Hash-, (Hash–, (Loop–Nested, (Loop–Nested, Scan-

Index-, Scan-Seq-) Scan-Heap-Bitmap) ) Scan-Index-

Bitmap) Scan-Index-) Scan-Seq-))))

The Wi ’s refer to projection matrices for the three inputs and

the finalWo
projects the concatenated heads into a single vector,

and
1√
d
is scaling factor where d is the dimension of Q,K, and V. ◦

means concatenating the encoding attended by multiple heads.

The choices of the attention query, key, and value define the

attention mechanism. In our work, we use self-attention, defined
by setting all three matrices to [nj1 . . . njk ], where njk is the input

encoding of the jth self-attentive layer, which is corresponding

the encoding of the kth node in the serialized version along with

positional information.

Input Embedding Layer.We represent every plan operator node

as a concatenation of embedding of the three subtypes as given

in Table 2. Besides these regular nodes, we also added four spe-

cial nodes CLS, SEP, BR_OPEN, and BR_CLOSE for a start, end,

bracket open, and close in the serialized plan sequence, respectively.

For positional encoding in a self-attentive layer, we keep track of

bracket states for any input sequence with a list. This list counts

the number of opening brackets for all the levels till that node in

the serialized plan. It is a simpler tree position encoding scheme

inspired by the work of Shiv et al [27]. We restrict our discussion

due to space constraints, though we present a few examples of list

states and the encoded positional information here.

a. ((( → 1,1,1 → [0,0,1,0,0,1,0,0,1,0,0,0],
b. (()(( → 1,2,1 → [0,0,1,0,1,0,0,0,1,0,0,0],
c. (((())(( → 1,1,2,2 → [0,0,1,0,0,1,0,1,0,0,1,0].

Matching Layer The output of the self-attention encoder is a

sequence of vector for each nodes, we use the output encoding

of CLS node as the encoding of the plan pi , because it aggregates
the weighted sum of all other nodes in the self-attentive layer. We

denote the plan encoding for pi as Pi ∈ R
d
. After encoding the

plan-pair <pi ,pj>into vectors <PiPj>, then we use a matching layer

to compute the similarity as

σ (W ∗ [Pi ◦ Pj ◦ (Pi − Pj ) ◦ (PiPj )] + b)
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Figure 3: The multi-column deep neural network(DNN) for
our computational performance encoder.
where σ denotes the sigmoid activation function,W ∈ R4d , b is

bias, and ◦ are the concat operators on four vectors.
2

3.2 Computational Performance Encoder
This section presents our computational performance encoder, de-

scribing the pretraining task to supervise the encoder learning and

our proposed model architectures and intuitions.

3.2.1 Performance Attribute Prediction. The properties mentioned

in Table 1 for each type of broadly classified operator in a plan

give an ample hint on its computational demand. These proper-

ties are either derived from complex logical inferences by a plan

optimizer or actual output from the query execution. In previous

works [10, 11, 19], we notice the use of Total Cost, Total Time,
Startup Time properties as a measure of performance. We strongly

agree with previous research works on using the properties above-

mentioned as measures of computational performance. Moreover,

in our encoder, we use these attributes as labels for prediction

to encode the underlying features. We use properties explicitly

mentioned in nodes (an instance of an operator in a plan), meta-

information from databases, and database configuration settings

to predict these labels. In the process of learning the labels, we

learn the implicit features as embedding with our computational

performance encoder.

We first create encoders, each for (i) Scan (ii) Join (iii) Sort (iv)

Aggregate functional operators, these four operators are the most

frequently used in query plans. The nodes with operator type Hash
Join, Merge Join, Nested Loop, Left/Right/ Inner/Outer Merge Join,
Nested Loop is mapped to Join; similarly, Seq Scan, Index Scan,
Heap Scan, Bitmap Heap Scan is mapped to Scan. From the proper-

ties of each node, we also extract the relation names and attribute

names from which it is accessing the data from node properties

such as Relation Name, Hash/Join/Merge/Index Condition, Filter,

2
Other match function exists, e.g. bilinear similarity PiMPTj , M ∈ R

d×d
. However,

we found that this contanated matching similarity can largely reduce the parameters

size from d2
to 4d and achieve better performance.

Table 4:Meta Features andDBSettings used as input features
to Computational Performance Encoder

Features Type Feature Attributes

Meta Features

rel_name, att_name, rel_tuples, rel_pages,

rel_file_node, rel_access_method , n_distinct,

distinct_values, selectivity, avg_width, correlation

DB Settings

bgwriter_delay, shared_buffers, bg-

writer_lru_maxpages, wal_buffers, ran-

dom_page_cost, bgwriter_lru_multiplier, check-

point_completion_target, checkpoint_timeout,

cpu_tuple_cost, max_stack_depth, dead-

lock_timeout, default_statistics_target, work_mem

effective_cache_size, effective_io_concurrency,

join_collapse_limit, from_collapse_limit, mainte-

nance_work_mem

Output. We map them with the meta-information collected from

the database. In Table 4, we show the meta-information attributes

we use as input to the model used by the node. This information can

be easily extracted from DBMS system tables e.g., PostgreSQL [28].

We also use a set of database configuration setting values of the

running database as input features to the model. These configura-

tion settings are selected based on their importance for performance

tuning as described in [24, 35]. The approach of training our models

with diverse configuration settings also sets us apart from other

plan-metric prediction works [19, 29].

Altogether, we have three types of input features,

• (a) Plan Features, fnode : Features obtained from a plan oper-

ator nodes, see Table 1 for feature list.

• (b) Meta Features, fmeta :Meta-information about data and

its distribution, see Table 4.

• (c) DB Settings, fdb : Handful number of database configura-

tion settings, see Table 4.

With a triplet feature tuple as input ( fnode , fmeta , fdb ) our per-
formance computation encoder aims to learn latent features while

optimizing for Total Time, Total Cost, or Startup Time. In our joint

training optimization approach as described in §3.2.3, we make use

of these three metrics to capture better encoder features and avoid

overfitting.

3.2.2 Model Architecture. Wenow present the deep neural network

(DNN) architecture of the encoder with a pictorial representation

in Figure 3. It is a three-column DNN on the top each for Plan

features, Meta features, and DB features, respectively, with another

fully connected NN layer merging the three parts and producing

the embedding layer. The last fully-connected NN component takes

the output of the embedding layer to predict the metric labels,

i.e., Total Cost, Total Time, Startup Time. Also, each NN layer is

followed by an activation function layer of ReLU (Rectified Linear

Unit), Sigmoid or Tanh functions. As mentioned earlier, we create

multiple instances of this supervised regression model, each for a

functional operator.

A NN layer can efficiently represent or capture complex relations

among input features by applying an affine transformation of the

input. With multiple feed-forward NN layers, number of recursive

affine transformations with weight matrices and non-linear activa-

tion functions are applied to the input features to produce an output.

Then the difference between the desired output and the predicted

output is calculated based on some metric functions dubbed as loss.
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A gradient descent based technique is applied to tweak the weights

on each layer used to perform the optimize affine transformation

weights minimizing the loss. It allows the model to learn non-linear

and polynomial order complex functions, automatically identifying

the relevant features.

One of the ingenuity of this model is three-column multi-layered

feature approach on Plan, Meta, and DB features, respectively, al-

lows the model to find correlation among the same type of features

first. Then transformed weighted features from each part can cor-

relate effectively. As a preliminary attempt, we train an alternate

model with a standard (single-column) DNN with all the input fea-

tures together. In §6.2, we provide a comparative study to evaluate

both the models.

3.2.3 Joint Training. A general rule of thumb for any model is that

the distribution of predicted data remains the same as training data.

But, in our case, the data distributions change with new workload.

When the model learns from a single or small workload bench-

mark, the model overfits to the training set. With an assumption

that if enough information on the data distribution is provided for

training the model, the model may learn the factors governing the

performance metrics for each operator (Scan, Join, Sort, Aggregate,

etc.). Also, the fact that a general query plan optimizer (which is a

logical component) uses the same statistical information we use as

input to our model encourages us. The trick is to learn a generalized

pretrained model that can adapt to an unseen workload with small

data from the new domain. Hence, the pretrained models should

utilize already learned parameters to adapt with the new workload.

We utilize a joint training approach for training the encoders.

We train each operator model on multiple workloads on different

data distributions and multiple database configuration settings. In

joint training approach, we perform multiple metric tasks, each

task optimizes for each label, i.e. Total Cost, Total Time and Startup
Time. The difference in each of these models is the last NN-layer,

which uses the embedding layer as input. Since the top level of the

model remains unchanged, the weights are naturally tweaked to

learn features based on multiple tasks.

We evaluate our performance encoder models on two criteria,

(i) the model uses less data from a new domain to adapt, and (ii)

the model error on validation and test data converges. We pro-

vide a detailed evaluation results on our pretrained computational

performance encoder in §5.

3.3 Finetuning Evaluation
Given the above pretraining for learning structure and computa-

tional performance encoders, we hope that our learned model can

be easily used in other unseen applications. We conduct two groups

of finetuning evaluation for them:

Domain Adaptation. For both the structure encoder and compu-

tational encoder, they are trained from a source distribution on

plan-pair similarity regression and performance attribution predic-

tion tasks. Domain Adaptation aims at that these models can be

easily finetuned on a different target data distribution. Hence, we

finetuning them on different benchmark workloads on the same

tasks, such as TPC-H and TPC-DS , and Spatial benchmarks. For

plan-pair similarity regression task, we generate a collection of plan

pairs for each new benchmark, and then calculating the Smatch

scores for evaluation. For the performance attribute prediction task,

we collect the new dataset by running workloads on different data-

base configurations. More details about those datasets is introduced

in §5.1, and the results on domain adaptation for each encoder in §6.

Transfer Learning to New Tasks Besides the ability of domain

adaptation, we also define two new tasks to evaluate whether our

pretrained plan encoder can be easily used for other tasks rather

than our pretraining task in §4.

4 DOWNSTREAM TASKS
In this section, we show two downstream tasks that use our pro-

posed plan structure and performance encoders. We present a bird-

eye view model architecture, common to both the downstream

tasks in Figure 4. For a given query plan input, meta information of

database, and database configuration, the plan encoders (structure

and performance encoder) produce respective representations as

output. This output is then fed to the downstream task-specific

model. Note that for generating the computational performance

representation, we group plan nodes based on the type of func-

tional operator and then pass it to the corresponding performance

encoder to obtain representation.

The downstream task model is a standard multilayer-DNN tak-

ing three inputs, (a) structure embedding,(b) computational perfor-

mance embedding, and (c) the database settings. The properties of

database settings are real numbers. They can have an arbitrarily

large value, which hinders learning a better model. We overcame

the problem by scaling each database setting with a logarithmic

function and using them as added features along with the actual

numbers. Furthermore, we added a flexible design of reshaping the

dimension of the structure or performance representation in the

downstream task model for obtaining better accuracy.

4.1 Query Latency Prediction
The first downstream task is a real-world task of predicting query

latency for an input query plan on a given database knob configu-

ration settings utilizing our plan encoders. Formally, we define the

query latency prediction problem as follows.

Problem 1 (Query Latency Prediction:). Given a query plan
p, meta-features fmeta of the database, and a database configuration
settings fdb , the model predicts the latency of the query.

For generating the training data for the latency model, we cre-

ated an automated workload running scripts
3
that runs on cloud

server instances and uploads executed plans along with the meta-

features and database settings to our data repository. The script

generates a new database configuration and configures the database

automatically for each run. These new database configurations are

generated based on the Latin Hypercube Sampling method [3, 20]

for the properties mentioned in Table 4. This method for generating

database settings has been used earlier [12, 35].

4.2 Query Classification
A smart database could use the knowledge of workload/ query dis-

tribution to set an optimal database configuration. An important

step towards it is to learn the features of similar queries, and clus-

ter/classify them. We conducted a query template prediction task

3
https://github.com/debjyoti385/workload_scripts
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Figure 4: A bird-view diagram, showing the role of plan encoders for a downstream task.
with our pretrained plan structure and performance encoders. We

aim to show that our plan encoders can efficiently project query

plans in latent dimensions finding similar query plans. We formally

define the problem statement as follows.

Problem 2 (QueryClassification:). Given a query planp, meta-
features fmeta of the database, and a database configuration settings
fdb , the model predicts the predefined class for the query plan based
on feature similarities.

We conducted an experiment with join order benchmark [16]

containing 113 interesting query templates and 33 clusters of simi-

lar query templates. Due to the variable cardinality of the database

tables and query predicates, the query plans generated from a query

optimizer can differ from one another. It also makes the classifica-

tion task challenging to cluster the query features accordingly. We

include the performance encoder in classification tasks as queries

even with similar plan structures can differ in performance features.

We present detail of this experiment and the role of individual

encoders in § 5.3.

5 EXPERIMENTS AND RESULTS
This section first describes the datasets we used in our experiments.

We then present evaluation methods with experimental results for

latency prediction and query template classification tasks.

5.1 Datasets
Crowdsourced Plan Dataset.We collected this dataset contain-

ing PostgreSQL queries along with its execution plans from a crowd-

sourced website
4
[8]. We used this dataset for pretraining our struc-

ture encoder model. After pruning the plans with more than 200

nodes, we generate 57430/2871/2871 plan-pairs for training/dev/test

and then calculate the Smatch score as their similarity score.

Industry Standard Benchmarks. We have used two industry-

standard TPC-H [33] and TPC-DS [34] benchmarks as workloads

with different scale factors (SF), and execute them with different

database settings with an automated script
5
. We used a part of this

4
https://explain.depesz.com

5
https://github.com/debjyoti385/workload_scripts

dataset for pretraining our performance encoders. Table 5 shows

statistics of the explored database settings from prepared datasets.

Spatial Benchmark. Spatial queries are notorious for hogging

resources and need a proper database configuration for optimal

performance. PostGIS, the spatial object extension for PostgreSQL,

admits the configuration tuning requirement based on workload

type in their documentation [24]. We use the two following spatial

benchmarks in our experiments.

Jackpine: Jackpine [25] benchmark contains diverse spatial queries

on spatial join with multi-polygons, lines, points and combination

of them.We revised
6
the original benchmarkwith recently available

shape datafiles, PostGIS extension, and made publicly available.

Open Street Map (OSM): The Open Street Map(OSM) workload

has spatial overlap, distance, and routing queries. This dataset is

created
7
with inspiration from work [4]. Due to sparsity, it is diffi-

cult to understand the underlying data distribution, which makes it

an inviting benchmark for the experiment. We used the OSM map

of New York and Los Angeles county.

Join Order Benchmark. It contains 113 different queries, which
can be grouped into 33 clusters due to the similar SQL queries with

different join orders. We run those queries on different database

configurations and then collect the 16229 different plans. We split

that into 13505, 1362, 1362 as training, dev, and test, respectively.

5.2 Results on Query Latency Prediction
We first evaluate our query latency prediction model with multiple

experiments to project the overall effectiveness of using our plan

encoders. We used pretrained structure and performance plan en-

coders trained on the Crowdsourced dataset and multiple TPC-H

and TPC-DS workloads, respectively. A detailed analysis of our

pretrained encoders is given in §6.1 and 6.2.

Ablation Studies. (a) Spatial Benchmark: We first present an abla-

tion study on individual queries. The aim of this study is to measure

6
https://github.com/debjyoti385/jackpine

7
https://github.com/debjyoti385/osm_benchmark
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Table 5: Statistics on configuration settings generated for
training data.
Database Setting Unit Median 95th Percentile 5th percentile

bgwriter_delay ms 4,860.00 9,421.05 456.00

bgwriter_lru_maxpages integer 515.00 958.05 55.00

checkpoint_timeout ms 300.00 540.00 60.00

deadlock_timeout ms 300,000.00 540,000.00 26,000.00

default_statistics_target integer 4,827.50 9,563.00 454.85

effective_cache_size bytes 1,048,576.00 1,966,080.00 131,072.00

effective_io_concurrency integer 52.00 96.00 6.00

maintenance_work_mem bytes 7,340,032.00 15,728,640.00 876,953.60

max_stack_depth integer 3,072.00 5,120.00 417.95

random_page_cost number 5,028.60 9,507.39 560.40

shared_buffers bytes 2,097,152.00 3,932,160.00 131,072.00

wal_buffers bytes 130,624.00 131,072.00 12,416.00

work_mem bytes 15,728,640.00 31,457,280.00 1,048,576.00

the error relative to the variability of query latency. For initial train-

ing of the latency prediction model, we used plans from spatial

benchmark [5, 22, 25] executed on 120 different database configu-

rations. The trained model then predicts query latency for spatial

queries on different database configurations. To prepare our test

datasets, we ran each benchmark 50 times with very different data-

base configuration settings.

Figure 5 shows the query latency statistics of query templates

with median query latency greater than 500 milliseconds from

spatial benchmark; Jackpine (with prefix Q), and OSM benchmark

(with prefix OSM). The blue bars in the chart show the median of

the query latency for all the query execution with different database

settings. The orange line shows the query latency variability due to

change of database settings. The bottom point of the orange line

represents the 5th percentile, and the highest point marks the 95th

percentile of query latencies. We present a complimentary Figure 6

along with Figure 5 that pictorially shows the mean absolute error

for all the query templates from the spatial benchmark. The orange

line is the measure of the time difference between 95th percentile

and 5th percentile of a query latency in milliseconds, depicting the

extent of the query latency variability for the particular query. To
note, vertical axes on both figures i.e. Figure 5 and 6 are presented

on a logarithmic scale with milliseconds as unit. It shows that at

least 68% of the queries have MAE less than 10% of variability, and
90% of the queries have MAE less than 30% of variability.

Query latency prediction on the spatial benchmark is challeng-

ing because of the sparse geospatial data distribution from two

areas contributing towards large variability. Furthermore, the per-

formance of spatial queries is easily affected by database config-

urations. Significantly less mean absolute error from the latency

prediction model shows that pretrained encoders helped the model.

(b) TPC-DS SF-100 Benchmark: In this experiment, we compare

our latency model with state-of-the-art latency prediction models

for each query template from the TPC-DS benchmark for a scale

factor of 100 (i.e., 100 GB). A recent study by Marcus et al.[19]

shows TPC-DS query ablation study with TAM [38], SVM [2], RBF
[18] and QPP Net [19]. It is to note that we used the same TPC-DS

plan dataset used by the study [19], and we split our dataset in

80:20 ratio for use as training and test data. In Figure 7, we show an

ablation study of mean absolute errors of the predicted latencies for

all the TPC-DS query templates for different models. We find that

25 (36%) query templates showing at least 10% better MAEs than

the best baselines, 33 (48%) query templates within ±10% MAEs of

best baseline, and only 11 (16%) query templates with MAEs greater

Figure 5: Statistics on latency of spatial queries (> 500 ms) from Jackpine
[25] and OSM benchmark, where the blue bar represents median, the orange
line represents the query latency variability with 5th and 95th percentile of
query latency for different database configuration.

Figure 6: The black bar represents mean absolute error (MAE) (in ms) for
spatial Jackpine and OSM queries, the orange line represents the query la-
tency variability i.e. the measure of time difference between 95th percentile
and 5th percentile (same as the orange line from Figure 5), a smaller black bar
on a larger orange-line bar means better results.

than 10% of the baseline values. It is also worth mentioning that 22

(31%) and 12 (17%) of those queries templates showMAEs reduction

of at least 25%, 50% over the best baseline.

We performed another analysis with the relative error factor R
of the predicted latency from the ground truth for all the models,

calculated as follows.

R (q) = max

(predicted (q)
oriдinal (q)

,
oriдinal (q)

predicted (q)

)
We present the percentage of the queries with less than 1.5R, be-
tween 1.5R and 2R, and greater than 2R in Table 6 for TPC-DS

dataset. Our result shows that our Plan Encoder has an edge over

the QPP Net and other baselines. More than 91% of the queries are

within 1.5R factor with Plan Encoder which is 2%, 6%, 23%, 40%

better thanQPP Net, RBF,SVM, and TAM respectively. The number

of queries with more than 2R factor also reduced to 2%. Further-

more, we find that 74% of the queries are within 1.25R factor of the

original latency. With a high percentage of the prediction within

1.5R and 1.25R factor, it can be said that Plan Encoder performed

quite well.

As our encoders are first pretrained with general datasets, we

expect them to perform well in general, which it did. But there is a

small percentage of queries (from a few query templates) where the

predictions are off by a considerable factor contributing to a higher

mean value for errors on those query templates, shown in the ab-

lation study with Figure 7. We investigated it and noticed that for

some query templates database metadata (e.g. set of indexed/non-

indexed columns) and configuration settings (e.g. shared buffers,

working memory) largely contributes to latency output. Since, plan

encoder takes database configuration as input as well (unlike base-

lines), we tried our best to match the configuration for those with

baselines runs for TPC-DS dataset. Overall, it is still perceptible

that our pretrained plan encoder approach works well in general

on two spatial benchmarks (Jackpine, OSM) and TPC-DS.
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Figure 7: Ablation study of mean absolute error (MAE) (y-axis in logarithmic scale) for the all the TPC-DS query templates
(x-axis) with scale factor 100.

Table 6: Queries from TPC-DS SF-100 test set binned based
on R factor for all the models.

Model R ≤ 1.5 1.5 < R ≤ 2.0 R > 2.0

TAM 51% 22% 27%

SVM 68% 15% 17%

RBF 85% 6% 9%

QPPNet 89% 7% 4%

Plan Encoder 91% 7% 2%

Discussion on Embedding Sizes; Structure Encoder vs. Performance
Encoder: We performed another experiment finding the optimal

embedding size for structure encoder w.r.t. the performance en-

coder. First, we found that using only structure encoder vs. only

performance encoder yields 5 times the latency error of the latter.

As a follow-up experiment, we kept performance encoder embed-

ding fixed to 300 and varied structure encoder embedding sizes

from 8 to 320. We used five TPC-DS SF-10 test datasets and found

that the average MAEs dropped till embedding size 160 and then

increased; we got the best MAEs with embedding sizes for structure

vs. performance encoders as 160:300. It also confirms that features

from the performance encoder dominate the structure encoders

features, which is relatively low importance but still significantly

impacts the latency prediction task.

5.3 Results on Query Classification
We conducted the query classification experiment with join-order

benchmark, we fuse our pretrained structure and performance

encoder to classify a plan with a template-id. The join order bench-

mark has 113 query templates and 33 clusters, and it is not trivial

to classify queries from this dataset as join orders can change ar-

bitrarily in plans. Our classifier aims to predict both the template

id and cluster id. Our query classification model is similar to the

latency prediction model but with a batch normalization layer and

multi-classification cross-entropy loss. To understand how struc-

ture and performance encoder performs in the task, we performed

an ablation study using structure-only, performance-only, and both

in our experiments. The results in Table 7 show structure encoder

plays main role in this task. Without it, the performance-only per-

forms badly. Adding the performance encoder boosts f1-scores by

0.058 (29%) on template and 0.08 (21%) on cluster classifications.

Table 7: F1-scores of models for template and cluster query
classification task on development and test set.

Models

Development Test

template cluster template cluster

Structure only 0.2452 0.4670 0.1946 0.3847

Performance only 0.1645 0.2973 0.0977 0.1769

Both encoders 0.2783 0.5573 0.2518 0.4647

Both encoders 10% data 0.2000 0.4927 0.151 0.334

Both encoders 30% data 0.2555 0.5228 0.1843 0.3855

We also found, when the models are finetuned on only 10% and

30% of data, i.e., rows with Both 10% data and Both 30% data, the
models still performed reasonably well, which indicates that our

pretrained encoder can boost learning for domain adaptation.

6 ANALYSIS
6.1 Structure Encoder
As described in §3.1, our structure encoder is pretrained on plan-

pair similarity regression task with the self-attention encoder. We

use a large amount of dataset from the Crowdsourced Plan dataset

for pretraining. In this paper, we first prune those extremely large

plans with more than 200 nodes. Then randomly select 63172 pairs

of plans to form the dataset for our plan-pair regression task and

calculating all the Smatch scores of those pairs.

Baseline Models For our plan-pair similarity regression (PPSR)

task, we compare our Plan Encoder (Encoder-PPSR) with other

self-supervised encoders such as Sparse Autoencoders (Sparse-AE),
LSTM encoders (LSTM-PPSR) as baselines. All these baselines learn
to represent input plans into a latent multidimensional space.

Results on FinetuningAfter completing the pretraining onCrowd-

sourced dataset for three models: Sparse AE, LSTM-PPSR, Encoder-
PPSR. We investigate the domain adaptation capability of these

models with finetuning. We randomly selected 11126, 55498, 60000

plan-pairs with plans from TPC-H, TPC-DS, and SPATIAL datasets,

then created the training, dev, test splits with a ratio of 20 : 1 : 1.

We opted for three different strategies to test domain adaptation

finetuning, (a) Scratch- Without pretraining, (b) Fixed- Keeping
pretrained encoder in eval mode (fixed embedding) and train only

the prediction layers, (c) Fine- Train both encoder and prediction

layers together in finetuning procedure. Figure 8 show the Smatch
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Figure 8: Main Results of finetuning structure encoder on
TPC-H, TPC-DS, and SPATIAL

score’s mean absolute error (MAE), the absolute difference between

predicted and the actual Smatch score. The trend among Scratch,
Fixed, and Fine strategies on all three domains shows similar MAE

behavior. Note that both LSTM and self-attention scratch models

performed at par on the spatial dataset, using pretraining did not

improve the result by a lot in this case. Overall, in all the three do-

mains, TPC-H, TPC-DS, and Spatial; Encoder-PPSR-Fine did well,

which signifies that our self-attentive encoder can adapt better to a

new domain.

In Figure 9, we compare pretraining and no-pretraining (scratch)

methodwith different amount of training data. For all 3 benchmarks,

especially TPC-H and TPC-DS, our pretrained method can achieve

small MAE of Smatch score on less amount of data. On spatial data,

our pretrained method only slightly better than no-pretraining one.

6.2 Computational Performance Encoder
We now perform local probe on computational performance en-

coder with a set of experiments evaluating the pretrained encoders

for Scan, Join, Sort, and Aggregate operator. For pretraining, we

used TPC-H and TPC-DS, both with scale factors 1,2,3 and 5 were

executed on at least 20 different configuration settings randomly

generated via Latin Hypercube Sampling method [3, 20].

Pretraining:We first illustrate the training procedure and a few

learnings from it. We split the dataset into 8:1:1 ratio for train,

validation, and test for pretraining of all the four operators. Figure

10 shows the Mean Absolute Error (MAE) on latency (Actual Total
Time) label for train, validation, and test data for scan, join, and sort
operator. In all the cases along with aggregate (not shown in Figure

10), the train, validation, and test MAE converges below 1 second

and stays around tens of milliseconds. The MAE on test data is

calculated based on the epoch with the best validation model seen

while training. We stop the training when the MAE on validation

does not improve more than 5 milliseconds in the last 100 epochs.

With a 12 GB GPU on a Ubuntu 18.04 operating system, each model

takes around 6-8 hours to train.

Key insight on training the models is that the best MAE varies

based on operators. The best MAE for the Scan model on test data is

12 milliseconds, where the validation MAE is 7 milliseconds. In the

Join and Sort models, the test MAEs reach a low of 3.42 milliseconds

and 44 milliseconds, respectively. It is to note that we performed

pretraining on all the three labels Actual Total Time, Total Cost and
Startup Time but for brevity we could only report the Actual Total
Time metric in our figures.

Figure 9: Plan-pair Regression: MAEs of Smatch score on
fractions of training data

(a) Structure encoder training. (b) Scan operator pretraining.

(c) Join operator pretraining. (d) Sort operator pretraining.

Figure 10: Showing convergence of Mean absolute errors(MAE) (in
seconds) for the validation, test and train datasets, while pretrain-
ing all the computational performance encoders.

(a) MAEs on Scan model for
fractions of training data.

(b) MAEs on Join model for
fractions of training data.

(c) MAEs on Sort model for
fractions of training data.

(d) MAEs on Aggregate model
for fractions of training data.

Figure 11: The effect of dataset size for finetuning with pretrained
vs scratch(non-pretrained) models on TPC-DS SF-8, showing ≥ 0.3
fraction of dataset is enough for finetuning a pretrained model.

Finetuning with pretrained models. The goal of having a pre-

trained model is to expedite the domain adaptability with less data.

In many cases, obtaining adequate training data is challenging and

time-consuming. In this set of experiments, we perform finetuning

tasks on a new dataset of TPC-DS with scale factors 8 (SF-8). We

also performed the same experiment on the spatial dataset, show-

ing a similar result. Due to space constraints, we could not add the

result of the spatial dataset.
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(a) TPC-DS SF-8 benchmark. (b) Spatial benchmark.

Figure 12: Comparison of MAEs for pretrained vs scratch
models with 0.3 fraction of finetuning data.

To show the effectiveness of pretraining models over scratch or

non-pretrained model, we orchestrated a comparative experiment

where the performance of models trained on fractions of training

data. We limit the full training dataset to randomly chosen 2000

plans and test dataset to 500 plans for both TPC-DS and Spatial

datasets. We run each model for 100 epochs which take around 10

minutes to train. In all the line charts from Figure 11, we notice

that as the amount of training data increases, the MAE decreases

on all the models, but the validation MAEs of scratch models is

only comparable with the pretrained models when trained with

0.5 to 0.7 fractions of training data. The critical observation is that

pretrained test seldom improves beyond 0.3 fractions of training

data for our workloads.

To make the clear distinction between pretrained and scratch

models, we show the MAE on the test dataset for each operator

and dataset with 0.3 fractions of training data in Figure 12 for TPC-

DS SF-8 and Spatial workloads. We report the test MAE for the

best validation model obtained in 100 epochs. In all the cases, the

pretrained model beats the scratch model by a considerable margin.

Conclusively, it confirms that our pretrained encoders are beneficial

and adapts to a new workload quickly.

Multi-column vs Standard DNN This experiment performs a

comparative evaluation between our three-column DNN and a stan-

dard (single-column) DNN for the performance encoder. Similar

to the previous finetuning experiment, we pretrained both models

with the same workloads. After that, we finetuned each model with

0.3 fractions of training data from TPC-DS SF-8 and Spatial work-

loads independently to obtain multiple evaluation models. Figure

13a and 13b shows the Mean Absolute Error(MAE) obtained from

the three-column DNN and the standard DNNmodels for an unseen

TPC-DS SF-8 and Spatial benchmark dataset, respectively. With the

TPC-DS workload, Figure 13a shows MAE for the three-column

DNN model is better than standard DNN for all the operators ex-

cept the scan operator. Whereas the MAE for three-column DNN is

significantly less than standard DNN for the spatial workload. It

suggests that keeping the performance features (fnode , fmeta , fdb )
independent for the first few layers helps the model. Different

features might get intertwined in the early stage in the standard

single-column model, impeding its learnability.

(a) TPC-DS SF-8 benchmark. (b) Spatial benchmark.

Figure 13: Comparison of MAEs for multi-column vs stan-
dard DNN models with 0.3 fraction of finetuning data.

In summary, our experiments present plan encoders’ effective-

ness in learning query plans characteristics through downstream

tasks and domain adaptation probes. The results suggest the require-

ment of pretrained models to characterize unseen queries. Other

database core systems certainly can leverage the plan encoders to

increase their effectiveness and achieve instance optimality.

7 RELATEDWORKS
There exists a few research work that uses data-driven analysis on

query plans and its features to comprehend workload characteristic

[2, 10, 13, 18, 19, 29]. Early research works [13, 18, 41], focuses

on feature engineering with data mining techniques like k-NN[7]

on high-dimensional features. The initial works show the impor-

tance of feature engineering, which encourages follow up research

works using neural networks for workload related prediction tasks

(metrics, resource demands, indexing, etc.) [10, 11, 17, 19].

All these methods learn models from input features of query

plans for a specific task. In our paper, we show an approach to

learn pretrained query plan encoders that can be used for many

downstream tasks. Currently, database researchers are proposing

prepackaged AI learned models for core components of databases

[15, 29, 35]. Our work on query plan encoders bridges the gap

between query input and prediction tasks.

Database tuning is an interesting problem to achieve instance op-

timality and closely relates to query performance prediction tasks.

An earlier work, Ituned [32] uses a feature-based approach for tun-

ing databases. Recently published work, QTune [17] uses query

plans and reinforcement learning for tuning databases. In both

approaches, query plans are essential. Our attempt to create a pre-

trained encoder for query plans is relevant to database tuning and

other similar tasks. We show its relevancy with a latency prediction

over a different configuration and different data. An earlier work by

Popescu et al. [23] shows it is feasible to accomplish performance

prediction tasks on new data distribution for the same query. One

of the significant contributions of our pretrained encoders is the

adaptability of the models with new data and queries.

8 CONCLUSION
In this work, we study a method of featurizing database work-

loads with AI based encoders that helps in understanding database

queries under structural and performance properties. We followed

a pretrained encoder based approach for our models that learns

weights from diverse training dataset and then use the learned

model in downstream tasks like query latency prediction. We per-

formed multiple probes on structural encoder and performance

plan encoders, to prove their learning capability and efficacy. We

also present an in-depth ablation study on query latency predic-

tion for multiple benchmark workload proving the usefulness of

workload characterization with plan encoders. Our approach of

studying database workloads with pretrained encoder models can

pave a new direction in this field.
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