
Towards Practical Oblivious Join
Zhao Chang

Xidian University

changzhao@xidian.edu.cn

Dong Xie

The Pennsylvania State University

dongx@psu.edu

Sheng Wang, Feifei Li

Alibaba Group

sh.wang@alibaba-inc.com

lifeifei@alibaba-inc.com

ABSTRACT
Many individuals and companies choose the public cloud as their

data and IT infrastructure platform. But remote accesses over the

data inevitably bring the issue of trust. Despite strong encryption

schemes, adversaries can still learn sensitive information from en-

crypted data by observing data access patterns. Oblivious RAMs

(ORAMs) are proposed to protect against access pattern attacks.

However, directly deploying ORAM constructions in an encrypted

database brings large computational overhead.

In this work, we focus on oblivious joins over a cloud database.

Existing studies in the literature are restricted to either primary-

foreign key joins or binary equi-joins. Our major contribution is

to support general binary and multiway equi-joins. We integrate

𝐵-tree indices into ORAMs for each input table and retrieve blocks

through the indices in join processing. The key points are to ad-

dress the security issue (𝑖 .𝑒 ., leaking the number of accesses to

any index) in the extended existing solutions and bound the total

number of block accesses. Our index nested-loop join algorithm

can also support some types of band joins obliviously. The effec-

tiveness and efficiency of our algorithms are demonstrated through

extensive evaluations over real-world datasets. Our method shows

orders of magnitude speedup for oblivious multiway equi-joins in

comparison with baseline algorithms.

CCS CONCEPTS
• Security and privacy → Management and querying of en-
crypted data.

KEYWORDS
oblivious RAM; oblivious index; binary join; multiway join

ACM Reference Format:
Zhao Chang, Dong Xie, and Sheng Wang, Feifei Li. 2022. Towards Practical

Oblivious Join. In Proceedings of the 2022 International Conference onManage-
ment of Data (SIGMOD ’22), June 12–17, 2022, Philadelphia, PA, USA. ACM,

New York, NY, USA, 15 pages. https://doi.org/10.1145/3514221.3517868

1 INTRODUCTION
Many cloud service providers offer cloud-based database systems

such as Amazon RDS and Redshift, Azure SQL, and Google Cloud

SQL. A necessary step for keeping sensitive information secure and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA.
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00

https://doi.org/10.1145/3514221.3517868

private on a cloud is to encrypt the data. To that end, encrypted

databases such as Cipherbase [8, 9], CryptDB [62], TrustedDB [14],

SDB [43], and Monomi [70], as well as related query execution

techniques [10, 42, 80, 83] have been developed. But query access

patterns still pose a privacy threat and leak sensitive information

[11, 23, 44, 87]. It is possible to analyze the importance of different

areas in the database, 𝑒.𝑔., by counting the frequency of accessing

data items [18, 20, 48, 59]. With certain background knowledge, the

server learns a lot about user queries and/or data [23, 46, 61].

Oblivious RAMs (ORAMs) [37, 38, 60] allow the client to access

encrypted data on a server without revealing her access patterns.

However, most ORAM constructions are still too expensive to be

deployed in a large database [23]. Recent studies [44, 45, 49, 58, 67,

76] also explore building oblivious data structures or indices over

encrypted data, but none of them support complex queries (𝑒.𝑔.,

joins). The key point is that ORAM does not protect the number
of block accesses inherently for a general query operator. Hence,

all extended existing solutions to integrating indices into ORAMs

do leak the number of accesses to any index in processing. We will

address the security issue in our algorithms in Sections 5 and 6.

Joins are commonly used operations in relational databases. The

following two applications motivate the research of privacy pre-

serving joins. One application is to check if any airline passengers

are on the watch list of a federal agency for national security [51].

Privacy preserving joins help to find only those passengers who are

on the list, without obtaining personal information about any other

passengers from the airline or revealing the watch list [5]. The

other application is to find out the correlation between a reaction

to a drug and some DNA sequence for medical research [5]. It joins

DNA information from a gene bank with patient records from vari-

ous hospitals, and requires accessing only the matching sequences

from the gene bank and not disclosing the patient information [6].

In this work, we consider the problem of computing join func-

tions in an oblivious way. Li and Chen [54] first studies how to

compute theta-joins obliviously, but all of their algorithms are no

better than a Cartesian product. Arasu and Kaushik [11] presents

oblivious query processing algorithms for a rich class of database

queries including joins. However, Krastnikov 𝑒𝑡 𝑎𝑙 . [53] points out

that the details in [11] are incomplete, and no practical implemen-

tation is provided to show the empirical results. Opaque [87] and

ObliDB [35] are efficient only for the special case of one-to-many

equi-join, 𝑒.𝑔., primary-foreign key join. It is still unknown how

to extend the Opaque join algorithm [35, 87] to support general

oblivious many-to-many equi-join. Krastnikov 𝑒𝑡 𝑎𝑙 . [53] proposes

a novel oblivious algorithm for general binary equi-joins. However,

it is non-trivial to extend their algorithm to join over multiple ta-

bles obliviously. A series of oblivious binary joins will disclose the

intermediate table sizes, which may leak some sensitive informa-

tion, 𝑒.𝑔., the data distribution or the sparseness of the intermediate

https://doi.org/10.1145/3514221.3517868
https://doi.org/10.1145/3514221.3517868

join graph. ObliDB [35] offers an oblivious hash join algorithm to

support general equi-joins over multiple tables, but it is equivalent

to a Cartesian product and not a practical solution.

In summary, prior studies are still unable to address the major

challenge in oblivious joins. They are only efficient for primary-

foreign key joins [35, 87], or restricted to binary equi-joins [53], or

purely theoretical in nature and not leading to practical implemen-

tations [11, 54].

Our major objective is to support general binary and multiway

equi-joins efficiently. First, we propose two oblivious algorithms

for general binary equi-joins: sort-merge join and index nested-

loop join. We integrate 𝐵-tree indices into ORAMs for input tables

and retrieve blocks through indices obliviously to perform our

algorithms. The key point is to address the security issue (𝑖 .𝑒 .,

leaking the number of accesses to any index) in extended existing

solutions. Our index nested-loop join algorithm can also support

some types of band joins obliviously. Furthermore, we extend the

index nested-loop join to support multiway equi-joins obliviously.

The key idea is to avoid retrieving tuples that make no contribution

to the final join result to bound the total number of block accesses.

Note that ORAM scheme can be viewed as a blackbox, providing

read and write interface, while hiding access patterns. We can

introduce some novel ORAM schemes (𝑒.𝑔., [13, 25, 63]) rather than

Path-ORAM [69] to improve the performance. We can also leverage

other types of indices (𝑒.𝑔., Oblix [58]) rather than 𝐵-tree to perform

our algorithms, as long as they can support both point and range

queries obliviously. Our major contributions are listed as follows.

• We propose two oblivious algorithms for general binary

equi-joins: oblivious sort-merge join and oblivious index

nested-loop join in Section 5.1 and 5.2. The key point is

to bound the number of accesses to each 𝐵-tree index and

address the security issue in extended existing solutions.

• We support some types of band joins (𝑒.𝑔., “<” and “>”) obliv-

iously by extending our index nested-loop join in Section

5.3. Note that existing studies (except [54]) do not work for

any non-equi joins.

• We support acyclic equi-joins over multiple tables oblivi-

ously using the index nested-loop join in Section 6. The key

idea is to avoid retrieving tuples that cannot make any con-

tribution to the final join result, which helps to bound the

total number of block accesses.

• We conduct extensive experiments on real-world datasets in

Section 9. The results demonstrate a superior performance

gain (orders of magnitude speedup for oblivious multiway

equi-joins) achieved by our method over baseline algorithms.

2 RELATEDWORK
Generic ORAMs.ORAMs allow the client to access encrypted data

remotely while hiding access patterns. A detailed survey is given

in [23]. We adopt Path-ORAM [69] in our method, due to good

performance and simplicity. It can be replaced with some novel

ORAM schemes (𝑒.𝑔., [13, 25, 63]) as a blackbox. There exist more

advanced ORAM constructions, such as PrivateFS [79], Shroud [56],

ObliviStore [68], CURIOUS [19] and TaoStore [65], working on file

systems, multiple clients, parallelization, asynchronous operations

and distributed data stores. We may leverage them as our secure

ORAM storage, since we treat ORAM as a blackbox.

Oblivious query processing. There exists a list of studies [11, 35,
53, 54, 87] working on oblivious joins (see the discussion in Section

1). We follow the same definition as them (see Definition 1), which

allows the leakage of input and output sizes. It is different from the

fully oblivious join in [29], which only allows the leakage of input

sizes. Padding techniques in Section 8 may ease the issue.

A series of studies also pay attention to oblivious query pro-

cessing. Xie 𝑒𝑡 𝑎𝑙 . [81] proposes ORAM solutions to shortest path

computation, for which earlier work explores private information

retrieval (PIR) solutions [28, 78]. ZeroTrace [66] provides a new li-

brary of oblivious get/put/insert operations over set/dictionary/list

interfaces. Obladi [32] is the first system to provide ACID trans-

actions while hiding access patterns. It processes operations in

batches but does not support indices. OCQ [33] is a general frame-

work for oblivious coopetitive analytics, which builds on Opaque

[87] to execute coopetitive queries in a decentralized manner.

Note that existing solutions [35, 53, 87] rely on Trusted Execu-

tion Environments (TEE). However, TEE is orthogonal to oblivious

algorithms and has no advantage to the full obliviousness in the

untrusted storage. If the server keeps secure enclaves (𝑒.𝑔., Intel

SGX [31, 50]), our client can be moved and co-located in the server.

Oblivious data structures. Some prior studies [44, 49, 67, 76]

build oblivious tree structures. POSUP [45] explores hardware-

supported oblivious indices. Oblix [58] builds an oblivious search

index to store multiple values for the same key. However, none of

them explore join query over oblivious indices, since they do not

protect how many accesses to the data structure inherently. In our

method, we integrate 𝐵-tree indices into ORAMs for input tables

and address the security issue above. Some other indices (𝑒.𝑔., Oblix

[58]) also work for our method, as long as they support both point

and range queries obliviously.

Securemulti-party computation. Recent work also explores pro-
tecting access patterns for secure multi-party computation (MPC)

[55, 75]. MPC allows multiple parties to perform data analytics over

their private data, while no party learns the data from another party.

Hence, MPC-based solutions [16, 33, 55, 71, 75, 77] have a different

problem setting from our cloud database setting.

Differential privacy. Differential privacy (DP) solutions protect

against attacks with guaranteed probabilistic accuracy. They build

index for range query [64] and key-value data collection [84], sup-

port multi-dimensional analytical queries [72, 74, 82] and general

SQL queries [17, 47, 52]. However, DP-based solutions [17, 26, 30,

47, 52, 64, 72–74, 82, 84] provide differential privacy for query results,
while we provide the obliviousness in query processing.

3 PROBLEM OVERVIEW AND DEFINITION
3.1 Overview
The formulation includes a client and a cloud server. The client, who

has a small and secure memory, wants to store and later retrieve her

data using the large but untrusted cloud storage. In a preprocessing

step, the client partitions records in database𝐷 into blocks, encrypts

these data blocks, and builds an ORAM data structure (𝑒.𝑔., Path-

ORAM) over them. Some 𝐵-tree indices 𝐼 can be integrated into

the ORAM data structure using ORAM+𝐵-tree or oblivious 𝐵-tree

(see Section 4.2). Then, the client uploads the ORAM data structure

to the secure data storage in the server, and keeps the encryption

keys and other metadata (𝑒.𝑔., ORAM stash and position map in

Join Type
𝑎

Algorithm

Complexity Analysis
𝑏

BE BD ME Computation Overhead
𝑐

Cloud Storage Client Storage

Li and Chen

✓ ✓ ✓
BE A1

Ω (∏ℓ
𝑗=1 |𝑇𝑗 |)

𝑂 (∏ℓ
𝑗=1 |𝑇𝑗 |) 𝑂 (1)

[54] BD A2 𝑂 (|𝑇in |+ |𝑇out |) 𝑂 (𝑀)
ME A3 Ω (|𝑇in |+ |𝑇out |) 𝑂 (𝑀)

Arasu and

Kaushik [11]

✓ × ✓ BE

ME

Equi-Join 𝑂 ((|𝑇in |+ |𝑇out |) · log2 (|𝑇in |+ |𝑇out |)) 𝑂 (|𝑇in |+ |𝑇out |) 𝑂 (log(|𝑇in |+ |𝑇out |))

Opaque [87] × × ×
PF Opaque Join 𝑂 ((|𝑇in |+ |𝑇out |) · log2 ((|𝑇in |+ |𝑇out |)/𝑀)) 𝑂 (|𝑇in |+ |𝑇out |) 𝑂 (𝑀)

ObliDB [35] ✓ × ✓ PF 0-OM Join 𝑂 ((|𝑇in |+ |𝑇out |) · log2 (|𝑇in |+ |𝑇out |)) 𝑂 (|𝑇in |+ |𝑇out |) 𝑂 (1)
BE

ME

Hash Join 𝑂 (∏ℓ
𝑗=1 |𝑇𝑗 |) 𝑂 (∏ℓ

𝑗=1 |𝑇𝑗 |) 𝑂 (𝑀)

Krastnikov

𝑒𝑡 𝑎𝑙 . [53]

✓ × × BE Binary Join 𝑂 ((|𝑇in |+ |𝑇out |) · log2 (|𝑇in |+ |𝑇out |)) 𝑂 (|𝑇in |+ |𝑇out |) 𝑂 (1)

Ours
𝑑 ✓ ✓ ✓

BE SMJ 𝑂 ((|𝑇in |+ |𝑇out |) · (log |𝑇in |+log2 ((|𝑇in |+ |𝑇out |)/𝑀))) 𝑂 (|𝑇in |+ |𝑇out |) 𝑂 (log |𝑇in |+𝑀
+|𝑇in |/𝐵)

BE

BD

INLJ(+Cache) 𝑂 ((|𝑇1 | + |𝑇out |) · (log |𝑇1 | +Δ log |𝑇2 | + log2 ((|𝑇1 | +
|𝑇out |)/𝑀)))

𝑂 (|𝑇in |+ |𝑇out |) 𝑂 (log |𝑇in |+𝑀
+|𝑇in |/𝐵)

ME INLJ(+Cache) 𝑂 ((|𝑇in |+ |𝑇out |) · (log |𝑇1 |+Δ
∑ℓ

𝑗=2 log |𝑇𝑗 |
+ log2 ((|𝑇in | + |𝑇out |)/𝑀)))

𝑂 (|𝑇in |+ |𝑇out |) 𝑂 (∑ℓ
𝑗=1 log |𝑇𝑗 |

+𝑀+|𝑇in |/𝐵)
Table 1: Comparison of oblivious join algorithms.

𝑎
We denote binary equi-join as BE, band join as BD, acyclic multiway equi-join as ME, primary-foreign key join as PF.

𝑏
We denote the total size of all input tables as |𝑇in | =

∑ℓ
𝑗=1 |𝑇𝑗 | and the real join result size as |𝑇out |. For the convenience of complexity analysis, we assume that each block

contains𝑂 (1) data tuples but Θ(𝐵) index entries, which is consistent with ObliDB [35]. In our implementation, we allow each block to contain multiple data tuples but have the

same block size 𝐵.
𝑐
We assume an oblivious sorting needs𝑂 (𝑛 log

2 (𝑛/𝑚)) time cost, where𝑚 is the trusted storage size, as with Table 2 in [35] and Table 1 in [53].

𝑑
We denote sort-merge join as SMJ, and index nested-loop join as INLJ. We denote the number of outsourced levels in each 𝐵-tree index over each input table as Δ. We may

leverage recursive Path-ORAM [23, 69] or oblivious 𝐵-tree [35] to reduce the𝑂 (|𝑇in |/𝐵) storage cost for position map in the client.

get
Cloud Storage

Trusted

Untrusted put

ORAM Protocol
Metadata ORAM Stash

Client
Oblivious Join Operator

ORAM Data Structure
Secure Data Storage

Figure 1: An overview of our oblivious join process.

Path-ORAM) at her side. Note that the client can maintain indices

locally, but she may only cache one level of 𝐵-tree index to save

the memory.

In online processing, the client issues join queries against the

server. Using an oblivious join algorithm that will be described later,

the client reads/writes blocks from/to the server through an ORAM

protocol and generates the query results. The ORAM protocol refers

to steps taken to read or write blocks obliviously with the help of

ORAM metadata in client and ORAM data structure in server. Our

oblivious join algorithm is designed based on the ORAM protocol.

An overview of the oblivious join process is shown in Figure 1.

3.2 Problem Definition
We follow the definition in Opaque [87] and ObliDB [35]. Let 𝐷

be a relational database (where some 𝐵-tree indices 𝐼 may also

be integrated) and 𝑄 be a join query. Let Size(𝐷) be the sizing

information of𝐷 , which includes the size of each table, row, column,

attribute, the number of rows and columns, but does not include the

value of each attribute. Note that the schema information Sch(𝐷)
including table and column names in 𝐷 can be easily hidden using

encryption. Let IOSize(𝐷,𝑄) be the input/output size of running
𝑄 over 𝐷 . Note that for any join query 𝑄 over multiple tables

in 𝐷 , the sizes of all intermediate join tables are not included in

IOSize(𝐷,𝑄) and must be protected against the adversary. Let Trace
be the trace of server location accesses and network traffic patterns

while running 𝑄 over 𝐷 .

Definition 1. Oblivious Join [87]. For any two relational databases
𝐷 and 𝐷 ′ and two join queries 𝑄 and 𝑄 ′, where Size(𝐷) = Size(𝐷 ′),
Sch(𝐷) = Sch(𝐷 ′) and IOSize(𝐷,𝑄) = IOSize(𝐷 ′, 𝑄 ′), we denote the
access patterns produced by the join algorithm OJoin running 𝑄 and
𝑄 ′ over 𝐷 and 𝐷 ′ as Trace(OJoin(𝐷,𝑄)) and Trace(OJoin(𝐷 ′, 𝑄 ′)).
OJoin is an oblivious join algorithm, if

1) OJoin ensures the confidentiality; and
2) access patterns Trace(OJoin(𝐷,𝑄)) and Trace(OJoin(𝐷 ′, 𝑄 ′))

have the same length and computationally indistinguishable for any-
one but the client.

Security model. We consider a “honest-but-curious” server. Data

is encrypted, retrieved, and stored in atomic units (𝑖 .𝑒 ., blocks). The
encryption should be semantically secure, and two encrypted copies
of the same data block look different. All blocks are of the same

size and are indistinguishable for the server. We use 𝑁 to denote

the number of real data blocks in the database, and each encrypted

block contains 𝐵 bytes. Note that the number of entries that fit in a

block is Θ(𝐵), and the constants will vary depending on the types

of entries, 𝑒.𝑔., encrypted index entry, encrypted attribute value,

and position tag in ORAM.

Definition 1 does not consider the volume leakage in final out-

put size. Padding techniques in Section 8 may ease the leakage.

Definition 1 also does not consider privacy leakage through any

side-channel attack (like time taken for each operation). Prior or-

thogonal solutions [27, 36, 41] can help to alleviate such leakage.

4 PRELIMINARIES
4.1 ORAM and Oblivious Sorting
ORAM. ORAM [37, 38, 60] allows the client to access encrypted

data in a remote server while hiding her access patterns. Generally,

ORAM is modeled similar as a key-value store. Data is encrypted, re-

trieved, and stored in atomic units (𝑖 .𝑒 ., blocks) annotated by unique

keys. A valid ORAM construction will hide the access patterns with

the same length of block operations (𝑖 .𝑒 ., get() and put()) to make

them computationally indistinguishable to the server. It consists

of two components: an ORAM data structure and an ORAM query

protocol. The client and server run the ORAM query protocol to

read and write any data blocks to the ORAM data structure.

Path-ORAM. There are two advantages in Path-ORAM [69]: good

performance and simplicity [23]. It organizes the ORAM data struc-

ture as a full binary tree where each node is a bucket with a fixed

number of encrypted blocks. Path-ORAM maintains the invariant
that at any time, each block 𝑏 is always placed in some bucket along

the path to the leaf node that 𝑏 is mapped to. The stash in the client

stores a few blocks that have not been written back to the binary

tree in server. The position map keeps track of the mapping between

blocks and leaf node IDs, which brings a linear space cost to the

client. We may recursively build Path-ORAMs to store position

maps until the final level position map is small enough to fit in

client memory.

To store 𝑁 blocks of size 𝐵, a basic Path-ORAM protocol requires

𝑂 (log𝑁 + 𝑁 /𝐵) client memory size and 𝑂 (log𝑁) per query cost.

In a recursive Path-ORAM, the client memory size is reduced to

𝑂 (log𝑁) and each request can be processed in 𝑂 (log𝐵𝑁 · log𝑁).
Oblivious sorting. A set of items can be sorted by accessing the

items in a fixed, predefined order. Bitonic sort [15] needs𝑂 (𝑛 log2 𝑛)
time cost but with small constant factor. Some advanced algorithms

[7, 39, 40] achieves 𝑂 (𝑛 log𝑛) time cost. However, they may fail

with a small probability [39], or lead to large constant factors [7] and

non-trivial implementation [40]. Hence, most prior studies [23, 35,

53, 54, 87] still adopt bitonic sort [15]. In particular we extends it to

an oblivious external sorting by leveraging a relatively large client

memory, as in [35, 87]. The time complexity is 𝑂 (𝑛 log2 (𝑛/𝑚)),
where𝑚 is trusted storage size.

4.2 Integrate 𝐵-Tree Indices into ORAM
ORAM+𝑩-tree. A commonly used optimization in relational data-

base is to build 𝐵-tree indices to speed up the query processing.

The similar optimization can be introduced in oblivious query pro-

cessing as that in [24, 35]. The key idea is to ignore the semantic

difference of the (encrypted) index and data blocks from the client

over the database 𝐷 , and store all these blocks into an ORAM con-

struction, say Path-ORAM. When answering an incoming query,

we start with retrieving the root block (of the index) from the server

and then traverse down the tree. Intuitively, we query the index

structure by running the same algorithm as that over a standard

𝐵-tree index. The only difference is that we are retrieving index

and data blocks by looking up their block IDs through the ORAM.

Oblivious 𝑩-tree. To avoid storing the position map in the client,

we can explore the idea of oblivious data structures [44, 58, 76] and

replace a standard 𝐵-tree in ORAM+𝐵-tree with an oblivious 𝐵-tree

[24, 35]. The main idea is that each index node keeps the block IDs

and position tags of its children nodes. When retrieving any node

dummy record
T1 (1, 1) T2 (1, 1)

dummy record
dummy record

T1 (2, 1) (2, 2) T2 (2, 1)
T1 (2, 1) (2, 2) T2 (2, 2)
T1 (2, 1) (2, 2) T2 (2, 3)

dummy record

Table A B/C
T1 1 1
T2 1 1
T1 2 1
T1 2 2
T2 2 1
T2 2 2
T2 2 3
T1 3 1

A C
1 1
2 1
2 2
2 3

A B
1 1
2 1
2 2
3 1

Table T1 Table T2

Single Sorted Table T

Scan

Output

Figure 2: Strawman solution to oblivious sort-merge equi-join.

from the server through the ORAM, we have acquired the position

tags for its children nodes simultaneously. Note that most query

algorithms over tree indices traverse the tree from the root to leaf

nodes. As a result, the client only needs to remember the position

tag of the root node, and all other position map information can be

fetched on the fly as part of the query algorithm.

Index caching. Index caching is a popular tree-based ORAM op-

timization [57, 63, 66]. We let the client cache one specific level of
𝐵-tree index to speed up the query performance. Since the fanout

is usually large in a 𝐵-tree index, this overhead to the client storage

is far less than storing the entire index. Given any query, the client

can find which block(s) that she may need to access by performing a

local search on the cached level of the 𝐵-tree index.

Segmenting ORAM.We separate one single ORAM into multiple

smaller ORAMs to reduce the cost of each ORAM access as in

ObliDB [35]. For each input table, we build a Path-ORAM data

structure for data blocks and another smaller one for index blocks.

The comparison in Table 1 is based on this design. ObliDB [35] even

suggests using a separate ORAM for each level of a 𝐵-tree index,

but does not introduce this into their implementation.

5 OBLIVIOUS BINARY JOIN
We support two types of oblivious binary joins: sort-merge join and

index nested-loop join. We integrate 𝐵-tree indices into ORAMs for

input tables, as shown in Section 4.2. Note that the extended existing

solutions cannot support many-to-many joins obliviously. As we

show below, they may leak some sensitive information including

the join degree. Hence, our goal is to address the security issue and

propose new algorithms to ensure the obliviousness.

5.1 Oblivious Sort-Merge Equi-Join
Strawman solution. For foreign key joins, ObliDB [35] supports

two sort-merge join algorithms: 1) a re-implementation of Opaque

join [87] and 2) 0-OM Join. The only difference between them is

that 0-OM Join only requires 𝑂 (1) trusted memory but pays larger

time complexity. However, Example 1 shows that this strawman

solution does not work for many-to-many join, due to leaking some

sensitive information (𝑒.𝑔., the join degree).

Example 1. An example is shown in Figure 2. Given two input
tables𝑇1 and𝑇2, Opaque join [87] and 0-OM Join [35] first put tuples
from both input tables into one single table 𝑇 , and obliviously sort 𝑇
according to the join key. Next, they perform a linear scan over the
single sorted table 𝑇 . For primary-foreign key join, they perform a
linear scan over 𝑇 and join each primary key tuple (originally from
𝑇1) with the corresponding foreign key tuples (originally from 𝑇2).
They ensure the invariant that after accessing every input tuple in 𝑇 ,
they write out exactly one real or dummy join record.

T1 T2
res getNext()

A B A C

1 1
1 1 = 0
2 1 < 0 T1→(2, 1)

2 1 1 1 > 0 T2→(2, 1)

2 1

2 1
= 02 2

2 3
⊥ < 0 T1→(2, 2)

2 2 2 1 = 0

T1 T2
res getNext()

A B A C

2 2
2 2

= 0
2 3
⊥ < 0 T1→(3, 1)

3 1

2 1
> 0

T2→(2, 2)
2 2 T2→(2, 3)
2 3 T2→⊥
⊥ < 0 T1→⊥

⊥ ⊥ end

A C
1 1
2 1
2 2
2 3

A B
1 1
2 1
2 2
3 1

Table T1 Table T2

Join Comparison

Figure 3: An example of oblivious sort-merge equi-join.

Algorithm 1: Oblivious Binary Sort-Merge Equi-Join

Require: Input: two tables𝑇1 and𝑇2.

Output: join result table𝑇out = 𝑇1 Z 𝑇2.

1: Initialize𝑇out := ∅.
2: Initialize tuple[1, 2] := ∅.
3: for 𝑖 := 1 to 2 do
4: tuple[𝑖] := 𝑇𝑖 .getFirst() ;
5: while tuple[1] ≠⊥ or tuple[2] ≠⊥ do
6: res := compare(tuple[1], tuple[2]) ;
7: if res = 0 then
8: begin := tuple[2];
9: while res = 0 do
10: 𝑇out .put(tuple[1] Z tuple[2]) ;
11: 𝑇1 .getDummy() ; tuple[2] := 𝑇2 .getNext() ;
12: res := compare(tuple[1], tuple[2]) ;
13: 𝑇out .put(⊥) ;
14: tuple[2] := begin;

15: tuple[1] := 𝑇1 .getNext() ;𝑇2 .getDummy() ;
16: else
17: 𝑇out .put(⊥) ;
18: if res < 0 then
19: tuple[1] := 𝑇1 .getNext() ;𝑇2 .getDummy() ;
20: else
21: 𝑇1 .getDummy() ; tuple[2] := 𝑇2 .getNext() ;
22: Obliviously filter out dummy records from𝑇out.

23: return𝑇out;

But for many-to-many join, they will not have such an invariant.
For example, after accessing the tuple 𝑇2 (2, 1) (originally from 𝑇2),
which can match two tuples𝑇1 (2, 1) and𝑇1 (2, 2) (originally from𝑇1),
they must output two join records 𝑇1 (2, 1) Z 𝑇2 (2, 1) and 𝑇1 (2, 2) Z
𝑇2 (2, 1) before the next access over𝑇 , 𝑖 .𝑒 ., the number of output records
between two accesses over 𝑇 leaks the join degree. Processing tuples
𝑇2 (2, 2) and 𝑇2 (2, 3) brings the same security issue.

Our algorithm. Our algorithm is similar to the traditional sort-

merge join but with some differences. During preprocessing, we

integrate non-clustered 𝐵-tree indices into ORAMs for each input

table in advance, where each leaf index entry keeps a pointer to the

data tuple. Leaf index entries (rather than data tuples) are sorted as

per the attribute. Succeeding data tuples from any input table can

be retrieved through the pointers in succeeding leaf index entries.

For each input table, we build an ORAM structure for data blocks

and another smaller one for index blocks (see “Segmenting ORAM”

in Section 4.2).

In each join step, we keep the invariant that we retrieve the

tuple needed from each input table alternatively. A dummy tuple is

retrieved as necessary. It ensures the full obliviousness, since each

tuple retrieval needs the same number of ORAM accesses for each

input table. Then, we perform a join comparison in each step. If

there is a match, we write out a join record; otherwise, we write

out a dummy record as necessary. Then the adversary cannot find

any join degree information by observing the access patterns.

Example 2. Algorithm 1 shows the details of joining two tables 𝑇1
and 𝑇2. Note that whenever we perform a getNext() over one input
table (𝑇1 or 𝑇2), we also perform a dummy operation getDummy()
over the other table (𝑇2 or 𝑇1) to ensure the obliviousness.

An example is given in Figure 3. First, Algorithm 1 initializes
𝑇out := ∅ (Line 1). Then, we retrieve the first two tuples (𝑒.𝑔., 𝑇1 (1, 1)
and 𝑇2 (1, 1)) from 𝑇1 and 𝑇2 as tuple[1] and tuple[2] (Line 2-4).
While any tuple is real, we perform a join comparison between them
(Line 5-6). We keep the invariant above that we always pull tuples
from 𝑇1 and 𝑇2 alternatively for either of two possible cases:

1) tuple[1] matches tuple[2] (𝑒.𝑔., 𝑇1 (1, 1) and 𝑇2 (1, 1) (Line 7)).
First, we save the current tuple[2] (𝑒.𝑔.,𝑇2 (1, 1)) to a temporary tuple
“begin” (Line 8). We keep writing out the join record (𝑒.𝑔., 𝑇1 (1, 1) Z
𝑇2 (1, 1)) to 𝑇out, and retrieving the next tuple (𝑒.𝑔., 𝑇2 (2, 1)) from
𝑇2 as tuple[2], until the newly retrieved tuple[2] does not match
tuple[1] (𝑒.𝑔.,𝑇2 (2, 1) does not match𝑇1 (1, 1)) (Line 9-12). Whenever
we invoke a getNext() from 𝑇2, we also pull a dummy tuple from 𝑇1
to ensure the obliviousness (Line 11). Once they do not match, we
write out a dummy record and assign “begin” (𝑒.𝑔., 𝑇2 (1, 1)) back
to tuple[2] (Line 13-14). Then, we will retrieve the next tuple (𝑒.𝑔.,
𝑇1 (2, 1)) from 𝑇1, and also pull a dummy tuple from 𝑇2 (Line 15).
Finally, we move to the next iteration (Line 5-6).

2) tuple[1] does not match tuple[2] (𝑒.𝑔., for now, 𝑇1 (2, 1) and
𝑇2 (1, 1) (Line 7)). Since they do not match, we first write out a dummy
record (Line 17). If tuple[1] ranks ahead of tuple[2], we retrieve the
next tuple from𝑇1 (Line 18-19). Otherwise (𝑒.𝑔.,𝑇1 (2, 1) ranks behind
of 𝑇2 (1, 1)), we retrieve the next tuple from 𝑇2 (Line 20-21). Note that
in either branch we also pull a dummy tuple from the other table.
Finally, we move to the next iteration (Line 5-6).

Note that once a cursor moves to the end of table𝑇1 or𝑇2, a dummy
tuple ⊥ will be retrieved from that table. We logically let it rank
behind of any real tuple in join comparison. For example, when the
cursor on 𝑇1 moves to tuple 𝑇1 (2, 2) and that on 𝑇2 reaches the end
of 𝑇2, we will retrieve a dummy tuple ⊥ from 𝑇2 (Line 11) and let the
join comparison result be res < 0 (logically 𝑇1 (2, 2) .𝐴 < ⊥ .𝐴) (Line
12). The rest still goes in the same way as stated above.

After both cursors reach the end of tables 𝑇1 and 𝑇2, the final step
is to filter out dummy records from 𝑇out using oblivious sorting and
only keep real join records (Line 22).

Note that 𝐵-tree indices are not required for Algorithm 1. If each

tuple keeps the pointer to the next tuple, succeeding tuples can be

retrieved when needed through ORAM using the pointers.

Last, we consider whether the number of tuple retrievals from

each input table leaks any sensitive information. Theorem 1 shows

that this number will be a function of the sizes of input tables and

real join result, 𝑖 .𝑒 ., no additional information is leaked except for

the sizing information of input and output tables.

Theorem 1. For any two input tables 𝑇1 and 𝑇2 and the real join
result 𝑅

real
, let Numtr be the number of tuple retrievals from each

input table. It is a function of |𝑇1 |, |𝑇2 | and |𝑅
real

|. Specifically, we
have Numtr = 𝑓osmj (|𝑇1 |, |𝑇2 |, |𝑅real |) = |𝑇1 | + |𝑇2 | + |𝑅

real
| + 1.

A C
1 1
2 1
2 2
2 3

A B
1 1
2 1
2 2
3 1

Table T1 Table T2

T1 T2
match

A B A C

1 1
1 1 true
2 1 false

2 1
2 1

true2 2
2 3

Join Comparison T1 T2
match

A B A C
2 1 ⊥ false

2 2

2 1
true2 2

2 3
⊥ false

3 1 ⊥ false
Figure 4: An example of oblivious index nested-loop equi-join.

Proof. We divide the process of Algorithm 1 into two parts and

compute the number of tuple retrievals in each part.

Part I: The process except for Line 9-12 in Algorithm 1.

In Part I, at the beginning, we make one call of getFirst() over
𝑇1 and 𝑇2 (Line 3-4). Recall that after each pair of tuple retrievals

from 𝑇1 and 𝑇2, we perform exactly one join comparison. In Part I,

each join comparison leads to exactly one dummy output record. If

the comparison result is res > 0, the cursor on 𝑇2 advances (Line

21); otherwise, the cursor on 𝑇1 advances (Line 15 and Line 19). In

total, the number of calling getNext() over𝑇1 and𝑇2 is |𝑇1 | and |𝑇2 |
respectively. Therefore, the total number of tuple retrievals from

each input table in Part I is |𝑇1 | + |𝑇2 | + 1.

Part II: The process in Line 9-12 in Algorithm 1.

Recall that after each pair of tuple retrievals from 𝑇1 and 𝑇2, we

perform exactly one join comparison. In Part II, each join compari-

son leads to exactly one real join record. Since the number of real

join records is |𝑅
real

|, the number of tuple retrievals from each input

table in Part II is also |𝑅
real

|.
Based on the analysis above, we will have Numtr = 𝑓osmj (|𝑇1 |,

|𝑇2 |, |𝑅real |) = |𝑇1 | + |𝑇2 | + |𝑅
real

| + 1. □

In Figure 3, the sizes of two input tables are |𝑇1 | = 4 and |𝑇2 | =
4, the real join size is |𝑅

real
| = 7, and the total number of tuple

retrievals from each input table isNumtr = |𝑇1 |+|𝑇2 |+|𝑅real |+1 = 16.

5.2 Oblivious Index Nested-Loop Equi-Join
Strawman solution. A strawman solution is similar to the tra-

ditional index nested-loop join. The only difference is that this

solution integrates 𝐵-tree indices into ORAMs for the input tables

and retrieves tuples by querying the index structure through an

ORAM protocol. In detail, the outer loop is to scan table 𝑇1. While

accessing each tuple in 𝑇1, the algorithm retrieves matched tuples

from table 𝑇2 one by one through 𝐵-tree index. If no matched tuple

is found, it outputs a dummy record; otherwise, it outputs one join

record for each match. However, this strawman solution leaks the

join degree in a similar way. The number of output records between

two tuple retrievals from 𝑇1 leaks the join degree.

Our algorithm. We integrate 𝐵-tree indices into ORAMs for each

input table in preprocessing. The index structure is the same as that

in oblivious sort-merge join. To address the security issue in the

strawman solution, we add dummy tuple retrievals from table 𝑇1.

We ensure the invariant that we retrieve the tuple needed from each

input table alternatively. The difference on two tables is that we

retrieve tuples from𝑇1 one by one according to sequential block IDs,

while for table 𝑇2 we retrieve the tuple that we need by searching

over a whole 𝐵-tree path. After each pair of tuple retrievals, we

make a join comparison of the current two tuples. If there is a

Algorithm 2: Oblivious Index Nested-Loop Binary Equi-

Join

Require: Input: two tables𝑇1 and𝑇2.

Output: join result table𝑇out = 𝑇1 Z 𝑇2.

1: Initialize𝑇out := ∅.
2: Initialize tuple[1, 2] := ∅.
3: for 𝑖 := 1 to |𝑇1 | do
4: tuple[1] := 𝑇1 .getNext() ;
5: tuple[2] := 𝑇2 .getFirst(tuple[1] .key) ;
6: while match(tuple[1], tuple[2]) = true do
7: 𝑇out .put(tuple[1] Z tuple[2]) ;
8: 𝑇1 .getDummy() ;
9: tuple[2] := 𝑇2 .getNext() ;
10: 𝑇out .put(⊥) ;
11: Obliviously filter out dummy records from𝑇out.

12: return𝑇out;

match, we write a join record to the output table; otherwise, a

dummy record is output as necessary. Then the adversary cannot

find any join degree information by observing the access patterns.

Example 3. Algorithm 2 shows the details of joining two tables
𝑇1 and 𝑇2. An example is given in Figure 4. Algorithm 2 begins with
initializing an empty output table 𝑇out (Line 1). The outer loop is to
iterate over each tuple in table𝑇1 (Line 3). Each time we retrieve a new
tuple tuple[1] (𝑒.𝑔.,𝑇1 (1, 1)) from𝑇1 (Line 4), we first retrieve a tuple
tuple[2] (𝑒.𝑔., 𝑇2 (1, 1)) from 𝑇2, which is the first tuple whose join
key is no less than tuple[1]’s (𝑒.𝑔., 𝑇2 (1, 1) .𝐴 ≥ 𝑇1 (1, 1).𝐴) (Line 5).
If those two tuples can match (𝑒.𝑔., 𝑇1 (1, 1) .𝐴 = 𝑇2 (1, 1).𝐴), we write
a join record (𝑒.𝑔., 𝑇1 (1, 1) Z 𝑇2 (1, 1)) to the output table 𝑇out (Line
7) and retrieve the next tuple (𝑒.𝑔.,𝑇2 (2, 1)) from𝑇2 as tuple[2] (Line
9). To ensure the obliviousness, we also perform a dummy retrieval
from𝑇1 (Line 8). We repeat the process above until the newly retrieved
tuple[2] does not match the current tuple[1] (𝑒.𝑔., 𝑇2 (2, 1) does not
match𝑇1 (1, 1)). Once they do not match, we write out a dummy record
(Line 10) and step into the next iteration (𝑒.𝑔., processing the next
tuple 𝑇1 (2, 1) from 𝑇1).

During the process above, once we cannot find any tuple needed
from 𝑇2, we retrieve a dummy tuple ⊥ from 𝑇2 and logically let the
matching result be false. For example, when processing tuple 𝑇1 (3, 1)
from 𝑇1, since we cannot find any tuple from 𝑇2 with join key 𝐴 ≥ 3,
we simply retrieve a dummy tuple ⊥ from 𝑇2 and let the matching
result be false. The rest still goes in the same way as stated above.
The final step is to obliviously filter out dummy records from𝑇out and
only keep real join records (Line 11).

In a similar way, Theorem 2 shows that the number of tuple

retrievals from each input table leaks no more sensitive information

except for the sizing information of input and output tables.

Theorem 2. For any two input tables 𝑇1 and 𝑇2 and the real join
result 𝑅

real
, let Numtr be the number of tuple retrievals over each

input table. It is a function of |𝑇1 |, |𝑇2 | and |𝑅
real

|. Specifically, we
have Numtr = 𝑓

obej
(|𝑇1 |, |𝑇2 |, |𝑅real |) = |𝑇1 | + |𝑅

real
|.

Proof. In Algorithm 2, after each pair of tuple retrievals from𝑇1
and 𝑇2, we perform exactly one join comparison. If the current two

tuples can match, we write out the join record to 𝑇out (Line 7); oth-

erwise, we write out a dummy record to𝑇out (Line 10). By observing

the process of Algorithm 2, the outer loop performs exactly |𝑇1 | iter-
ations, and each iteration leads to exactly one dummy output record

A C
1 1
2 1
2 2
2 3

A B
1 1
2 1
2 2
3 1

Table T1 Table T2

T1 T2
match

A B A C
1 1 1 1 false

2 1
1 1 true
2 1 false

2 2
1 1 true
2 1 false

Join Comparison
T1 T2

match
A B A C

3 1

1 1

true
2 1
2 2
2 3
⊥ false

T1.A > T2.A

Figure 5: An example of oblivious index nested-loop band join.

(Line 10). Thus, the number of dummy output records is |𝑇1 |. Since
the number of real join records is |𝑅

real
|, the total number of output

records will be |𝑇1 | + |𝑅
real

|. Therefore, Numtr = |𝑇1 | + |𝑅
real

|. □

In Figure 4, the first input table size is |𝑇1 | = 4, the real join size

is |𝑅
real

| = 7, and the total number of tuple retrievals from each

input table is Numtr = |𝑇1 | + |𝑅
real

| = 4 + 7 = 11.

5.3 Oblivious Index Nested-Loop Band Join
Prior studies [11, 35, 53, 87] do not support oblivious band joins,

except for a Cartesian product solution [54]. We do support some

types of band joins (𝑒.𝑔., “>”, “≥”, “<” and “≤”) by extending Algo-

rithm 2 and leveraging 𝐵-tree indices to speed up the process.

Example 4. Our band join algorithm is similar to Algorithm 2. To
join two input tables 𝑇1 and 𝑇2, the outer loop is to iterate over each
tuple in table 𝑇1. For each iteration, we retrieve a new tuple from 𝑇1.
If join type is “>” or “≥”, we begin with retrieving the first tuple from
𝑇2 and keep retrieving succeeding tuples until they cannot match. If
join type is “<” or “≤”, we begin with retrieving the last tuple from
𝑇2 and keep retrieving preceding tuples until they cannot match.

An example is given in Figure 5. When processing tuple 𝑇1 (2, 1)
from 𝑇1, since join type is “>”, we begin with retrieving the first tuple
𝑇2 (1, 1) from𝑇2. Since two tuples can match (𝑇1 (2, 1) .𝐴 > 𝑇2 (1, 1).𝐴),
we keep retrieving succeeding tuples from𝑇2, until the newly retrieved
tuple (𝑒.𝑔., 𝑇2 (2, 1)) from 𝑇2 does not match tuple 𝑇1 (2, 1).

In each step, we also perform a dummy retrieval from 𝑇1 as neces-
sary. We ensure the invariant that we retrieve the tuple needed from
each input table alternatively. If there is a match, we output the join
record; otherwise, we output a dummy record. The final step is to
obliviously filter 𝑇out and only keep real join records.

Theorem 3. For any two input tables 𝑇1 and 𝑇2 and the real join
result 𝑅

real
, let Numtr be the number of tuple retrievals over each

input table. It is a function of |𝑇1 |, |𝑇2 | and |𝑅
real

|. Specifically, we
have Numtr = 𝑓

obdj
(|𝑇1 |, |𝑇2 |, |𝑅real |) = |𝑇1 | + |𝑅

real
|.

Proof. The proof is similar to that of Theorem 2. □

In Figure 5, the first input table size is |𝑇1 | = 4, the real join size

is |𝑅
real

| = 6, and the total number of tuple retrievals from each

input table is Numtr = |𝑇1 | + |𝑅
real

| = 4 + 6 = 10.

6 OBLIVIOUS MULTIWAY EQUI-JOIN
Recent work [35, 53, 87] supports foreign key joins or binary equi-

joins obliviously. However, extending these algorithms to oblivious

equi-joins over multiple tables will leak the intermediate table

sizes, which may pertain to some sensitive information (𝑒.𝑔., the

data distribution or the sparseness of the intermediate join graph).

A C
1 1
2 1
2 2
3 1

A B
1 1
2 1
2 2
2 3

Table T1 Table T2

T1 T2 T3 T4
match

A B A C B D D E
1 1 1 1 1 4 ⊥ false
⊥ ⊥ 1 4 ⊥ disable

2 1 2 1 2 1 ⊥ false
2 2 2 1 2 1 1 2 true
2 2 2 1 2 3 ⊥ false
⊥ ⊥ 2 3 ⊥ disable

2 2 2 2 2 1 1 2 true
2 3 2 1 ⊥ ⊥ false

padding dummy operations

D E
1 2
2 1
2 3

B D
1 4
2 1
2 3

Table T3 Table T4

Join Comparison

T1(A, B)

T3(B, D)T2(A, C)

T4(D, E)

Figure 6: An example of oblivious multiway equi-join.

Arasu and Kaushik [11] supports oblivious multiway equi-joins, for

the case where the join graph is acyclic, while hiding the sizes of
intermediate tables. However, Krastnikov 𝑒𝑡 𝑎𝑙 . [53] points out that

details in [11] are incomplete, and no practical implementation is

provided to show the empirical results.

In this work, we extend our Algorithm 2 to support acyclic multi-
way equi-joins obliviously. The key idea is to avoid retrieving tuples
that make no contribution to the final join result to bound the total

number of block accesses.

Example 5. Figure 6 shows an example of acyclic multiway equi-
join over four tables 𝑇1-𝑇4. Due to the acyclicity, each input table can
be arranged as a node in a join tree, which is given in the left part of
Figure 6. In this tree, for any different tables 𝑇𝑖 ,𝑇𝑗 ,𝑇𝑘 , if 𝑇𝑘 is on the
path from 𝑇𝑖 to 𝑇𝑗 , we must have Attr(𝑇𝑖) ∩ Attr(𝑇𝑗) ⊆ Attr(𝑇𝑘) for
their attribute sets. The algorithm of building a join tree is presented in
[85]. Without loss of generality, we number input tables in a pre-order
traversal of the join tree. It ensures 𝑖 < 𝑗 , if 𝑇𝑖 is an ancestor table of
𝑇𝑗 . We also denote the parent table of 𝑇𝑖 in the join tree as 𝑇𝑝 (𝑖) .

In our index nested-loop join algorithm 1, the outer loop is to iterate
over each tuple in root table𝑇1. Each time we retrieve a new tuple (𝑒.𝑔.,
𝑇1 (1, 1)) from 𝑇1, we search matched tuples (𝑒.𝑔., 𝑇2 (1, 1), 𝑇3 (1, 4),
· · ·) from𝑇2, · · · ,𝑇ℓ . To ensure the obliviousness, we retrieve the tuple
needed from each input table in a round-robin way and add dummy
retrievals as necessary (𝑒.𝑔., retrieve ⊥ from 𝑇4, due to no tuple with
join key 𝐷 ≥ 4 for matching 𝑇3 (1, 4), as highlighted in yellow in
Figure 6). In each step, if there is a match (𝑒.𝑔., in 4th and 7th join
step), we output the join record; otherwise, we output a dummy record.

To bound the total number of join steps, we make the following
observations to avoid retrieving unnecessary tuples that makes no
contribution to the final join result.

Observation 1. For any non-root table 𝑇𝑗 and its parent table
𝑇𝑝 (𝑗) , tuple[𝑝 (𝑗)] in 𝑇𝑝 (𝑗) makes no contribution to the final join
result, if no tuple in 𝑇𝑗 matches tuple[𝑝 (𝑗)]. Then, tuple[𝑝 (𝑗)] can
be safely disabled (𝑖 .𝑒 ., will not be accessed in the future).

For example, for table 𝑇4 and its parent table 𝑇3, given the parent
tuple 𝑇3 (1, 4), we find no tuple in 𝑇4 matches tuple 𝑇3 (1, 4) (in 1st
join step). Hence, we know that 𝑇3 (1, 4) makes no contribution to the
final join result. Then, we safely disable tuple 𝑇3 (1, 4) by adding a
dummy join step (in 2nd join step). In this dummy step, we perform
a dummy tuple retrieval from each input table except 𝑇3. For 𝑇3, we
perform a tuple disabling operation, which is indistinguishable from
a tuple retrieval based on the access patterns.
1
Due to space limit, implementation details of multiway equi-join algorithm, proof of

Theorem 4 and complexity analyses on our algorithms are given in full version [4].

When disabling any tuple, we mark the corresponding leaf entry as
disabled using an additional boolean tag rather than actually delete
any entry or tuple. If all entries in any 𝐵-tree leaf block have been
marked as disabled, the parent entry in the 𝐵-tree parent block will
also be marked as disabled. This can recursively go up to 𝐵-tree root
block. Since the recursion goes up along a 𝐵-tree path, we can still
finish each disabling operation using some additional 𝐵-tree path
access through ORAM (𝑖 .𝑒 ., adding some dummy join step). When
retrieving a new tuple from any input table, we skip the disabled
entries during searching over the 𝐵-tree index.

Observation 2. For any non-root table 𝑇𝑗 and its parent table
𝑇𝑝 (𝑗) , tuple[𝑝 (𝑗)] in 𝑇𝑝 (𝑗) makes no contribution to the final join
result, if each tuple in𝑇𝑗 that matches tuple[𝑝 (𝑗)] has been disabled.
Then, tuple[𝑝 (𝑗)] can also be safely disabled.

For example, for table 𝑇3 and its parent table 𝑇1, given the parent
tuple 𝑇1 (1, 1), 𝑇3 (1, 4) is the only tuple in 𝑇3 that matches 𝑇1 (1, 1).
However, since 𝑇3 (1, 4) has been disabled (in 2nd join step), we know
that𝑇1 (1, 1) makes no contribution to the final join result. If the parent
tuple is in a non-root table, we will disable it by adding some dummy
join step as above. Otherwise, we do not physically disable any tuple
in root table 𝑇1, since the outer loop in our algorithm iterates over
each tuple in root table 𝑇1, and will not access any previous tuple in
𝑇1 in the future.

Observation 3. For any non-root table 𝑇𝑗 and its parent table
𝑇𝑝 (𝑗) , tuple[𝑝 (𝑗)] in 𝑇𝑝 (𝑗) will have no more matches, if the current
tuple tuple[𝑗] in 𝑇𝑗 matches tuple[𝑝 (𝑗)] but the succeeding tuple in
𝑇𝑗 has a different join key from tuple[𝑗]’s.

Observation 3 is based on the property of equi-joins. For example,
for table 𝑇3 and its parent table 𝑇1, given the parent tuple 𝑇1 (1, 1),
we find that the current tuple 𝑇3 (1, 4) can match 𝑇1 (1, 1) (in 1st join
step). But since the succeeding tuple 𝑇3 (2, 1) has a different join key
from 𝑇3 (1, 4), we can conclude that 𝑇3 (2, 1) does not match 𝑇1 (1, 1)
in equi-join scenario. Hence, 𝑇1 (1, 1) will have no more matches.

To perform this optimization, we attach another boolean tag to
each leaf entry, which indicates whether the next leaf entry in 𝑇𝑗 has
the same key with the current entry in𝑇𝑗 . If not, we do not retrieve the
next tuple from the child table 𝑇𝑗 . After answering each join query,
we simply go over all index blocks and reset all boolean tags.

After the normal join process, we pad the number of join steps to
the upper bound (𝑒.𝑔., the last step in Join Comparison in Figure 6) in
Theorem 4 to ensure the obliviousness. Finally, we obliviously filter
out dummy records and only keep real join records. The last step is to
go over all index blocks and reset boolean tags in each entry.

Theorem 4. For any ℓ (ℓ ≥ 2) input tables 𝑇1, · · · , 𝑇ℓ and the real
join result 𝑅

real
, let Numtr be the number of tuple retrievals over each

input table. It is a function of |𝑇1 |, · · · , |𝑇ℓ | and |𝑅
real

|. Specifically,

Numtr = 𝑓omj (|𝑇1 |, · · · , |𝑇ℓ |, |𝑅real |) = |𝑇1 | + 2

∑ℓ

𝑗=2
|𝑇𝑗 | + |𝑅

real
|.

7 DISCUSSION ON ONE ORAM SETTING
In this work, we separate one single ORAM into multiple smaller

ORAMs (denoted as SepORAM) to reduce the cost of each ORAM

access, as in ObliDB [35]. Now, we reconsider join optimizations in

one ORAM setting (denoted as OneORAM). The key observation

is that we retrieve any tuple from any input table through one

single ORAM. If we pay the same cost for each tuple retrieval from

each input table, 𝑒.𝑔., padding the number of ORAM accesses to the

maximum height of all 𝐵-tree indices, each tuple retrieval from any

input table will be indistinguishable for the adversary, although he

knows the total number of tuple retrievals.

A major optimization in OneORAM is to safely remove some

dummy retrievals to speed up the join processing. Note that after

each tuple retrieval from any input table in OneORAM (rather than

after each join step in SepORAM), we writes out a real join record

or a dummy record to the output table, to protect the join degree

information and ensure the full obliviousness. As long as the total

number of tuple retrievals only pertains to the input and output

sizes, no additional information will be leaked. The last thing is to

bound the total number of tuple retrievals in OneORAM, similar to

Theorems 1-4. Details are given in the full version of our paper [4].

However, there is a major drawback in OneORAM setting. Sup-

pose there are multiple tables in the whole dataset (𝑒.𝑔., 8 tables

in TPC-H dataset), but only a few binary joins will be processed

online. In this scenario, we need to put all input tables into one

single ORAM in advance, since we do not know which two tables

will be joined online. In online processing, we have to pay much

larger cost for accessing the large single ORAM rather than smaller

separate ORAMs. Mainly due to this drawback, algorithms in One-

ORAM setting perform no better than those in SepORAM setting

in most cases, which is confirmed by our experimental results.

8 SECURITY ANALYSIS
We provide an (informal) security theorem for our method, as with

Opaque [87] and ObliDB [35]. Our security is guaranteed by the

existence of simulator SIM: any probabilistic polynomial-time (PPT)

adversary A cannot distinguish between the real server location

trace from our method and the simulated trace from simulator SIM.

SIM only has the access to the schema and sizing information of

input and output tables, the oblivious join operator, and some spe-

cific public constants (𝑒.𝑔., the number of outsourced levels in each

𝐵-tree index, denoted as Δ). Hence, the adversary cannot learn any

additional information in oblivious join processing, since simulator

SIM only sees the above information. Note that SIM has no access

to the sizes of all intermediate join tables, since we protect this sen-

sitive information against the adversary. We formalize our security

guarantee in Theorem 5 with the same notations in Definition 1.

Theorem 5. For any relational database 𝐷 , schema Sch(𝐷), join
query 𝑄 , oblivious join algorithm OJoin, and security parameter 𝜆,
there is a polynomial-time simulator SIM such that for any PPT
adversary A,

| Pr[A(SIM(Size(𝐷), Sch(𝐷), IOSize(𝐷,𝑄),OJoin(𝐷,𝑄))) ⇒ 1]
− Pr[A(Trace(OJoin(𝐷,𝑄))) ⇒ 1] | ≤ 𝑛𝑒𝑔𝑙 (𝜆) .

Proof. (Informal Sketch) In this proof, we show the existence of

simulator SIM, and argue that access pattern of SIM is distributed

indistinguishable from Trace(OJoin(𝐷,𝑄)) (generated from algo-

rithm OJoin(𝐷,𝑄)). SIM reads algorithm OJoin(𝐷,𝑄) to determine

which operations to simulate. Specifically, SIM needs to simulate

access patterns for ORAM operations and oblivious filter operations

(including oblivious sorting and a few linear scans) in OJoin(𝐷,𝑄).

This proof is covered by Arguments A1-A4. We mainly focus

on separate ORAMs setting (denoted as SepORAM) in Arguments

A1-A3. For one ORAM setting (denoted as OneORAM), the proof

relies on Argument A4: OneORAM does not introduce any more

privacy leakage than SepORAM.

A1: We ensure the obliviousness in each join step.

First, we argue that SIM can simulate each ORAM or oblivious

filtering operation. Since SIM has the access to schema Sch(𝐷) and
sizing information Size(𝐷), the access pattern simulation for each

of such operations is the same as that in the original ORAM scheme,

or that for original oblivious sorting and linear scan operations.

Then, we argue that SIM can simulate each join step. In SepO-

RAM, we keep the invariant that we always retrieve the tuples

needed from each input table in a round-robin way in each join

step. Even if we do not need to retrieve any new tuple, we still

retrieve a dummy tuple to ensure the obliviousness. At the end of

each join step, if there is a match, we write out a join record to the

output table; otherwise, we write out a dummy record as necessary.

Specifically, each tuple retrieval for any input table leads to the

same number of ORAM accesses, which only pertains to the height

of the outsourced 𝐵-tree index. In each join step, since SIM has the

access to specific public constants (𝑒.𝑔., the number of outsourced

levels in each 𝐵-tree index), SIM can perform the corresponding

number of ORAM operation simulations for each input table in a

round-robin way and output a (randomized encrypted) join record.

A2: We ensure the number of join steps only pertains to the

input and output sizes.

In SepORAM, Theorems 1-4 guarantee that the number of tu-

ple retrievals from each input table (𝑖 .𝑒 ., number of join steps) in

algorithm OJoin(𝐷,𝑄) only pertains to the input and output sizes

IOSize(𝐷,𝑄). Since SIM has the access to IOSize(𝐷,𝑄), SIM will

know the number of join steps based on IOSize(𝐷,𝑄), and perform
the corresponding number of join step simulations.

A3: A1 and A2 ensure the simulated access pattern is distributed

indistinguishably from Trace(OJoin(𝐷,𝑄)) in the whole process

(𝑖 .𝑒 ., the obliviousness in SepORAM).

A4: OneORAM does not introduce any more privacy leakage

than SepORAM.

For each step in OneORAM, algorithm OJoin(𝐷,𝑄) retrieves the

tuple needed from an input table through the single ORAM, and

pads the number of ORAM accesses to the maximum length of

all retrieved 𝐵-tree paths. It ensures that each tuple retrieval from

any input table will be indistinguishable for the adversary. Note

that OJoin(𝐷,𝑄) may remove some dummy tuple retrievals, as long

as total number of tuple retrievals only pertains to the input and

output sizes IOSize(𝐷,𝑄). Then, after each tuple retrieval from

any input table in OneORAM (rather than after each join step in

SepORAM), we ensure to write out a real or dummy join record to

the output table, to protect the join degree information and ensure

the full obliviousness. The simulation is similar to that in SepORAM,

since SIM still has the access to the background knowledge. □
Theorem 5 guarantees the security of our algorithms in the sense

of Definition 1. For binary joins, our security guarantee is the same

as Krastnikov 𝑒𝑡 𝑎𝑙 . [53] and oblivious mode in Opaque [87] and

ObliDB [35]. For multiway joins, our security guarantee is the same

as Arasu and Kaushik [11].

Last, we may also introduce a padding mode, as in Opaque [87]

and ObliDB [35]. The join result size will be padded to an upper

bound size, which leaks nothing regarding the join query but the

upper bound size. Besides, some novel padding techniques can

be introduced, 𝑒.𝑔., exploring differential privacy rather than full

obliviousness to reduce the padding size [17], or padding the result

size to the closest power of a constant 𝑥 (𝑒.𝑔., 2 or 4) [12, 22, 34],

leading to at most log𝑥 |𝑅worst | distinct result sizes, where |𝑅worst |
is the Cartesian product size in join scenario.

The simulator SIM’ for padded mode behaves analogously to

SIM. In padded mode, the security theorem replaces the final join

output size with an upper bound size as a public parameter in

simulator SIM, which indicates the padded output size.

9 EXPERIMENTAL RESULTS
9.1 Experimental Setup and Datasets
Wemake the evaluation for Krastnikov 𝑒𝑡 𝑎𝑙 . [53] (denoted as ODBJ),

ObliDB [35] and our method. We extend ODBJ implementation [3]

to disk-based relational tables. For ObliDB, we set Hash Select as

the oblivious filter algorithm (see Table 2 in [35]). There are two

settings in our method: SepORAM and OneORAM. Each setting

includes three algorithms: SMJ, INLJ and INLJ+Cache (see Table

1). In “+Cache” mode, the client caches all index blocks above the
leaf level, 𝑖 .𝑒 ., the number of outsourced index levels Δ = 1. Due to

large fanout in 𝐵-tree indices, this overhead to the client storage is

very light (see Figures 7 and 8).

We also compare our method with an insure baseline (Raw In-

dex(+Cache)). It builds 𝐵-tree indices over data blocks and store

them in the cloud without using any encryption and ORAM protocol.
It also includes three algorithms: Raw SMJ, Raw INLJ and Raw

INLJ+Cache (with the same index caching setting as ours).

By default, we make the evaluation for all the algorithms in

non-padded mode. In Section 9.6, we briefly discuss the padding

techniques by evaluating all secured algorithms in padded mode.

Setup. The client is an Ubuntu 18.04 machine with Intel Core i7

CPU (8 cores, 3.60 GHz) and 18 GBmemory. The server is an Ubuntu

18.04 machine with Intel Xeon E5-2609 CPU (8 cores, 2.40 GHz),

256 GB memory and 2 TB hard disk. The bandwidth is 1 Gbps.

We compare all the methods under the same system setting. Es-

pecially, any algorithms that rely on building ORAMs have been

implemented solely with ORAMs, although some baseline solutions

including ObliDB rely on secure enclave in their original imple-

mentation. The commonly used ORAM repository is SEAL-ORAM

[2], where the server hosts a MongoDB instance as the outsourced

storage. They implement a MongoDB connector class to support in-

sertion, deletion and update operations on blocks inside MongoDB.

Specifically, MongoDB only serves as the backend storage but does

not provide any other computations or optimizations.

All methods are implemented in C++. AES/CFB from Crypto++

library is adopted as our encryption function in all methods. The

key length of AES encryption is 128 bits.

Default parameter values.We set encrypted block size 𝐵 = 4 KB,

as in [23, 68, 81]). We set the number of blocks in each bucket of

Path-ORAM to 𝑍 = 4, as in [23, 69]). For additional trusted memory

size𝑀 , we set𝑀 = 2𝐵 (𝐵 is the block size) in ODBJ and our method,

but set𝑀 = 50 log𝑁 (𝑁 is the number of data blocks) in ObliDB to

make it finish in a reasonable period.

We make the evaluation of all the methods on two datasets.

TPC-H.We set default data size to 100 MB and vary data sizes from

10 MB to 1 GB in standard TPC-H benchmark. It has a comparable

10
1

10
2

10
3

Raw Data Size (MB)

10
0

10
2

10
4

10
6

10
8

C
lo

ud
 S

to
ra

ge
 S

iz
e

(M
B)

ObliDB
ODBJ
SepORAM
SepORAM+Cache

OneORAM
OneORAM+Cache
Raw Index
Raw Index+Cache

(a) Cloud storage size.

10
1

10
2

10
3

Raw Data Size (MB)

0

2

4

6

8

C
lie

nt
 M

em
or

y
Si

ze
 (M

B)

ObliDB
ODBJ
SepORAM
SepORAM+Cache

OneORAM
OneORAM+Cache
Raw Index
Raw Index+Cache

(b) Client memory size.
Figure 7: Storage cost against raw data size on TPC-H.

10
0

10
1

10
2

Raw Data Size (MB)

10
−1

10
1

10
3

10
5

10
7

C
lo

ud
 S

to
ra

ge
 S

iz
e

(M
B)

ObliDB
ODBJ
SepORAM
SepORAM+Cache

OneORAM
OneORAM+Cache
Raw Index
Raw Index+Cache

(a) Cloud storage size.

10
0

10
1

10
2

Raw Data Size (MB)

0

2

4

6

C
lie

nt
 M

em
or

y
Si

ze
 (M

B)

ObliDB
ODBJ
SepORAM
SepORAM+Cache

OneORAM
OneORAM+Cache
Raw Index
Raw Index+Cache

(b) Client memory size.
Figure 8: Storage cost against raw data size on social graph.

size with Big Data Benchmark [1] in ObliDB (see Table 3 in [35]).

But note that we focus on many-to-many joins, which generate

much more join records and become much more time-consuming.

We refer to [86] and explore general many-to-many join queries as

follows. Section A shows these queries in SQL.

• Query TE1-TE3: general equi-joins over two tables.

• Query TB1-TB2: band joins over two tables.

• Query TM1-TM3: general multiway joins over three, four

and five tables.

Social graph. Social graph [21, 86] contains three twitter user

tables “popular-user”, “inactive-user” and “normal-user” with 1

billion friendship records in 19 GB. Each record is a friendship link

with a source ID and a destination ID. We randomly sample 20,000

twitter users as our default dataset (𝑖 .𝑒 ., with raw data size 4.5 MB),

and vary the number of sampled users from 5,000 to 200,000 (𝑖 .𝑒 .,

with raw data size from 1.3 MB to 58 MB) in our experiments. We

perform the following join queries on this dataset. Section B shows

the queries in SQL.

• Query SE1-SE3: general equi-joins over two tables.

• Query SM1-SM3: general multiway joins over three and four

tables.

Remarks. The query cost for each method should be roughly pro-

portional to the communication cost between the cloud and client,

as with the computation overhead in Table 1. It is confirmed by

our experimental results (see Figures 9-18) to some extent. For

simplicity, we mainly focus on experimental results for query cost.

9.2 Cloud and Client Storage Costs
Figures 7a and 8a show the cloud storage cost on two datasets.

ObliDB and ODBJ achieve the minimum cloud storage cost, since

they only store encrypted data blocks. Raw Index(+Cache) needs a

little more cost for storing index blocks. This difference is relatively

large on social graph, since leaf level entries have comparable sizes

with data records on social graph. Our method has roughly 10X

larger cost than Raw Index(+Cache), due to building Path-ORAM

data structure. When we scale up both datasets, our largest cloud

TE1 TE2 TE3
Query

10
1

10
3

10
5

10
7

10
9

10
11

Q
ue

ry
 C

os
t (

s)

ObliDB
ODBJ
Sep SMJ
Sep INLJ
Sep INLJ+Cache
One SMJ

One INLJ
One INLJ+Cache
Raw SMJ
Raw INLJ
Raw INLJ+Cache

(a) Query cost.

TE1 TE2 TE3
Query

10
2

10
4

10
6

10
8

10
10

10
12

C
om

m
un

ic
at

io
n

C
os

t (
M

B) ObliDB
ODBJ
Sep SMJ
Sep INLJ
Sep INLJ+Cache
One SMJ

One INLJ
One INLJ+Cache
Raw SMJ
Raw INLJ
Raw INLJ+Cache

(b) Communication cost.
Figure 9: Performance of binary equi-join on TPC-H.

SE1 SE2 SE3
Query

10
−1

10
2

10
5

10
8

10
11

10
14

10
17

Q
ue

ry
 C

os
t (

s)

ObliDB
ODBJ
Sep SMJ
Sep INLJ
Sep INLJ+Cache
One SMJ

One INLJ
One INLJ+Cache
Raw SMJ
Raw INLJ
Raw INLJ+Cache

(a) Query cost.

SE1 SE2 SE3
Query

10
0

10
3

10
6

10
9

10
12

10
15

10
18

C
om

m
un

ic
at

io
n

C
os

t (
M

B) ObliDB
ODBJ
Sep SMJ
Sep INLJ
Sep INLJ+Cache
One SMJ

One INLJ
One INLJ+Cache
Raw SMJ
Raw INLJ
Raw INLJ+Cache

(b) Communication cost.
Figure 10: Performance of binary equi-join on social graph.

storage cost comes to 16.6 GB on TPC-H and 1.4 GB on social graph,

while that of Raw Index(+Cache) is 1.5 GB on TPC-H and 126 MB

on social graph.

Figures 7b and 8b show the client memory size on two datasets.

ODBJ achieves the minimum cost, since the client always keeps

a constant number of blocks. For Raw Index(+Cache), the client

also keeps a few more blocks along currently retrieved 𝐵-tree paths

and may cache the index blocks above the leaf level in “+Cache”

mode. For ObliDB, we set the trusted memory size to the largest

(𝑀 = 50 log𝑁) and make it finish as soon as possible. Our client

memory cost grows (roughly) linearly with raw data size, since

𝑂 (𝑁 /𝐵) blocks in the position map dominate the client storage

when the number of blocks is large. However, since position map

entries are small in size, our client memory size is no larger than

2.2 MB on TPC-H and 0.6 MB on social graph. It can be further

mitigated if we instantiate our method with oblivious index.

9.3 Performance of Binary Equi-Join
9.3.1 Default Setting. Figures 9a and 10a show query cost for

binary equi-join on two datasets in default setting. Our SepO-

RAM(+Cache) algorithms achieve 2X-3X and 50X-3000X better per-

formances than ObliDB on TPC-H and social graph. The speedup

difference is mainly due to the join result size, which grows with

square of input size on TPC-H but is almost comparable with input
size on social graph. Our method takes advantage of this, since our

query cost depends on input and output sizes linearly.
Our SepORAM(+Cache) brings 90X-450X larger blowup of query

cost than Raw Index(+Cache) except for Query SE1, and also brings

7X-15X and 40X-160X larger blowup of query cost on TPC-H and

social graph than ODBJ except for Query SE1. The major reason is

that data tuples only contain 100-200 bytes on TPC-H and 2 integers

on social graph, much less than 4 KB block size. For index based

methods (Raw Index(+Cache) and ours), only one index entry or

data tuple in each retrieved index or data block can contribute to

the join processing. Based on this, the performance differences will

be reduced if we leverage small and suitable block sizes. Another

reason is that Path-ORAM brings a relatively large constant factor

in Big-O complexity (2𝑍 log𝑁 with 𝑍 = 4). We may achieve further

20 200 1000
Raw Data Size (MB)

10
−1

10
2

10
5

10
8

10
11

10
14

Q
ue

ry
 C

os
t (

s)

ObliDB
ODBJ
Sep SMJ
Sep INLJ
Sep INLJ+Cache
One SMJ

One INLJ
One INLJ+Cache
Raw SMJ
Raw INLJ
Raw INLJ+Cache

(a) Query cost.

20 200 1000
Raw Data Size (MB)

10
0

10
3

10
6

10
9

10
12

10
15

C
om

m
un

ic
at

io
n

C
os

t (
M

B) ObliDB
ODBJ
Sep SMJ
Sep INLJ
Sep INLJ+Cache
One SMJ

One INLJ
One INLJ+Cache
Raw SMJ
Raw INLJ
Raw INLJ+Cache

(b) Communication cost.
Figure 11: Performance of Query TE2 against raw data size.

1.3 11.5 58
Raw Data Size (MB)

10
−1

10
3

10
7

10
11

10
15

10
19

Q
ue

ry
 C

os
t (

s)

ObliDB
ODBJ
Sep SMJ
Sep INLJ
Sep INLJ+Cache
One SMJ

One INLJ
One INLJ+Cache
Raw SMJ
Raw INLJ
Raw INLJ+Cache

(a) Query cost.

1.3 11.5 58
Raw Data Size (MB)

10
0

10
4

10
8

10
12

10
16

10
20

Q
ue

ry
 C

os
t (

s)

ObliDB
ODBJ
Sep SMJ
Sep INLJ
Sep INLJ+Cache
One SMJ

One INLJ
One INLJ+Cache
Raw SMJ
Raw INLJ
Raw INLJ+Cache

(b) Communication cost.
Figure 12: Performance of Query SE2 against raw data size.

performance improvement if using some novel ORAM schemes

[13, 25, 63]. In particular Query SE1 joins a small table with a large

one but generates few join records. Sep SMJ and Sep INLJ(+Cache)

bring 2400X and 30X larger blowup of query cost than Raw In-

dex(+Cache) algorithms. Sep INLJ(+Cache) even achieves 1.7X-2.7X

better performance than ODBJ. The reason is that the query cost

of Sep INLJ(+Cache) increases with large table size logarithmically,
while that of Sep SMJ and ODBJ increases with large table size

linearly (see Table 1).

For our method, Sep INLJ achieves 1.2X-2.6X better performance

than One INLJ. As explained in Section 7, OneORAM setting has

to pay much larger cost for accessing longer paths through the

large single Path-ORAM. Besides, One INLJ(+Cache) has to pad the

number of ORAM accesses for each tuple retrieval to the maximum

length of outsourced 𝐵-tree paths to be retrieved, although this

problem can be alleviated by index caching. One SMJ does not have

this padding problem, since the client always accesses an index

block and then a data block for each tuple retrieval through Path-

ORAM. One SMJ even achieves 1.6X better performance than Sep

SMJ on Query SE2 and SE3, due to less number of tuple retrievals

based on the optimization in Section 7. Last, the index caching

brings 1.2X-1.6X speedup ratio in both settings.

9.3.2 Scalability. Figures 11a and 12a show query cost for Query

TE2 and SE2 against raw data size. For Query TE2, we demonstrate

the experimental results on TPC-H dataset with raw data sizes 20

MB, 200MB, 1,000MB in Figure 11a. For Query SE2, we demonstrate

the experimental results with 5,000, 5,0000, and 200,000 sampled

twitter users (𝑖 .𝑒 ., with raw data sizes 1.3 MB, 11.5 MB, and 58

MB) on social graph dataset in Figure 12a. Our SepORAM(+Cache)

achieves 2X-4X and 1.6× 10
3
X-1.6× 10

4
X better performances than

ObliDB for Query TE2 and SE2, when raw data size increases from

the minimum to the maximum. The speedup difference for two

queries is still on account of the join result size, as explained in Sec-

tion 9.3.1. Compared with Raw Index(+Cache), SepORAM(+Cache)

brings 75X-157X and 161X-409X blowup of query cost on Queries

TE2 and SE2. Compared with ODBJ, SepORAM(+Cache) brings

TB1 TB2
Query

10
2

10
5

10
8

10
11

Q
ue

ry
 C

os
t (

s)

Sep INLJ
Sep INLJ+Cache
One INLJ

One INLJ+Cache
Raw INLJ
Raw INLJ+Cache

(a) Query cost.

TB1 TB2
Query

10
3

10
6

10
9

10
12

C
om

m
un

ic
at

io
n

C
os

t (
M

B) Sep INLJ
Sep INLJ+Cache
One INLJ

One INLJ+Cache
Raw INLJ
Raw INLJ+Cache

(b) Communication cost.
Figure 13: Performance of band join on TPC-H.

10
1

10
2

10
3

Raw Data Size (MB)

10
−1

10
2

10
5

10
8

10
11

Q
ue

ry
 C

os
t (

s)

Sep INLJ
Sep INLJ+Cache
One INLJ

One INLJ+Cache
Raw INLJ
Raw INLJ+Cache

(a) Query cost.

10
1

10
2

10
3

Raw Data Size (MB)

10
0

10
3

10
6

10
9

10
12

C
om

m
un

ic
at

io
n

C
os

t (
M

B) Sep INLJ
Sep INLJ+Cache
One INLJ

One INLJ+Cache
Raw INLJ
Raw INLJ+Cache

(b) Communication cost.
Figure 14: Performance of Query TB1 against raw data size.

TM1 TM2 TM3
Query

10
1

10
5

10
9

10
13

10
17

10
21

10
25

Q
ue

ry
 C

os
t (

s)

ObliDB
Sep INLJ
Sep INLJ+Cache
One INLJ

One INLJ+Cache
Raw INLJ
Raw INLJ+Cache

(a) Query cost.

TM1 TM2 TM3
Query

10
2

10
6

10
10

10
14

10
18

10
22

10
26

C
om

m
un

ic
at

io
n

C
os

t (
M

B) ObliDB
Sep INLJ
Sep INLJ+Cache
One INLJ

One INLJ+Cache
Raw INLJ
Raw INLJ+Cache

(b) Communication cost.
Figure 15: Performance of multiway equi-join on TPC-H.

10X-20X and 30X-140X blowup of query cost on Query TE2 and

SE2. The major reason of this blowup is still that data tuple sizes

are much less than the block size, as explained in Section 9.3.1.

Replacing Path-ORAM with some advanced ORAMs can help to

improve our query performance. For our method, Sep INLJ achieves

1.1X-3.4X better performance than One INLJ, as explained in Sec-

tion 9.3.1. As in Section 9.3.1, One SMJ even achieves 1.4X-1.7X

better performance than Sep SMJ on Query SE2 due to less number

of tuple retrievals. Last, the index caching brings 1.2X-2.0X speedup

ratio on two queries in both settings.

9.4 Performance of Band Join
Figure 13a shows query cost for band join on TPC-H in default set-

ting. In comparison with Raw INLJ(+Cache), our Sep INLJ(+Cache)

brings 164X and 288X blowup of query cost on Query TB1 and

TB2. For our method, Sep INLJ achieves 1.4X-2.5X better perfor-

mance than One INLJ, as explained in Section 9.3. The index caching

brings 1.2X-1.5X better performance in both settings. Figure 14a

shows query cost on Query TB1 against raw data size. When raw

data size increases from 10 MB to 1 GB, Sep INLJ(+Cache) brings

73X-264X blowup of query cost on Query TB1 compared with Raw

INLJ(+Cache). For our method, Sep INLJ achieves 1.9X-2.9X bet-

ter performance than One INLJ, and the index caching achieves

1.2X-1.5X better performance in both settings.

9.5 Performance of Multiway Equi-Join
9.5.1 Default Setting. Figures 15a and 16a show query cost for

multiway equi-join on two datasets in default setting. Our Sep

INLJ(+Cache) achieves 10
6
X-10

11
X better performance than ObliDB

SM1 SM2 SM3
Query

10
−1

10
3

10
7

10
11

10
15

10
19

10
23

Q
ue

ry
 C

os
t (

s)

ObliDB
Sep INLJ
Sep INLJ+Cache
One INLJ

One INLJ+Cache
Raw INLJ
Raw INLJ+Cache

(a) Query cost.

SM1 SM2 SM3
Query

10
0

10
4

10
8

10
12

10
16

10
20

10
24

C
om

m
un

ic
at

io
n

C
os

t (
M

B) ObliDB
Sep INLJ
Sep INLJ+Cache
One INLJ

One INLJ+Cache
Raw INLJ
Raw INLJ+Cache

(b) Communication cost.
Figure 16: Performance of multiway equi-join on social graph.

10
1

10
2

10
3

Raw Data Size (MB)

10
0

10
4

10
8

10
12

10
16

Q
ue

ry
 C

os
t (

s)

ObliDB
Sep INLJ
Sep INLJ+Cache
One INLJ

One INLJ+Cache
Raw INLJ
Raw INLJ+Cache

(a) Query cost.

10
1

10
2

10
3

Raw Data Size (MB)

10
1

10
5

10
9

10
13

10
17

C
om

m
un

ic
at

io
n

C
os

t (
M

B) ObliDB
Sep INLJ
Sep INLJ+Cache
One INLJ

One INLJ+Cache
Raw INLJ
Raw INLJ+Cache

(b) Communication cost.
Figure 17: Performance of Query TM2 against raw data size.

10
0

10
1

10
2

Raw Data Size (MB)

10
−1

10
3

10
7

10
11

10
15

10
19

10
23

Q
ue

ry
 C

os
t (

s)

ObliDB
Sep INLJ
Sep INLJ+Cache
One INLJ

One INLJ+Cache
Raw INLJ
Raw INLJ+Cache

(a) Query cost.

10
0

10
1

10
2

Raw Data Size (MB)

10
0

10
4

10
8

10
12

10
16

10
20

10
24

C
om

m
un

ic
at

io
n

C
os

t (
M

B) ObliDB
Sep INLJ
Sep INLJ+Cache
One INLJ

One INLJ+Cache
Raw INLJ
Raw INLJ+Cache

(b) Communication cost.
Figure 18: Performance of Query SM2 against raw data size.

on all queries except Query TM2. The reason is that our query cost

is roughly linear with input and output sizes, but ObliDB has to

perform a Cartesian product. For Query TM2, this speedup ratio

goes down to 280X. The reason is that the join result size grows with

square of input size, consistent with the Cartesian product of four

tables (including two nation tables with a static size). In comparison

with Raw INLJ(+Cache), Sep INLJ(+Cache) brings 185X-985X and

37000X-70000X blowup of query cost on TPC-H and social graph.

The blowup difference on two datasets is due to different join result

sizes. Raw INLJ(+Cache) leverages the index filtering well when

real join size is small, but our method must pad the number of

operations to the upper bound to ensure the obliviousness. For

our method, Sep INLJ achieves 1.6X-2.4X better performance than

One INLJ on all queries except Query TM2. For Query TM2, this

performance difference goes up to 5.5X. The reason is that Sep INLJ

has to keep accessing the large single Path-ORAM that contains

the largest table lineitem, although lineitem is not covered in

Query TM2. Last, the index caching brings 1.1X-1.5X speedup ratio

in both settings.

9.5.2 Scalability. Figures 17a and 18a show query cost for mul-

tiway equi-joins Query TM2 and SM2 against raw data size. For

Query TM2, our Sep INLJ(+Cache) achieves 190X-430X better per-

formance than ObliDB. The speedup ratio is roughly stable, since

the join result size is roughly proportional to the Cartesian product

size. For Query SM2, this speedup ratio increases to 10
5
X-10

8
X,

due to far less join result size. Compared with Raw INLJ(+Cache),

Sep INLJ(+Cache) brings 194X-469X and 28000X-91000X blowup

Real Size Closest Power Cartesian Product
Padding Strategy

10
1

10
3

10
5

10
7

10
9

10
11

Q
ue

ry
 C

os
t (

s)

ObliDB
ODBJ
Sep SMJ
Sep INLJ

Sep INLJ+Cache
One SMJ
One INLJ
One INLJ+Cache

(a) Query TE2.

Real Size Closest Power Cartesian Product
Padding Strategy

10
1

10
4

10
7

10
10

10
13

10
16

10
19

Q
ue

ry
 C

os
t (

s)

ObliDB
ODBJ
Sep SMJ
Sep INLJ

Sep INLJ+Cache
One SMJ
One INLJ
One INLJ+Cache

(b) Query SE2.
Figure 19: Padded vs. non-padded mode (binary equi-join).

Real Size Closest Power Cartesian Product
Padding Strategy

10
3

10
4

10
5

10
6

Q
ue

ry
 C

os
t (

s)

Sep INLJ
Sep INLJ+Cache

One INLJ
One INLJ+Cache

(a) Query TB1.

Real Size Closest Power Cartesian Product
Padding Strategy

10
6

10
7

10
8

10
9

Q
ue

ry
 C

os
t (

s)

Sep INLJ
Sep INLJ+Cache

One INLJ
One INLJ+Cache

(b) Query TB2.
Figure 20: Padded vs. non-padded mode (band join).

Real Size Closest Power Cartesian Product
Padding Strategy

10
5

10
8

10
11

10
14

Q
ue

ry
 C

os
t (

s)

ObliDB
Sep INLJ
Sep INLJ+Cache

One INLJ
One INLJ+Cache

(a) Query TM2.

Real Size Closest Power Cartesian Product
Padding Strategy

10
2

10
6

10
10

10
14

10
18

Q
ue

ry
 C

os
t (

s)

ObliDB
Sep INLJ
Sep INLJ+Cache

One INLJ
One INLJ+Cache

(b) Query SM2.
Figure 21: Padded vs. non-padded mode (multiway equi-join).

of query cost on Query TM2 and SM2. The blowup difference on

two queries is still due to the different join result sizes, as explained

in Section 9.5.1. For our method, Sep INLJ achieves 4.4X-5.5X and

1.6X-2.3X better performances than One INLJ on Query TM2 and

SM2. For Query TM2, the reason of this performance difference

is still that the largest table lineitem on TPC-H is not covered in

Query TM2, as explained in Section 9.5.1. Last, the index caching

brings 1.1X-2.0X speedup ratio in both settings.

9.6 Padded Mode vs. Non-Padded Mode
We also make the comparison between padded mode and non-

padded mode for all secured methods. We discuss three padding

strategies for the join result size: (1) no padding (denoted as Real

Size); (2) padding to the closest power of a constant 𝑥 = 2 (denoted

as Closest Power) as in [12, 22, 34]; (3) padding to the Cartesian

product (denoted as Cartesian Product). Details of the padding

techniques are provided in the second last paragraph in Section 8.

Figures 19-21 show query cost for binary equi-joins, band joins,

and multiway equi-joins against different padding strategies in

default datasets. Note that in all three padding strategies, we set the

additional trusted memory size𝑀 = 2𝐵 (𝐵 is the block size) in ODBJ

and our method, but set 𝑀 = 50 log𝑁 (𝑁 is the number of data

blocks) in ObliDB as above. For ObliDB, Cartesian Product even

achieves around 5X less query cost than Real Size and Closest Power.

The reason is that Real Size and Closest Power need to additionally

perform an oblivious filtering over the join output with Cartesian

product size in ObliDB. For ODBJ and our method, the blowup of

query cost in different padding strategies is roughly proportional

to different ratios of padded join result sizes to real join sizes. For

example, Closest Power introduces within 2X larger query cost than

Real Size, due to padding the join result size to the closest power of

𝑥 = 2. In Cartesian Product, ODBJ needs 40X-50X larger query cost

than ObliDB, since ODBJ only has 𝑂 (1) client memory size. Our

method brings 500X-1700X and 900X-5300X larger query cost on

binary and multiway equi-joins than ObliDB. The first reason is

still that we have much less trusted memory size than ObliDB (as

shown in Figures 7b and 8b). The second reason is that we perform

a few tuple retrievals through 𝐵-tree searches over ORAMs in each

join step, and each ORAM operation introduces 𝑂 (log𝑁) cost.

10 CONCLUSION
This paper focuses on oblivious joins over a cloud database. Our

design integrates 𝐵-tree indices into ORAMs to speed up the query

processing. We address the security issues in extended existing

solutions and propose two types of oblivious algorithms including

sort-merge join and index nested-loop join. Our method supports

general binary and multiway equi-joins and some types of band

joins. Extensive experimental evaluation has demonstrated the

superior efficiency and scalability, when being compared against

other alternatives and state-of-the-art baselines in the literature.

Our current design does not address challenges associated with

ad-hoc updates, which is a future direction to explore.

A TPC-H QUERIES
Binary Equi-Join.

Query TE1: Suppliers and customers in the same nations.

SELECT s_suppkey, c_custkey, s_nationkey
FROM supplier, customer
WHERE s_nationkey = c_nationkey;

Query TE2: Suppliers in the same nations.

SELECT s1.s_suppkey, s2.s_suppkey, s1.s_nationkey
FROM supplier s1, supplier s2
WHERE s1.s_nationkey = s2.s_nationkey;

Query TE3: Customers in the same nations.

SELECT c1.c_custkey, c2.c_custkey, c1.c_nationkey
FROM customer c1, customer c2
WHERE c1.c_nationkey = c2.c_nationkey;

Band Join.
Query TB1: Suppliers joined with other suppliers with higher

account balance.

SELECT s1.s_suppkey, s2.s_suppkey,
s1.s_acctbal, s2.s_acctbal

FROM supplier s1, supplier s2
WHERE s1.s_acctbal < s2.s_acctbal;

Query TB2: Parts joined with other parts with higher retail price.

SELECT p1.p_partkey, p2.p_partkey,
p1.p_retailprice, p2.p_retailprice

FROM part p1, part p2
WHERE p1.p_retailprice < p2.p_retailprice;

Multiway Equi-Join.
Query TM1: Lineitems joined with the orders they associated

with and the customers who placed the orders.

SELECT c_custkey, o_orderkey, l_linenumber
FROM customer, orders, lineitem
WHERE c_custkey = o_custkey

AND l_orderkey = o_orderkey;

Query TM2: Suppliers and customers in the same regions.

SELECT s_suppkey, c_custkey, n1.n_nationkey,
n2.n_nationkey, n1.n_regionkey

FROM supplier, customer, nation n1, nation n2
WHERE s_nationkey = n1.n_nationkey

AND c_nationkey = n2.n_nationkey
AND n1.n_regionkey = n2.n_regionkey;

Query TM3: Suppliers and customers in the same nations with

the perchase history of the customers.

SELECT n_nationkey, s_suppkey, c_custkey,
o_orderkey, l_linenumber

FROM nation, supplier, customer, orders, lineitem
WHERE n_nationkey = s_nationkey

AND s_nationkey = c_nationkey
AND c_custkey = o_custkey
AND o_orderkey = l_orderkey;

B SOCIAL GRAPH QUERIES
Binary Equi-Join.

Query SE1: A popular user followed by an inactive user.

SELECT * FROM
popular-user p, inactive-user i
WHERE p.dst = i.src;

Query SE2: A popular user followed by a normal user.

SELECT * FROM
popular-user p, normal-user n
WHERE p.dst = n.src;

Query SE3: A normal user followed by a popular user.

SELECT * FROM
popular-user p, normal-user n
WHERE p.src = n.dst;

Multiway Equi-Join.
Query SM1: A popular user who is followed by a normal user

followed by an inactive user.

SELECT *
FROM popular-user p, normal-user n, inactive-user i
WHERE p.dst = n.src AND n.dst = i.src;

Query SM2: A popular user and a normal user who are followed

by an inactive user.

SELECT *
FROM popular-user p, normal-user n, inactive-user i
WHERE p.dst = i.src AND n.dst = i.src;

Query SM3: An inactive user who is followed by a popular user,

a normal user, and another inactive user.

SELECT *
FROM popular-user p, normal-user n,

inactive-user i1, inactive-user i2
WHERE i1.dst = p.src

AND i1.dst = n.src
AND i1.dst = i2.src;

ACKNOWLEDGMENTS
We would like to thank the anonymous SIGMOD reviewers for

several helpful comments and suggestions. This work was sup-

ported by National Key R&D Program of China (2021YFB3101100)

and the National Natural Science Foundation of China (61972308,

U1736216). This work was partially done when Zhao Chang worked

as an intern in the Database and Storage Lab at Alibaba DAMO

Academy.

REFERENCES
[1] 2014. Big Data Benchmark. https://amplab.cs.berkeley.edu/benchmark/. (2014).

[2] 2016. SEAL-ORAM. https://github.com/InitialDLab/SEAL-ORAM. (2016).

[3] 2020. Oblivious Database Join Algorithm. https://git.uwaterloo.ca/skrastni/obliv-

join-impl. (2020).

[4] 2021. Towards Practical Oblivious Join. https://anonymous.4open.science/r/

Towards-Practical-Oblivious-Join-3477/ojoin.pdf. (2021).

[5] Rakesh Agrawal, Dmitri Asonov, Murat Kantarcioglu, and Yaping Li. 2006. Sov-

ereign Joins. In ICDE. 26.
[6] Rakesh Agrawal, Alexandre V. Evfimievski, and Ramakrishnan Srikant. 2003.

Information Sharing Across Private Databases. In SIGMOD. 86–97.
[7] Miklós Ajtai, János Komlós, and Endre Szemerédi. 1983. An𝑂 (𝑛 log𝑛) Sorting

Network. In STOC. 1–9.
[8] Arvind Arasu, Spyros Blanas, Ken Eguro, Manas Joglekar, Raghav Kaushik, Don-

ald Kossmann, Ravishankar Ramamurthy, Prasang Upadhyaya, and Ramarathnam

Venkatesan. 2013. Secure database-as-a-service with Cipherbase. In SIGMOD.
1033–1036.

[9] Arvind Arasu, Ken Eguro, Manas Joglekar, Raghav Kaushik, Donald Kossmann,

and Ravi Ramamurthy. 2015. Transaction processing on confidential data using

Cipherbase. In ICDE. 435–446.
[10] Arvind Arasu, Ken Eguro, Raghav Kaushik, and Ravishankar Ramamurthy. 2014.

Querying encrypted data. In SIGMOD. 1259–1261.
[11] Arvind Arasu and Raghav Kaushik. 2014. Oblivious Query Processing. In ICDT.

26–37.

[12] Gilad Asharov, T.-H. Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, and

Elaine Shi. 2019. Locality-Preserving Oblivious RAM. In EUROCRYPT, Part II.
214–243.

[13] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico,

and Elaine Shi. 2020. OptORAMa: Optimal Oblivious RAM. In EUROCRYPT, Part
II. 403–432.

[14] Sumeet Bajaj and Radu Sion. 2014. TrustedDB: A Trusted Hardware-Based

Database with Privacy and Data Confidentiality. TKDE 26, 3 (2014), 752–765.

[15] Kenneth E. Batcher. 1968. Sorting Networks and Their Applications. In AFIPS
Spring Joint Computing Conference. 307–314.

[16] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel N. Kho, and

Jennie Rogers. 2017. SMCQL: Secure Query Processing for Private Data Networks.

PVLDB 10, 6 (2017), 673–684.

[17] Johes Bater, Xi He, William Ehrich, Ashwin Machanavajjhala, and Jennie Rogers.

2018. Shrinkwrap: Efficient SQL Query Processing in Differentially Private Data

Federations. PVLDB 12, 3 (2018), 307–320.

[18] Vincent Bindschaedler, Paul Grubbs, David Cash, Thomas Ristenpart, and Vitaly

Shmatikov. 2018. The Tao of Inference in Privacy-Protected Databases. PVLDB
11, 11 (2018), 1715–1728.

[19] Vincent Bindschaedler, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang, and

Yan Huang. 2015. Practicing Oblivious Access on Cloud Storage: the Gap, the

Fallacy, and the New Way Forward. In CCS. 837–849.
[20] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-

Abuse Attacks Against Searchable Encryption. In CCS. 668–679.
[21] Meeyoung Cha, Hamed Haddadi, Fabrício Benevenuto, and P. Krishna Gummadi.

2010. Measuring User Influence in Twitter: The Million Follower Fallacy. In

ICWSM.

[22] Anrin Chakraborti, Adam J. Aviv, Seung Geol Choi, Travis Mayberry, Daniel S.

Roche, and Radu Sion. 2019. rORAM: Efficient Range ORAM with 𝑂(log
2 𝑁)

Locality. In NDSS.
[23] Zhao Chang, Dong Xie, and Feifei Li. 2016. Oblivious RAM: A Dissection and

Experimental Evaluation. PVLDB 9, 12 (2016), 1113–1124.

[24] Zhao Chang, Dong Xie, Feifei Li, Jeff M. Phillips, and Rajeev Balasubramonian.

2021. Efficient Oblivious Query Processing for Range and kNN Queries. IEEE
TKDE (2021).

[25] Hao Chen, Ilaria Chillotti, and Ling Ren. 2019. Onion Ring ORAM: Efficient

Constant Bandwidth Oblivious RAM from (Leveled) TFHE. In CCS. 345–360.
[26] Rui Chen, Haoran Li, A. K. Qin, Shiva Prasad Kasiviswanathan, and Hongxia Jin.

2016. Private spatial data aggregation in the local setting. In ICDE. 289–300.
[27] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian Zhang. 2017.

Detecting Privileged Side-Channel Attacks in Shielded Execution with Déjà Vu.

In AsiaCCS. 7–18.
[28] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private

Information Retrieval. J. ACM 45, 6 (1998), 965–981.

[29] Shumo Chu, Danyang Zhuo, Elaine Shi, and T.-H. Hubert Chan. 2021. Differ-

entially Oblivious Database Joins: Overcoming the Worst-Case Curse of Fully

Oblivious Algorithms. In ITC 2021. 19:1–19:24.
[30] Graham Cormode, Somesh Jha, Tejas Kulkarni, Ninghui Li, Divesh Srivastava,

and Tianhao Wang. 2018. Privacy at Scale: Local Differential Privacy in Practice.

In SIGMOD. 1655–1658.
[31] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology

ePrint Archive 2016 (2016), 86.
[32] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar Harel, Rachit Agarwal,

and Lorenzo Alvisi. 2018. Obladi: Oblivious Serializable Transactions in the

Cloud. In OSDI. 727–743.
[33] Ankur Dave, Chester Leung, Raluca Ada Popa, Joseph E. Gonzalez, and Ion

Stoica. 2020. Oblivious coopetitive analytics using hardware enclaves. In EuroSys.
39:1–39:17.

[34] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, and

Saurabh Shintre. 2020. SEAL: Attack Mitigation for Encrypted Databases via

Adjustable Leakage. In USENIX Security.
[35] Saba Eskandarian and Matei Zaharia. 2019. ObliDB: Oblivious Query Processing

for Secure Databases. PVLDB 13, 2 (2019), 169–183.

[36] Christopher W. Fletcher, Ling Ren, Xiangyao Yu, Marten van Dijk, Omer Khan,

and Srinivas Devadas. 2014. Suppressing the Oblivious RAM timing channel

while making information leakage and program efficiency trade-offs. In HPCA.
213–224.

[37] Oded Goldreich. 1987. Towards a Theory of Software Protection and Simulation

by Oblivious RAMs. In STOC. 182–194.
[38] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation

on Oblivious RAMs. J. ACM 43, 3 (1996), 431–473.

[39] Michael T. Goodrich. 2010. Randomized Shellsort: A Simple Oblivious Sorting

Algorithm. In SODA. 1262–1277.
[40] Michael T. Goodrich. 2014. Zig-zag sort: A simple deterministic data-oblivious

sorting algorithm running in𝑂(𝑛 log𝑛) time. In STOC. 684–693.
[41] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, István Haller, and

Manuel Costa. 2017. Strong and Efficient Cache Side-Channel Protection using

Hardware Transactional Memory. In USENIX Security. 217–233.
[42] Hakan Hacigümüs, Balakrishna R. Iyer, Chen Li, and Sharad Mehrotra. 2002.

Executing SQL over encrypted data in the database-service-provider model. In

SIGMOD. 216–227.
[43] Zhian He, Wai Kit Wong, Ben Kao, David Wai-Lok Cheung, Rongbin Li, Siu-

Ming Yiu, and Eric Lo. 2015. SDB: A Secure Query Processing System with Data

Interoperability. PVLDB 8, 12 (2015), 1876–1879.

[44] Thang Hoang, Ceyhun D. Ozkaptan, Gabriel Hackebeil, and Attila A. Yavuz. 2018.

Efficient Oblivious Data Structures for Database Services on the Cloud. IEEE
Trans. Cloud Computing (2018).

[45] Thang Hoang, Muslum Ozgur Ozmen, Yeongjin Jang, and Attila A. Yavuz. 2019.

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on

Very Large Dataset. PoPETs 2019, 1 (2019), 172–191.
[46] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access

Pattern disclosure on Searchable Encryption: Ramification, Attack andMitigation.

In NDSS.
[47] Noah M. Johnson, Joseph P. Near, and Dawn Song. 2018. Towards Practical

Differential Privacy for SQL Queries. PVLDB 11, 5 (2018), 526–539.

[48] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. 2016. Generic

Attacks on Secure Outsourced Databases. In CCS. 1329–1340.
[49] Marcel Keller and Peter Scholl. 2014. Efficient, Oblivious Data Structures for

MPC. In ASIACRYPT, Part II. 506–525.
[50] Taesoo Kim, Zhiqiang Lin, and Chia-che Tsai. 2017. CCS’17 Tutorial Abstract:

SGX Security and Privacy. In CCS. 2613–2614.
[51] Tony Kontzer. 2004. Airlines and Hotels Face Customer Concerns Arising from

Anti-Terrorism Efforts. https://www.informationweek.com/privacy-pressure/d/d-
id/1023945 (2004).

[52] Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin Machanava-

jjhala, Michael Hay, and Gerome Miklau. 2019. PrivateSQL: A Differentially

Private SQL Query Engine. PVLDB 12, 11 (2019), 1371–1384.

[53] Simeon Krastnikov, Florian Kerschbaum, and Douglas Stebila. 2020. Efficient

Oblivious Database Joins. PVLDB 13, 11 (2020), 2132–2145.

[54] Yaping Li andMinghua Chen. 2008. Privacy Preserving Joins. In ICDE. 1352–1354.
[55] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.

ObliVM: A Programming Framework for Secure Computation. In S&P. 359–376.
[56] Jacob R. Lorch, Bryan Parno, James W. Mickens, Mariana Raykova, and Joshua

Schiffman. 2013. Shroud: Ensuring private access to large-scale data in the data

center. In FAST. 199–214.
[57] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic,

John Kubiatowicz, and Dawn Song. 2013. PHANTOM: Practical oblivious com-

putation in a secure processor. In CCS. 311–324.
[58] PratyushMishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and Raluca Ada

Popa. 2018. Oblix: An Efficient Oblivious Search Index. In S&P. 279–296.
[59] Muhammad Naveed, Seny Kamara, and Charles V. Wright. 2015. Inference

Attacks on Property-Preserving Encrypted Databases. In CCS. 644–655.
[60] Rafail Ostrovsky. 1990. Efficient Computation on Oblivious RAMs. In STOC.

514–523.

[61] Benny Pinkas and Tzachy Reinman. 2010. Oblivious RAM Revisited. In CRYPTO.
502–519.

[62] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrish-

nan. 2011. CryptDB: Protecting confidentiality with encrypted query processing.

In SOSP. 85–100.
[63] Ling Ren, ChristopherW. Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten

van Dijk, and Srinivas Devadas. 2015. Constants Count: Practical Improvements

https://amplab.cs.berkeley.edu/benchmark/
https://github.com/InitialDLab/SEAL-ORAM
https://git.uwaterloo.ca/skrastni/obliv-join-impl
https://git.uwaterloo.ca/skrastni/obliv-join-impl
https://anonymous.4open.science/r/Towards-Practical-Oblivious-Join-3477/ojoin.pdf
https://anonymous.4open.science/r/Towards-Practical-Oblivious-Join-3477/ojoin.pdf
https://www.informationweek.com/privacy-pressure/d/d-id/1023945
https://www.informationweek.com/privacy-pressure/d/d-id/1023945

to Oblivious RAM. In USENIX Security. 415–430.
[64] Cetin Sahin, Tristan Allard, Reza Akbarinia, Amr El Abbadi, and Esther Pacitti.

2018. A Differentially Private Index for Range Query Processing in Clouds. In

ICDE. 857–868.
[65] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano Tessaro.

2016. TaoStore: Overcoming Asynchronicity in Oblivious Data Storage. In S&P.
198–217.

[66] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. 2018. ZeroTrace:

Oblivious Memory Primitives from Intel SGX. In NDSS.
[67] Elaine Shi. 2020. Path Oblivious Heap: Optimal and Practical Oblivious Priority

Queue. In S&P. 842–858.
[68] Emil Stefanov and Elaine Shi. 2013. ObliviStore: High Performance Oblivious

Cloud Storage. In S&P. 253–267.
[69] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren,

Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: An Extremely Simple

Oblivious RAM Protocol. In CCS. 299–310.
[70] Stephen Tu, M. Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich. 2013.

Processing Analytical Queries over Encrypted Data. PVLDB 6, 5 (2013), 289–300.

[71] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, Andrei

Lapets, and Azer Bestavros. 2019. Conclave: Secure multi-party computation on

big data. In EuroSys. 3:1–3:18.
[72] Ning Wang, Xiaokui Xiao, Yin Yang, Jun Zhao, Siu Cheung Hui, Hyejin Shin,

Junbum Shin, and Ge Yu. 2019. Collecting and Analyzing Multidimensional Data

with Local Differential Privacy. In ICDE. 638–649.
[73] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. 2017. Locally

Differentially Private Protocols for Frequency Estimation. In USENIX Security.
729–745.

[74] Tianhao Wang, Bolin Ding, Jingren Zhou, Cheng Hong, Zhicong Huang, Ninghui

Li, and Somesh Jha. 2019. Answering Multi-Dimensional Analytical Queries

under Local Differential Privacy. In SIGMOD. 159–176.

[75] Xiao Shaun Wang, Yan Huang, T.-H. Hubert Chan, Abhi Shelat, and Elaine Shi.

2014. SCORAM: Oblivious RAM for Secure Computation. In CCS. 191–202.
[76] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T-H. Hubert Chan, Elaine Shi, Emil

Stefanov, and Yan Huang. 2014. Oblivious Data Structures. In CCS. 215–226.
[77] Yilei Wang and Ke Yi. 2021. Secure Yannakakis: Join-Aggregate Queries over

Private Data. In SIGMOD.
[78] Peter Williams and Radu Sion. 2008. Usable PIR. In NDSS.
[79] PeterWilliams, Radu Sion, and Alin Tomescu. 2012. PrivateFS: A parallel oblivious

file system. In CCS. 977–988.
[80] Wai Kit Wong, Ben Kao, David Wai-Lok Cheung, Rongbin Li, and Siu-Ming Yiu.

2014. Secure query processing with data interoperability in a cloud database

environment. In SIGMOD. 1395–1406.
[81] Dong Xie, Guanru Li, Bin Yao, Xuan Wei, Xiaokui Xiao, Yunjun Gao, and Minyi

Guo. 2016. Practical Private Shortest Path Computation Based on Oblivious

Storage. In ICDE. 361–372.
[82] Jianyu Yang, Tianhao Wang, Ninghui Li, Xiang Cheng, and Sen Su. 2020. Answer-

ing Multi-Dimensional Range Queries under Local Differential Privacy. PVLDB
14, 3 (2020), 378–390.

[83] Bin Yao, Feifei Li, and Xiaokui Xiao. 2013. Secure Nearest Neighbor Revisited. In

ICDE. 733–744.
[84] Qingqing Ye, Haibo Hu, Xiaofeng Meng, and Huadi Zheng. 2019. PrivKV: Key-

Value Data Collection with Local Differential Privacy. In S&P. 317–331.
[85] C. T. Yu and M. Z. Ozsoyoglu. 1979. An algorithm for tree-query membership of

a distributed query. In COMPSAC. 306–312.
[86] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. 2018. Random

Sampling over Joins Revisited. In SIGMOD. 1525–1539.
[87] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E.

Gonzalez, and Ion Stoica. 2017. Opaque: An Oblivious and Encrypted Distributed

Analytics Platform. In NSDI. 283–298.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Overview and Definition
	3.1 Overview
	3.2 Problem Definition

	4 Preliminaries
	4.1 ORAM and Oblivious Sorting
	4.2 Integrate B-Tree Indices into ORAM

	5 Oblivious Binary Join
	5.1 Oblivious Sort-Merge Equi-Join
	5.2 Oblivious Index Nested-Loop Equi-Join
	5.3 Oblivious Index Nested-Loop Band Join

	6 Oblivious Multiway Equi-Join
	7 Discussion on One ORAM Setting
	8 Security Analysis
	9 Experimental Results
	9.1 Experimental Setup and Datasets
	9.2 Cloud and Client Storage Costs
	9.3 Performance of Binary Equi-Join
	9.4 Performance of Band Join
	9.5 Performance of Multiway Equi-Join
	9.6 Padded Mode vs. Non-Padded Mode

	10 Conclusion
	A TPC-H Queries
	B Social Graph Queries
	Acknowledgments
	References

