VAULT: Reducing Paging Overheads in SGX with
Efficient Integrity Verification Structures

Meysam Taassori
University of Utah
Salt Lake City, Utah
taassori@cs.utah.edu

Abstract

Intel’s SGX offers state-of-the-art security features, includ-
ing confidentiality, integrity, and authentication (CIA) when
accessing sensitive pages in memory. Sensitive pages are
placed in an Enclave Page Cache (EPC) within the physi-
cal memory before they can be accessed by the processor.
To control the overheads imposed by CIA guarantees, the
EPC operates with a limited capacity (currently 128 MB).
Because of this limited EPC size, sensitive pages must be
frequently swapped between EPC and non-EPC regions in
memory. A page swap is expensive (about 40K cycles) be-
cause it requires an OS system call, page copying, updates
to integrity trees and metadata, etc. Our analysis shows that
the paging overhead can slow the system on average by 5X,
and other studies have reported even higher slowdowns for
memory-intensive workloads.

The paging overhead can be reduced by growing the size
of the EPC to match the size of physical memory, while al-
lowing the EPC to also accommodate non-sensitive pages.
However, at least two important problems must be addressed
to enable this growth in EPC: (i) the depth of the integrity
tree and its cacheability must be improved to keep mem-
ory bandwidth overheads in check, (ii) the space overheads
of integrity verification (tree and MACs) must be reduced.
We achieve both goals by introducing a variable arity uni-
fied tree (VAULT) organization that is more compact and
has lower depth. We further reduce the space overheads
with techniques that combine MAC sharing and compres-
sion. With simulations, we show that the combination of our
techniques can address most inefficiencies in SGX memory
access and improve overall performance by 3.7x, relative to
an SGX baseline, while incurring a memory capacity over-
head of only 4.7%.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for compo-
nents of this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

ASPLOS 18, March 24-28, 2018, Williamsburg, VA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4911-6/18/03...$15.00
https://doi.org/10.1145/3173162.3177155

Ali Shafiee
University of Utah
Salt Lake City, Utah
shafiee@cs.utah.edu

Rajeev Balasubramonian
University of Utah
Salt Lake City, Utah
rajeev@cs.utah.edu

CCS Concepts - Security and privacy — Hardware-based
security protocols;

Keywords Security, memory integrity, Intel SGX, Compres-
sion

ACM Reference Format:

Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. 2018.

VAULT: Reducing Paging Overheads in SGX with Efficient Integrity
Verification Structures. In ASPLOS ’18: 2018 Architectural Support

for Programming Languages and Operating Systems, March 24-28,

2018, Williamsburg, VA, USA. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3173162.3177155

1 Introduction

A number of critical applications, e.g., electronic health
records [22], are hosted in the cloud or in datacenters.
Cloud systems must protect against a wide variety of at-
tacks, including those launched by a compromised OS or by
untrusted cloud operators with physical access to the hard-
ware. Such attackers can snoop on signals emerging out of
the processor, or can interfere with memory and processor
inputs.

To protect against such attacks, a secure system must of-
fer Confidentiality, Integrity, and Authentication (CIA) guar-
antees. Authentication is usually provided with hardware-
enforced permission checks. Confidentiality is preserved by
encrypting all signals that emerge from the processor. In-
tegrity is the property that the memory system correctly re-
turns the last-written block of data at any address. It is typ-
ically the most onerous guarantee because it requires the
management and navigation of tree-based data structures
On every memory access.

Intel has introduced Software Guard Extensions (SGX [12,
16]) that offer CIA guarantees for pages marked by an ap-
plication as sensitive. SGX forms a secure hardware con-
tainer, called an Enclave, to protect an application from sev-
eral attacks, including those launched by an untrusted OS
or by untrusted cloud operators. SGX partitions the physi-
cal memory into two regions: the Enclave Page Cache (EPC)
that stores recently accessed sensitive pages, and a non-EPC
region that stores non-sensitive pages as well as sensitive
pages spilled out of the EPC.

The SGX memory controller is augmented with a Memory
Encryption Engine (MEE) that performs permission checks,
encryption/decryption, and integrity tree operations when

https://doi.org/10.1145/3173162.3177155
https://doi.org/10.1145/3173162.3177155

accessing any data block in the EPC. Therefore, EPC ac-
cesses are expensive. Sensitive pages in the non-EPC region
have to first be moved into the EPC before they can be
accessed. In the context of this work, paging refers to the
process of moving pages between the EPC and non-EPC
regions of physical memory. Non-sensitive pages in the
non-EPC region are accessed without security overheads.

-~ A:Random Acc. 92MB -
-{|.. B: Seq Acc 128MB .
C Random Acc. 128MB

mcf milc bt

KVS (512MB) KVS (64MB) A B (o3

Figure 1. Left-side: slowdown for three different bench-
marks with various numbers of page faults. The overhead
is broken down in three portions, CS (Context Switch), DT
(Data Transfer), and SIT (SGX Integrity Tree). The slow-
down is against a non-secure baseline system (BL). Middle:
the slowdown of SGX in a real system for a Key Value Store
with two different working set sizes [33]. Right-side: slow-
down for SGX in a real system for synthetic benchmarks,
with random and sequential accesses, to different sizes of
memory [2].

On modern hardware, the overheads imposed by SGX are
very significant. A simulation-based analysis is shown in the
left third of Figure 1, and has been corroborated on the right
by measurements on real SGX hardware, reported by other
papers [2] [33]. For a few memory-intensive applications,
we see that marking all pages as sensitive can incur large
overheads. Further, we break down this overhead into three
components in the simulation-based analysis. The bottom
blue component is the baseline non-secure execution time
where none of the pages are marked sensitive. The top three
components (in yellow, red, and black) represent overheads
on every EPC hit and miss. An EPC miss is treated similar to
a page fault, and requires an OS context switch (represented
by the black sub-bar). The red portion of the bar represents
the cost of moving a page between EPC and non-EPC, and
corresponding updates of the integrity tree data structures.
The yellow sub-bar represents the overhead experienced by
every EPC hit — when accessing a block in a sensitive page
in EPC, the integrity tree has to be navigated and updated.

In brief, there is a large gap between EPC hit and miss la-
tencies — 200 cycles vs. 40 K cycles [2]. A recent software so-
lution, Eleos [33], addresses the cost of OS context switches,
but does not address the data transfer and integrity tree nav-
igation costs.

Given these large paging overheads, an obvious follow-
up question is: why not make the EPC larger to increase

its hit rate? Intel SGX allocates only 128 MB for the EPC! .
There may be a multitude of reasons for why the EPC is so
small, some only known to industry engineers. We list some
of the reasons here that are addressed by this work. (i) In-
tegrity tree depth and size: the depth and size of the integrity
tree grows with the size of the memory being protected. A
large tree size and depth, in turn, lead to poor cacheability
and higher bandwidth penalties when navigating the tree.
(if) Memory capacity overhead: the integrity tree and the
message authentication codes (MAC) required by every EPC
block can occupy a quarter of the memory being protected
(32 MB out of the 128 MB). (iii) Workload demands: since
EPC accesses are expensive, they are not appropriate for
non-sensitive pages. Designating a large fraction of mem-
ory as EPC during design time may waste memory in appli-
cations that have few sensitive pages and under-utilize the
EPC.

To enable a large EPC region, it is important to design
integrity tree structures that impose lower bandwidth and
capacity overheads, and can easily disable these overheads
when non-sensitive blocks are part of the integrity tree.
While we use SGX to motivate and frame the problem, our
proposed integrity tree structures are generally applicable
to any system that demands memory integrity.

We first introduce a Variable Arity Unified encrypted-
Leaf Tree (VAULT) of counters for integrity verification that
efficiently manages the trade-off between tree depth and
counter overflow. While Intel SGX has a tree with arity 8,
VAULT is designed to have a variable arity of 16 to 64. By
flattening the tree, and by making it more compact, the
cacheability and bandwidth overheads on every read and
write are greatly improved.

Second, we propose a technique (SMC) that uses com-
pression to pack a data block and its MAC into a single
cache line, thus reducing bandwidth overheads. Further, we
reduce storage overheads by sharing a MAC among multi-
ple data blocks. While this approach has the potential to
increase memory bandwidth demands, we show that the
compression-based technique can eliminate or reduce the
bandwidth penalty in most cases. Thus, SMC can reduce
both bandwidth and memory capacity. Finally, we allocate
MACs on-demand just for sensitive pages to further reduce
MAC capacity overheads.

With these techniques in place, the EPC can be expanded
to cover the entire physical memory with tolerable band-
width and capacity overheads. With help from the TLB,
non-sensitive pages can disable subsets of their CIA opera-
tions and not be penalized. Even if a large fraction of pages
are non-sensitive, the integrity tree overheads for sensitive

1In SGX, the 128MB is called PRM (Processor Reserved Memory) in which
96MB is for data (called EPC) and the rest is used for metadata. For simplic-
ity, we use EPC to describe both of them in this work.

pages are tolerable. Most importantly, when the sensitive
working set scales up, there is no penalty from paging.

Our results show that baseline SGX with paging, and
Eleos incur an average slowdown of 5.55X and 2.43X re-
spectively, relative to a non-secure baseline. The capacity
overhead in the baseline is under 1%. If SGX is naively ex-
tended with an EPC as large as physical memory, it incurs a
slowdown of 1.71x (from integrity tree navigation) and a ca-
pacity overhead of 25%. With VAULT, SMC, and on-demand
MAC allocation in place, and an EPC as large as physical
memory, we experience a slowdown of 1.5X and a capac-
ity overhead of less than 4.7%. Non-sensitive pages can be
accessed without any bandwidth overheads, and sensitive
pages are allowed to have a working set as large as physical
mMemory.

2 Background
2.1 Threat Model

Physical Attacks in the Cloud. In cloud computing envi-
ronments, applications are executed on remote servers. The
hardware platform is therefore managed by a potentially
untrusted cloud operator. This renders the system vulnera-
ble to physical attacks, where the attacker can replace hard-
ware modules, e.g., DIMMs, with specialized modules that
can snoop on data, modify data, or engage in denial of ser-
vice. With physical access, an operator can also install a ma-
licious OS that can tamper with application data by taking
ownership of the application’s pages.

Software Attack Model. We assume that attackers have
full control over different levels of the software stack includ-
ing OS and any other programs. The OS or any malicious
applications can attempt to compromise data confidential-
ity and integrity. This work does not address any side chan-
nel attacks, and memory safety bugs (e.g., buffer overflow).
Denial-of-service attacks are also out of the scope of this
study:.

Physical Attack in the Memory System. We will assume
that the host processor is a secure entity, i.e., it employs best
practices to protect its internal data and does not leak in-
formation through side channels. But such a secure proces-
sor must eventually store results in main memory or disk.
We will focus on the more common memory transactions
in this work. Memory transactions are performed on DDR
memory channels that are visible on the board and that can
be snooped with logic analyzers. Alternatively, an attacker
can design a custom DIMM with a buffer chip that acts as
a liaison for all exchanged signals, and therefore has full ac-
cess to all exchanged data. In short, since the attacker can
control the hardware and OS, they can access and control
all information going in/out of the secure processor. This is
true regardless of whether the memory is implemented with
DDR standards or emerging protocols like that in Micron’s
Hybrid Memory Cube [21].

Guaranteeing Confidentiality with Encryption. To pre-
vent attackers from snooping on externally visible data, and
guarantee confidentiality, a secure processor can encrypt all
data packets emerging from the processor. Memory devices
store data blocks in their encrypted form and simply return
the last-written copy when the block is requested again.
MACs to Thwart Some Integrity Violations. While the
attacker cannot violate confidentiality, they can violate the
property of integrity, which guarantees that the processor
receives exactly the same contents that were last written
into a memory block. When the processor requests data
from an address, the attacker can return a randomly cre-
ated block of data. This is easy to detect. Every block of
plaintext can be associated with a Message Authentication
Code (MAC), which is typically a 64-bit field (in the case
of SGX) produced by applying a hashing function on the
plaintext. When the encrypted data and MAC are fetched
from memory, they are first decrypted, the MAC for the
plaintext is re-computed, and this MAC is matched against
the MAC received from memory. If the attacker has cre-
ated a random block of data, with a very high probability,
the processor can detect that the block is corrupted. The
encryption/decryption function can also incorporate the
block address so that the attacker cannot perform a splicing
or relocation attack, where they return a valid block/MAC
combination resident at a different memory location.
Another Integrity Violation — The Replay Attack. In
spite of using the MAC, the system is still vulnerable to
a replay attack. In a replay attack, the attacker returns a
block/MAC that was previously written to a given memory
location, but is not the last write. Such a block/MAC, after
decryption, will pass the MAC confirmation. This is the type
of attack that integrity trees, including that of SGX, are at-
tempting to thwart. We will first briefly review Merkle and
Bonsai Merkle Trees that have long been used for replay at-
tack defenses. We will then describe the mechanisms used
in SGX, the state-of-the-art industry baseline.

2.2 Merkle Trees

In a Merkle Tree (MT), the MACs of all the data blocks rep-
resent the leaf nodes. Each non-leaf node stores a hash of
its child nodes. The root of the tree is maintained on the
processor. Assuming a 64-bit MAC or hash similar to that
in SGX, eight MACs/hashes can fit in a single 64 B cache
line. As a result, the tree is organized with an arity of eight.
Thus, a single cache line fetch can retrieve the eight chil-
dren of a node. On every data block read by the processor,
all ancestors of the block’s MAC have to be fetched from
memory; the MACs/hashes are verified on the processor; if
the attacker attempts a replay attack, at least one of these
will yield a mismatch. Because of the relatively low arity,
the MT has a high depth, e.g., a 16 GB memory requires a

10-level MT. In other words, every memory access in a non-
secure baseline translates to 11 memory accesses when us-
ing an MT (MACs and hashes can be cached, and this will
be considered throughout).

All these blocks can be potentially fetched in paral-
lel and the processor can speculatively proceed with the
data block while the verification can happen in the back-
ground [25]. But several modern workloads are already
memory-intensive and most enterprise systems operate
their memory channels near saturation. Therefore, while
the latency of a single Merkle Tree fetch can be hidden, the
bandwidth overhead will have repercussions. If the memory
channel in a non-secure baseline is already highly utilized, a
11X bandwidth overhead will manifest as a 11X application
slowdown. Therefore, it is critical to reduce the bandwidth
overhead. Note that a write to a data block requires us to
read all its ancestors in the MT, followed by a write to all
those ancestors, i.e., the bandwidth overhead of a write is
nearly twice that of a read. Some of the above overhead
can be alleviated with caching. It is reasonable to expect
the processor’s LLC to accommodate between six to eight
levels of the top of the Merkle Tree.

2.3 Bonsai Merkle Trees

Tamper-Proof Counters to Prevent Replay. To alleviate
the high overhead of Merkle Trees, Rogers et al. [35] intro-
duced the concept of Bonsai Merkle Trees. It borrows many
of the same principles as a Merkle Tree, but adds the follow-
ing new feature. Just as we used the block address in the en-
cryption/decryption function to prevent the attacker from
returning valid data/MAC at a different address, we can also
use a version number in the encryption/decryption function
to prevent a replay attack. Thus, for every block, we need
a counter (or version number) to keep track of how many
times this block has been written, and this counter is re-
quired during the encryption/decryption process. Millions
of counters cannot be accommodated on the processor chip,
so these counters will eventually have to be stored to and
retrieved from memory. Therefore, during a read, we must
fetch the data block, its MAC, and its counter; the counter is
used for decryption; the MAC is computed to confirm that
the block is valid. But an attacker can perform a replay at-
tack by returning an old block, old MAC, and old counter.
Thwarting any of these three returns is enough to preserve
data integrity. To prevent the attacker from returning an old
counter, we can maintain a Merkle Tree on the counters, i.e.,
the leaves of the Merkle Tree are 8-bit counters for all data
blocks, not the 64-bit MACs for all data blocks. This sim-
ple change results in a Bonsai Merkle Tree (BMT) that has 1
fewer level than a Merkle Tree. The memory storage over-
head of the BMT is small; in fact, the metadata storage is
dominated by the 64-bit MAC that is maintained for every
512-bit block, i.e., a storage overhead of 12.5%.

Managing Shared Counters for High Security and Low
Overhead. One problem with this approach is that when a
counter reaches its maximum value and cycles back to zero,
it is vulnerable to a replay attack, i.e., the attacker can return
an old block that can be correctly decoded with the current
counter value. Therefore, counter values should never be
recycled. To enable this, the leaf nodes of the BMT are re-
organized. Instead of placing 64 8-bit counters in a cache
line, the BMT places 64 7-bit (local) counters in a cache line.
There is also room for a shared 64-bit global counter that
serves as a prefix for all local counters in that cache line.
That is, every data block is now represented by a 71-bit
counter. When any local counter cycles back to zero, the
shared counter is incremented, thus always yielding unique
71-bit counters for a given data block during the reason-
able lifetime of a system. When the global counter is incre-
mented, since it is shared, all 64 blocks represented by that
node have to be re-encrypted with their new counter value
and written back. We also take this opportunity to zero out
all 64 local counters in that node. This approach addresses
the replay vulnerability, but introduces an overhead (of 64
reads and 64 writes) every time a local counter cycles back
(overflows). As we show later, this overflow overhead is rela-
tively small in the BMT, but can be significant for other tree
organizations.

2.4 Intel SGX Baseline [12]

SGX Overview. SGX partitions the main memory into two
parts: EPC (Enclave Page Cache) and non-EPC. The enclave
created for an application can include both sensitive and
non-sensitive pages. When the application requests the OS
for a sensitive page, it is mapped in the EPC. To protect the
EPC, the CPU is responsible for enclave authentication as
well as performing TLB checks to prevent the OS from TLB-
base attacks. In addition, the Memory Encryption Engine
(MEE) encrypts/decrypts data blocks (confidentiality) and
ensures data freshness using an integrity tree (integrity and
message authentication). The EPC has a small 128 MB ca-
pacity, of which, 32 MB is used to store the MAC for each
block, as well as the integrity tree structure (which we will
describe shortly), and some other metadata for each EPC
page.

When a sensitive page is evicted out of the EPC, it is
stored in the non-EPC region. CIA guarantees must be pro-
vided for sensitive pages in the non-EPC region as well.
Upon evicting from the EPC, MEE decrypts the page and
hands it to the CPU. The CPU then assigns a counter, en-
crypts the page using the combination of the counter and
the enclave’s key, and calculates a 128-bit MAC for the en-
tire page. The encrypted page is inserted into a non-EPC
integrity tree (called the eviction tree) to guarantee that
any tampering of these sensitive pages can be detected. To
reduce its overhead, the eviction tree works at the page
granularity. Note that individual blocks of a sensitive page

cannot be accessed unless it is moved back to the EPC.
When an application wants to access a sensitive page, it is
moved into the EPC after the CPU has authenticated the
request and verified it using the eviction tree.

The sensitive pages can take advantage of the eviction

tree even when they are moved to the swap space. The non-
EPC region also stores non-sensitive pages without CIA
guarantees.
Protecting from TLB Manipulation. In SGX, page tables
and extended page tables are fully under the control of the
OS or the hypervisor. As a result, a malicious OS can al-
locate or redirect an unexpected physical page to a virtual
page, which leads to unintended inputs or a change in the
program’s control flow (active memory mapping attack). To
protect from such attacks, SGX maintains an entry of meta-
data for each sensitive page in an array called Enclave Page
Cache Map (EPCM). Every EPCM entry has ADDRESS and
ENCLAVESECS fields; the former contains the virtual ad-
dress assigned to the corresponding EPC page while the lat-
ter keeps track of the sensitive page’s owner. SGX uses these
fields when handling a TLB miss, to avoid any TLB manip-
ulations for senstive pages.

After the TLB translates the virtual address to a physical
address, the secure CPU uses the physical address to find the
appropriate EPCM entry. It then authenticates the request-
ing enclave using the ENCLAVESECS field and matches the
corresponding virtual address with the ADDRESS field.

It is worth noting that SGX limits the virtual address
space assigned to senstive pages to a range known as EL-
RANGE (Enclave Linear Address Range). SGX treats the
pages outside this range as non-sensitve and disallows allo-
cating them to any EPC pages.

Paging Overheads [33]. In SGX v2, sensitive pages can
be allocated to enclaves dynamically. When an enclave en-
counters a page fault, i.e., the requested page does not exist
in the EPC, the enclave is forced to exit, a context-switch
to OS occurs, the requested page is moved to the EPC, and
control returns back to the enclave. Unfortunately, this pro-
cess imposes a significant overhead on performance due to
two main reasons: OS-related and data transfer overheads.
OS-related overhead includes exiting and re-entering the
enclave (through EEXIT and EENTER instructions), flush-
ing the TLB, context switching, and handling the page fault.
Data transfer overhead is due to data transition and in-
tegrity checks between the EPC and non-EPC parts. The
total paging overhead is around 40K CPU cycles.

SGX Integrity Tree (SIT). We now discuss the integrity
tree algorithm used by SGX for data blocks in its EPC. Sim-
ilar to the BMT, every block in the EPC region is associ-
ated with a counter. But instead of building a tree of hashes
on top of these counters, SGX designs a new tree structure,
shown in Figure 2, that we dub SIT. Every 512-bit node of

[56b]56b]--[s6blfex] [6b]56)]-[6blf<]
-~ Arity =8 Ny
IArity:s \ ’

Figure 2. SGX integrity tree (SIT).

the tree is composed of 8 56-bit counters and a 64-bit hash?.
The hash in a node is a function of the 8 56-bit counters in
that node, as well as one 56-bit counter in the parent node
(using the Carter-Wegman algorithm [40]). This sets up the
dependency between child and parent, which must be veri-
fied from the leaf node all the way up to the root. The SIT
has an arity of 8 throughout; recall that the BMT has an ar-
ity of 64 at the lowest level and an arity of 8 for all higher
levels.
Read/Write Example. On a read, we fetch the data block,
its MAC, and its corresponding 56-bit counter. We then fetch
the ancestors of that counter from SIT (until a cache hit).
All of these fetches can happen in parallel, leveraging all
the available parallelism in the memory system. For each
level i of the SIT, the processor confirms that the 8 counters
in level i and the corresponding counter in the parent level
i — 1 produce a hash that matches the hash in level i. If the
attacker attempts some kind of replay, at least one of the
hashes or MAC will disagree with a very high probability.
When a block is written, the counter for that block and all
its ancestor counters (until a cache hit) must be incremented.
The corresponding hashes will also have to be updated. This
requires a read of the counter node and all its ancestors (un-
til a cache hit), followed by writes to the same nodes.

3 Proposed Techniques
3.1 Unifying the EPC and non-EPC Regions

To eliminate paging overheads, we eliminate the demar-
cated EPC and non-EPC regions, and simply define a single
unified physical memory. Within this unified physical mem-
ory, some pages may be marked sensitive, while others may
be marked non-sensitive. This sub-section discusses how
the hardware determines if a page is sensitive or not, how
to authenticate the enclave, and protect from memory map-
ping attacks. The next sub-section discusses the integrity
check operations in case the page is sensitive.

The basic idea is to allocate one EPCM entry for every
physical page in the main memory. EPCM is updated by
the secure hardware to prevent the OS from tampering with

2While SGX uses a 56-bit hash, without loss of generality, we model SGX
with a 64-bit hash.

metadata. As described in Section 2.4, every EPCM entry in-
cludes information regarding the enclave owning the page,
as well as the virtual address bound to the physical address.
We also augment the entry with a field, named SENSITIVE,
to indicate whether the page is sensitive or not. Note that
similar to SGX, EPCM is stored in sensitive pages.

When accessing a page, a TLB look-up translates the vir-
tual address to a physical address. The secure CPU uses the
physical address to fetch the corresponding EPCM entry.
For this entry, if the SENSITIVE field is not set, then the
CPU performs a regular memory access, similar to a non-
secure memory system. Otherwise, similar to SGX, the CPU
matches the translated virtual address against the entry’s
ADDRESS field. The final sanity check is to authenticate the
enclave, i.e., the CPU compares the ownership information
of the page (field ENCLAVESEC in the EPCM entry) with the
ID of the requesting enclave. In the case of any mismatches,
a general protection fault happens.

Similar to TLB entries, the EPCM entries can be cached in
a hardware structure that only the secure CPU can access.
Therefore, for a TLB hit, the corresponding EPCM entry is
also available on the chip. However, a TLB miss takes longer,
compared to a non-secure system, as it requires fetching an
EPCM entry from a sensitive page. The table with EPCM
entries represents a negligible capacity overhead of much
less than 0.1% in physical memory because each entry only
requires 16 bytes.

When accessing a non-sensitive page, the typical encryp-
tion and integrity checks can be elided and non-sensitive
page accesses are as fast as those in a non-secure baseline.
This concept can be further generalized — multiple bits in
the SENSITIVE field of the EPCM entries can define mul-
tiple security levels, some that enforce only authentication
and confidentiality, others that enforce CIA guarantees, etc.

As mentioned in Section 2.4, the OS might transfer a page
to the swap space. Therefore, for trusted pages, CIA should
also be guaranteed on the swap space. In SGX, the eviction
tree provides CIA for both, the non-EPC part of the main
memory and the swap space. In our approach, the entire
main memory is protected by a unified tree (Section 3.2),
while the eviction tree is shifted to cover merely the swap
space.

Next, we introduce more efficient approaches to provide
integrity for the entire physical memory. If the same in-
tegrity tree (SIT) used for the baseline 128 MB EPC is now
used for the entire physical memory, there are two major
overheads: (i) The depth and size of the tree would be much
greater, thus incurring a significant bandwidth penalty for
every sensitive block access. (ii) The metadata overheads
would grow from 32 MB to several giga-bytes.

Level L-2 and
beyond

‘ 64b H 24b 24bH HASH‘

Arity =16

Level L-1 ‘ 64b leb

12bH HASH‘

lArity =32

—r

o o

» Hash

h 4

SbH HASH‘

Leaf Counters;
Level L

Arity = 64
Figure 3. Variable Arity Unified Tree (VAUT).

3.2 Variable Arity Unified encrypted-Leaf Tree
(VAULT)

We first describe a new integrity tree organization, VAUT,
that improves tree depth, tree size, tree cacheability, and
hence the bandwidth overhead. The proposed integrity tree
is unified because it includes all blocks, sensitive or not, in
physical memory. Similar to the SIT organization, a 64-bit
hash in a node is computed based on the other 448 bits in
that node and a sufficiently large counter in the parent (see
Figure 3). This hash establishes a hard-to-fool linkage be-
tween parent and child in the tree.

The key to flattening the integrity tree is an increase in its
arity. The BMT has an arity of 8 by placing 8 64-bit hashes
in a cache line. The SIT achieves an arity of 8 by placing 8
56-bit counters in a cache line. We adopt the same linkage
organization as SIT, but place even more counters in a cache
line.

We first construct a strawman where every node of the
tree maintains a 64-bit hash and 64 7-bit counters. By using
many small counters, we achieve a tree with arity 64 and a
depth of only 5 for a 64 GB memory (with the top two levels
potentially being cached on the processor chip). While this
makes the tree access dramatically more efficient, it causes
the counters to cycle back to zero after 128 memory accesses,
making the system vulnerable to replay attacks. Therefore,
the tree must be designed to balance arity/depth and counter
overflows.

Figure 3 shows our proposed VAUT organization. Simi-
lar to the BMT, we use the concept of shared global coun-
ters and local counters in every node. At the lowest level of
the tree, a leaf node maintains a 64-bit hash, a 64-bit shared
global counter prefix, and 64 6-bit local counters. In other
words, we are maintaining 64 70-bit counters in a node, but
all of these counters share the same 64 most significant bits.

When any of the 64 local counters cycles back to zero, we
increment the global counter and reset all 64 local counters
in that node to zero. Such a reset requires us to re-encrypt all

the data blocks corresponding to that node, thus incurring
an overhead of 64 reads and 64 writes. In the BMT, where
the leaf node maintains 7-bit local counters, this reset over-
head is incurred when a local counter value reaches 128. In
the proposed organization, the local counters in the leaves
reset when they reach 64, i.e., the reset overhead may be two
times as high and noticeable.

If we preserved the same node structure at all levels of the
tree, we also have to worry about reset overheads at other
levels of the tree. The local counter in a node is incremented
when any data block in its subtree is updated. This means
that the higher levels of the tree (if uncached) increment
their counters far more frequently than lower levels of the
tree. If all nodes in the tree follow the same organization as
the leaf node, the 6-bit counters in higher levels of the tree
will cycle back to zero very frequently, and incur the high
reset overhead (64 reads and 64 writes) on each reset®. Note
that the BMT did not have to deal with this problem; it used
global and local counters only for leaf nodes; the non-leaf
nodes were composed of hashes, not counters.

To keep the reset overhead in check, we must allocate
more bits for each of the local counters in a node, as we
move to higher levels of the tree. This is illustrated in Fig-
ure 3, where the parent of a leaf node has a 64-bit hash,
a 64-bit global counter prefix, and 32 12-bit counters. The
grandparent of the leaf node and its ancestors have a 64-bit
hash, a 64-bit global counter prefix, and 16 24-bit counters.
Thus, the higher-level nodes that are much more vulnera-
ble to reset overheads are provided with significantly larger
counters, yielding a tree with arity 64 at the lowest level, ar-
ity 32 at the level above, and arity 16 for higher levels of the
tree. The top levels of the tree are likely to see even more
counter updates, but they are also much more likely to be
cached — note that counter increments are not required as
soon as we encounter a cached node of the tree. Therefore,
it is not necessary to allocate more than 24 bits per local
counter for levels higher than the grandparent of the leaf.
This variable arity tree has a depth of 7 for a 64 GB mem-
ory; note that SGX’s tree depth is 10 and BMT’s tree depth
is 9 for the same memory capacity.

Another side effect of VAUT is that the use of more space-
efficient counters results in a smaller tree, relative to SIT
structures (1.6% vs. 12.5% of the total memory capacity), that
in turn leads to better hit rates in the processor’s cache. The
higher cache hit rate for VAUT nodes can reduce memory
bandwidth and reset overheads.

VAUT with encrypted Leaves (VAULT): The biggest
drawback of the VAUT technique is that it only allocates
6 bits per local counter in leaf nodes, causing a noticeable
number of resets. Each reset overhead is also highest at the

3A reset in a non-leaf node requires an update of the hash in all its child
nodes. A reset in a leaf node requires a re-encryption of all corresponding
data blocks.

‘ 64b H24b‘...‘24bHHASHE

/ arity = 16 \
[mimme i .
i 32

protected by HASH
Counters in Plain-text

‘12bH HASH ‘

arity = 64 -

= Encrypted Counters
Without HASH

Figure 4. VAUT with encrypted Leaves (VAULT)

leaf level because it involves 64 reads and 64 writes (a reset
in the parent of the leaf involves 32 reads and 32 writes).
Further, as we show in the next sub-section, some of the leaf
node bits may be required for other metadata. If each local
counter were to receive only 5 bits, the reset overhead would
essentially double. Therefore, to manage reset overheads in
the leaf node, it is important to somehow grow the size of
each local counter.

For the leaf nodes in VAULT, we eliminate the 64-bit hash
field. Recall that in VAUT, the counters in the leaf were com-
bined with a 76-bit counter in the parent to produce the hash
in the leaf. If we eliminate the hash, we need an alternative
method to establish a linkage between leaf and parent. This
linkage is established by using the 76-bit counter in the par-
ent as a key to encrypt the leaf block. If an attacker tries to
fabricate either the leaf or the parent, the decryption of the
leaf block would likely yield an incorrect 71-bit leaf counter
(we analyze this further in Section 3.5), which in turn would
likely yield an incorrect data block that fails the MAC con-
firmation — note that every data block in BMT, MEE, and
VAULT is still associated with its own separate MAC. By
eliminating the hash in the leaf node, every local counter
can be 7 bits instead of 6 bits, which reduces reset overheads
by roughly a factor of 2x. This organization is shown in Fig-
ure 4, and is referred to as a VAUT with encrypted Leaves
(VAULT).

However, there is one drawback to this approach. The
decryption of the leaf block is now on the critical path of
the MAC confirmation, adding 40-80 cycles [19] to the MAC
confirmation latency. This is also why the encryption-based
approach should only be used where it is most required -
at the leaf nodes that suffer from high reset overheads. It
should not be employed at higher levels of the VAULT.

3.3 Shared MAC with Compression (SMC)

In the VAULT technique, the tree has a depth of 7 for a
64 GB memory, with the top levels of the tree potentially
cached on the processor chip. A memory access may there-
fore require fetching the bottom three levels of the tree,
the data block itself, and its MAC. Since we have reduced

the tree access overheads, the MAC overhead is now no-
ticeable and worth reducing. We reduce this overhead with
a compression-based approach that meshes well with the
VAULT design.

Before a data block is encrypted, we first compress the
block. If the 512-bit data block can be compressed to 448
bits or less, the unused tail of the block can be used to ac-
commodate the block’s 64-bit MAC. Therefore, instead of
separately fetching the data block and its MAC, a single
block fetch can yield the data and its MAC. This can reduce
the bandwidth requirements when dealing with compress-
ible blocks. However, we need one additional metadata bit
per block to track if a block has been stored in compressed
or uncompressed form. This bit can be stored along with
the block’s local counter in the leaf node of VAULT. This
reduces the local counter size from 7 to 6, introducing a
trade-off between reset overhead and memory bandwidth.
The compression-based approach further increases the crit-
ical path for MAC verification (since the compression bit
is required before fetching the MAC). As our results show,
this is a worthwhile trade-off because memory-intensive ap-
plications are more sensitive to bandwidth increase than
to latency increase. Also, the processor can speculate and
move ahead with the data block while the verification is per-
formed in the background [25].

But memory capacity is also an important metric that
must be improved. As described earlier, the MACs introduce
non-trivial storage overheads of 12.5% in BMT and SGX’s
EPC. To reduce this capacity overhead, we share a MAC
among multiple blocks. If a MAC is shared among 8 or 4
blocks (referred to as a group), the MAC storage overhead
can drop from 12.5% to a more palatable 1.6% or 3.1%, re-
spectively. However, MAC sharing can lead to an increase
in bandwidth requirement, especially when spatial locality
is limited. To verify a MAC, all the data blocks in the group
would be required.

To address this storage vs. bandwidth trade-off, we again
leverage our compression-based scheme. As shown in the
example in Figure 5, a group of 4 data blocks, D0 — D3, share
a MAC MO. But if DO is compressible, it maintains a pri-
vate MAC m0 that is co-located with data in a single block.
Similarly, D2 is also compressible in this example and main-
tains a private MAC m2. The shared MAC MO0 therefore only
involves blocks D1 and D3. Thus, by combining a Shared
MAC and Compression (a technique we refer to as SMC),
we lower storage overheads and reduce the bandwidth re-
quirements. When accessing compressed block D0, a single
block can provide the data and the MAC. When accessing
uncompressed block D1, we must fetch blocks M0, D1, and
D3 - by examining the compressibility bits for the group, we
can avoid fetching all the blocks in the group. Note that we
have used compression here to reduce bandwidth demand,;
compression has not been used to reduce overall memory
capacity requirements. As seen in Figure 5, compressible

Q MAC

s Storage Data MAC
3 DO | D1) D2 | D3 DO,D1,02,03| MO
5 | D4|D5|D6|D7| [BE |] |p4Dspsny|m
w0

Compressible data

Data MAC
. D1D3 | MO

Dolg| D1 [p2] ¢ D3 D4,D5D6.D07 | M1

D4 D5 D6 D7) [DO mo

Shared MAC and
Compression (SMC)

Figure 5. Shared MAC with Compression (SMC).

blocks can introduce (white) “holes” in memory that are not
exploited for other uses.

Compression itself is a minor overhead relative to the
cost of encryption and integrity verification. Recent com-
pression algorithms, e.g., Base-Delta-Immediate (BDI [34]),
are designed for simplicity instead of a high compression ra-
tio. Note that in this context, we only require a block to be
compressed by a factor of 1.14X. Prior work has shown that
BDI compression/decompression can be implemented with
a latency of 2 cycles and power of 33mW [36]. The compres-
sion and decompression are performed entirely in hardware
and are transparent to the operating system.

3.4 On-Demand MAC Allocation (ODMA)

So far, we have employed sharing to mitigate the significant
MAC capacity overhead. For further reduction, we propose
to allocate MACs just for sensitive pages. To achieve this
goal, instead of reserving a MAC region for the entire mem-
ory, we allow the OS to allocate a MAC entry for each sensi-
tive page on-demand (ODMA). We include a pointer to the
MAC location in the page’s EPCM entry (extra 32 bits per
8KB page or 0.05% memory capacity). The delay introduced
by the pointer indirection is incurred only on TLB misses.
With this approach, the capacity overhead of MAC reduces
linearly with the size of non-sensitive data.

Due to MAC allocation at page granularity in the evic-
tion tree (Section 2.4), the SGX MAC overhead is trivial
(i.e., 12 MB for EPC and 0.02% of the non-EPC region). The
ODMA technique helps our scheme approach the low MAC
overhead in SGX for applications with a small number of
sensitive pages.

3.5 Security Analysis

The techniques introduced in this paper do not weaken se-
curity guarantees, relative to the baseline MEE algorithm.
Techniques like VAUT and SMC continue to use similar
sized hash functions as MEE to establish parent-child link-
age and construct the MAC, respectively. Therefore, similar
to MEE, for a replay attack to succeed, the attacker would

have to correctly guess the 64-bit output of the hash func-
tion or modify the inputs to the hash function such that it
produces a hash known to the attacker, both of which have
success probabilities of less than 2764,

A new operation in VAULT is the encryption used to gen-
erate the leaf nodes of the integrity tree, so we will focus
on proving its security here. Since the hash function that
generates the MAC for a data block is private to the CPU,
the attacker must rely on a replay attack, i.e., the attacker
must return an old block of data D, its corresponding MAC
M, and the old counter value ¢ that fulfils the relationship
M = hash(D,c). Any change to a non-leaf node of the tree
will be detected by the integrity check in VAUT, exactly as
in the baseline MEE. Therefore, to pull off a successful at-
tack, the attacker must return a leaf node L’, such that after
decryption, the leaf L contains an old counter value ¢ that
the attacker can guess with high probability. The following
encryption/decryption steps ensure that this is not possible.

For encryption, we use 128-bit AES. The plaintext leaf
block L is first decomposed into four 128-bit sub-blocks Lo,
L, Ly, and Ls;. We create a new sub-block L, = Lo ® L; &
L; ® L3, where @ represents XOR. The sub-blocks, Ly, L,
L,, Ls are then encrypted to create 128-bit sub-blocks for
the encrypted leaf node L’. Each sub-block is created with
the following encryption function: L, = AES(L., P & k),
where k is the CPU’s 128-bit private encryption key and P is
constructed by concatenating the physical address (padded
with zeroes to 52 bits) of the data sub-block and the corre-
sponding 76-bit counter stored in the parent of the leaf node.
During decryption, the reverse operations are performed:
sub-blocks L', L/, L7, L; are decrypted to produce Ly, Li,
Ly, L3; L is then computed by performing L, & L; & L & Ls.

With the above procedure, if the attacker returns a mod-
ified sub-block L, it results in a modified decrypted sub-
block L., and eventually a modified sub-block L. Since the
attacker does not know the CPU’s private key, from the per-
spective of the attacker, sub-block L is a random unknown
sub-block. As discussed above, to pull off a successful replay
attack, the attacker has to correctly guess the 71-bit counter
c; since the 64 global counter bits used to construct c are in
random sub-block Ly, the probability of a successful attack
is less than 27,

Note that the encryption/decryption process has been
constructed to ensure that a modified L) results in an L,
that is completely random from the perspective of the at-
tacker. By XOR-ing the sub-blocks, we ensure that any
modification to L’ results in a random global counter value.

3.6 Discussion

Capacity Overhead

Table 1 summarizes the capacity overhead of various tech-
niques. Note that SGX (Baseline) has an extremely low over-
head, since EPC is a small portion of memory (96 MB) and
the eviction tree works at page granularity (Section 2.4).

|| Type ||| MAC ||| Counter ||| Tree ||| Total ||

MT 0% 12.5% 14.2% 26.7%

BMT 12.5% 1.6% 0.8% 14.9%

SGX (Unified) 12.5% 12.5% 1.6% 26.6%
SGX (Baseline) || <0.3% <0.2% ~ 0% 0.5%
VAULT 12.5% 1.6% 0.05% 14.1%
VAULT+SMC4 3.1% 1.6% 0.05% 4.7%
VAULT+SMCS8 1.6% 1.6% 0.05% 3.2%

Table 1. Memory capacity overhead for different integrity
techniques. Except for SGX (Baseline), other schemes use
one unified tree for entire 16GB memory space.

|| Processor ||
ISA UltraSPARC III ISA
size and freq. 1-core, 3.2 GHz
ROB 64 entry
Fetch, Dispatch, Maximum
Execute, and Retire 4 per cycle
|| Cache Hierarchy ||
L1 I-cache 32KB/2-way, private, 1-cycle
L1 D-cache 32KB/2-way, private, 1-cycle
L2 Cache 8MB/8-way, shared, 10-cycle
Protocol Snooping MESI
Hash cache 32KB per core (default)
|| DRAM Parameters ||
DDR3 Micron DDR3-1600 [20],
Baseline 1 Channel
DRAM 8 Ranks/Channel
Configuration 8 Banks/Rank
Mem. Capacity 16 GB
Mem. Frequency 800 MHz

Mem. Rd Queue
Mem. Wr Queue Size

Table 2. Simulator parameters.

48 entries per channel
48 entries per channel

Compression and encryption

Compression and encryption are frequently used together,
e.g., in file systems such as NTFS [32], ZFS [13], and Apple’s
HES [29]. Compression does represent a side-channel — if
system behavior can be observed, an attacker can estimate

SPEC2k6 NPB
Name Comp WS | PF Name | Comp. WS PF
GemsFDTD| 99.99| 3k | 22K bt 0.2 2.6k | 513
libquantum| 0.38 | 672 | 0.1 cg 10.26 | 9k 2k
mcf 98.87| 12k | 92K ep 2.58 24 0
gromacs | 53.88| 48 0 Iu 94.75| 2.7k | 346
milc 9.2 3.3k | 29K ua 72.32| 4.2k | 685
h264ref | 99.77| 72 0 is 0.26 | 1.08k | 9.5
omnetpp | 65.23| 19k | 18k mg 76.59 | 15k | 6.8k
astar 82.71| 48 0 sp 0.25 2.7k | 774
bzip2 4020 216 | 0 ||| SPEC2k6
hmmer 2.02 48 0 sjeng 89.62| 264 308
Ibm 0.08 1k 6k soplex | 96.84| 504 9.7

Table 3. Benchmark’s specifications. Comp (Compressibil-
ity in percentage), WS (Working Set size in MB), and PF (av-
erage number of page faults in 50M instructions).

the compressibility of data. However, there are no known
exploits for this side channel and it is currently not deemed
to be a critical vulnerability [24]. If such leakage is deemed
critical, compression could be performed at a coarse granu-
larity, or with an element of randomness.

4 Methodology

To evaluate our techniques, we conduct cycle-accurate sim-
ulations with 21 workloads from two benchmark suites:
SPEC2ké6 [18] and NPB [4]. These benchmarks are described
in Table 3, along with their working set size, the number of
page faults per 50 million instructions, and compressibility
with the Base-Delta-Immediate [34] algorithm. The com-
pressibility is defined as the percentage of blocks that can
be compressed to 56 bytes or less. We generate the memory
traces for these workloads with Simics [11]; these traces
are generated for 4 million memory accesses after fast-
forwarding to the region of interest and warming up the
caches. These traces are then fed into cycle accurate mem-
ory system simulations with USIMM [9]. Table 2 shows the
assumed Simics and USIMM parameters.

We modify USIMM to implement MT, BMT, SIT, and our
proposed techniques. Every CPU read and write request
is converted to the appropriate set of data block, tree, and
MAC reads and writes. USIMM is augmented with a 32 KB
cache per core to save most recently accessed integrity tree
nodes. Most of our results are normalized against a non-
secure system, showing the overhead imposed by memory
integrity verification schemes.

To analyze reset overheads from local counters, we ran
week-long simulations with Simics in functional mode. We
confirmed that the reset overheads had stabilized and our
statistics were not polluted by the initial simulation phase
where counters were being warmed up.

To measure the page fault rate, we ran our benchmarks
for 50 billion instructions (including 2 billion instructions
for warmup) using the PIN tool [27]. We consider 96 MB
memory for the EPC with the clock algorithm [6] for its
page replacement policy. We repeated this experiment for
different numbers of enclaves in the EPC and resized the
EPC share for each enclave, accordingly.

5 Results
5.1 Evaluation of VAULT

We start by comparing the behavior of VAULT, against that
of MT, BMT, and SIT. To exclude the effect of page faults,
these integrity trees are extended to cover the entire 16 GB
memory space. Figure 6 shows execution time for these four
cases for each benchmark, for an 8-core model, normalized
against a non-secure baseline. In all cases, VAULT incurs a
lower execution time overhead, proportional to the mem-
ory bandwidth overhead. As shown in Figure 6, BMT out-
performs SIT, since its counters are 8X smaller, and hence

more cacheable. For the 8-core model, VAULT reduces exe-
cution time by 34%, relative to SIT.

10
g 9 }EMT SSIT @BMT BVAULT |--
F 8
5 7
s 6
g 5|
T 4l
z 2
1
o 1B VI iV \ i N \ B
CL T PN R I LOSLETORN 2@ R ©
S S TS T « &
&EQQ'D $O QO& ~ <
SN

Figure 6. Execution time for MT, BMT, SIT, and VAULT, nor-
malized against a non-secure 8-core baseline. All the trees
cover the entire 16GB memory space.

The average breakdown of memory traffic for MT, BMT,
SIT, and VAULT is shown in Figure 7. The integrity tree
fetches are the dominant contributors in the baselines, but
are sharply reduced for VAULT. The MAC fetch in VAULT
is now a noticeable contributor, and is later targeted with
our SMC approach.

10
ol- HHash+Cnt ZMAC EData|...._...
iy
S 71 T
© @ O A 1
£5 6
a o 5¢-
0w S
@ O 4
8E
< g3 AR
s8I A -
A A VA VoA WMl 7. 72... 2.
[}
MT SIT BMT VAULT MT SIT BMT VAULT
Read Write

Figure 7. Average access breakdown for reads and writes
in MT, BMT, SIT and VAULT.

5.2 Evaluation of Reset Overhead and VAULT

As we explained in Section 3, shrinking the sizes of counters
might cause more resets. We ran separate long simulations
with Simics in functional mode to analyze reset behavior for
VAUT and VAULT, both with and without compression tech-
niques. When using compression, there is one less bit per
local counter because a bit is needed per block to store com-
pressibility information. So the compression-based models
are more susceptible to reset overheads. Figure 8 shows the
8 benchmarks most affected by reset handling. As shown in
this graph, resets can incur an average overhead of 5.6% (up
to 16% in one benchmark) in the VAUT+compression model.
The VAULT organization is able to overcome the reset over-
heads. Even when using compression, VAULT has a reset
overhead of only 2%. VAULT has to deal with decryption
latency on the critical path. When assuming a decryption
latency of 80 cycles [19], we see nearly zero impact in the
8-core bandwidth-constrained model.

O VAULT (7bits)
14 B VAUT+Comp (5bits)

B VAULT+Comp (6bits)

Overhead of Overflow (%)

Figure 8. Execution time overhead introduced by counter
reset handling. This graph only shows the 8 most affected
benchmarks.

O R N W MO ON®

MT (XX11.76
sIT (EX]1.71
BMT [X]1.52

VAULT £X]1.39

VAULT+Comp [X]1.24

;
i
i
i
i
i

=186
=137
ES<]3.06
X181
EX=I2.42
MT ETUNUN3.80
sIT = =T]3.59
BMT [<]3.10
VAULT [XTXUX]2.68
VAULT+Comp [E5X]2.20
E===s38
=456

o
e

E
I
S

o
~

E
S
o

Avg Normalized Exe. time

G4) 50224
G4) [£]1.51

G2
G2]

VAULT+SM
VAULT+SMC
VAULT+SM
VAULT+SMC|
VAULT+SM
VAULT+SMC|
VAULT+SM(G16
VAULT+SMC(G16
VAULT+SMC|
VAULT+SM
VAULT+SMC
VAULT+SM
VAULT+SMC|
VAULT+SM(G16)
VAULT+SMC(G16,

-
o
e
°
2
S
o
@

Figure 9. Average normalized execution time after applying
the SMC technique with different group sizes, for varying
core counts.

5.3 Evaluation of SMC

Figure 9 shows how execution time for SMC varies with
group size. Recall that we are pursuing SMC to increase
effective memory capacity, as summarized earlier in Ta-
ble 1. We see that going from VAULT to VAULT+SMC with
a group size of 1 reduces execution time by 21% in the
8-core case. This is because compression eliminates some
MAC fetches. Since the group size is 1, i.e., no sharing, this
model improves bandwidth and performance, but does not
improve memory capacity. As group size is increased, the
bandwidth penalty steadily increases, but has the side effect
of growing memory capacity (not seen in this graph). Our
experiments indicate that, in a single core system, sharing
capacity overhead for group size of 1,2, 4, and 8 lead to 24%,
37%, 51%, and 81% performance overhead, with respect to
the non-secure baseline, respectively. In other words, there
is a capacity vs. performance trade-off in SMC. It is worth
noting that on-demand MAC allocation can help us to use
smaller group size to improve performance at a low capacity
overhead.

5.4 Impact of Caching the Integrity Tree Nodes

We evaluate the impact of growing the sizes of the hash
cache in Figure 10. We see that the hash cache shows steady

Avg Normalized Exe. time

0 00O O0o®0o00o00no0MmQo®NnmaoMn
X ¥ ¥ ¥ ¥ ¥ ¥ X ¥ X X ¥ X ¥ ¥ ¥ ¥ X X X
O © N © © © o @ © © o @0 0 © &N ¢ o
- ™M © - ™ © « - ™M © « - M © N
- - - -

1 core 2 cores 4 cores 8 cores

Figure 10. Normalized execution time as the size of hash
cache changes from 8 KB to 128 KB per core.

ESGX OEleos
\ BEVAULT+SMC(G4) EVAULT

Normalized Exe. time

8

6

e | L rrrrrr Ii

B O (R [| R NN R)
Ninilit i Dbl tibiis b b 1
Q & &é & & @évbi@&éé\e& Q,(:oQ\é" S OR PSR @0

Figure 11. Execution time for SGX, Eleos, VAULT, and
VAULT+SMC4, normalized against a non-secure 1-enclave
system.

improvements in going from 8 KB to 32 KB to 128 KB. The
improvement increases as the number of enclaves increases.

5.5 Page Fault Overhead

In contrast to VAULT, SGX suffers from page faults between
the EPC and non-EPC regions. In this section, we evaluate
the impact of page faults on SGX and the recently proposed
software solution, Eleos [33], and compare them with our
scheme. Eleos allocates two regions, one in the EPC region
(called EPC++), and one in the non-EPC region (called back-
ing store). It emulates the SGX model in these two regions
at the software level, thus eliminating context-switches to
the OS. Eleos moves pages from the backing store to the
EPC++ before accessing them. Here, we consider an ideal
case for Eleos. That is, we assume that every page fault can
be resolved in the software layer and the overhead is just
limited to the data transfer over the memory channel (8K
cycles). For the baseline SGX, we consider 40K cycles per
page fault [33]. Note that, as mentioned in Table 1, SGX and
Eleos have negligible capacity overhead. Therefore, we also
consider VAULT with SMC(G4), to make a fair comparison.

Figure 11 shows the slowdown of SGX, Eleos, VAULT,
and VAULT+SMC4 for a single-core model, with respect
to a non-secure system. Eleos outperforms SGX by 2.3X
and VAULT+SMC4 outperforms Eleos by 1.61x. When the

number of enclaves increases (Figure 12), the performance
gap also increases. More specifically, VAULT+SMC4 outper-
forms Eleos by 1.86x%, 2.1x, 2.29x%, for 2, 4, and 8 enclave
models, respectively. The performance difference grows as
data transfer for one core, on the shared memory channel,
stalls the other cores’ requests.

g 15

=

I L B | Ry SRt

i

3 s s e Ele S-St e

XN -

g o

= X 9 X @k X QEF X QEF

S 9330983088388 8350

-y <o o <0 <o o g0

> = = = =

I 7] 7] %) 7]
+ + + +
5 5 5 5
2 2 2 2
> > > >

1 Enclave 2 Enclaves 4 Enclaves 8 Enclaves

Figure 12. Average normalized execution time for SGX,
Eleos, VAULT, and VAULT+SMC4 when the number of en-
claves varies.

5.6 Summary of the Proposed Methods

In this section, we summarize the impact of each proposed
method on the overheads of data integrity verification. Fig-
ure 13 captures the various design points and their trade-
offs in terms of bandwidth and memory capacity overheads.
Our workloads have an average working set size of 3.6 GB,
so ODMA assumes that only 23% of all blocks are sensi-
tive and need MACs. We see that the combination of the
four proposed methods, VAULT, shared MAC, compression,
and ODMA together, e.g., VAULT+ODMA+SMC4, yields the
best performance with an affordable capacity overhead.

6
o oMT *BMT
= < SGX » SGX(Unified) - SGX
5 <4VAULT » Eleos
X MVAULT+Comp XVAULT+SM2
®VAULT+SM4 +VAULT+SM8
; 4 Eleos XVAULT+SM16 +VAULT+SMC2
_g *VAULT+SMC4 » VAULT+SMC8
g 3 + B VAULT+SMC16 EVAULT+ODMA
7] @VAULT+ODMA+SMC2 YV VAULT+ODMA+SMC4
S _@E ° AVAULT+ODMA+SMC8 - VAULT+ODMA+SMC16
2
A > X SGX (Unified) =i ©
MV + “ .
) 5 10 15 20 25 30

Capacity Overhead (%)

Figure 13. Comparison of different proposed methods.

6 Related Work

Lowering Merkle Tree Overheads. Several different
schemes have been proposed to confirm memory integrity.

Merkle Tree [31] was originally proposed to check signa-
tures in public key crypto systems, it is also used for mem-
ory integrity verification [15]. Several studies have been
conducted to decrease Merkle tree’s overheads [14, 15, 23,
35, 37]. Gassend et al. [15] propose cached tree in which the
hash values are cached on the CPU. Champagne et al. [7]
reduce the size of the hash tree by excluding unused pages.
Szefer et. al [23] employ a skewed tree that can prioritize
the frequently accessed locations of memory by putting
them in a leaf with a shorter path to root. Suh et. al [37]
introduce Log Hash that checks for a sequence of accesses,
to reduce verification checks. A few studies have designed
integrity trees that can be updated and authenticated in par-
allel [14, 17]. Parallelizable Authentication Tree (PAT) [17]
and Tamper-Evident Counter Tree (TEC-tree) [14] are two
examples that update and authenticate data in parallel but
with more capacity overhead than Merkle Tree. Recent
work [1, 3] has shown that the overheads of integrity veri-
fication can be lowered by using smart memory devices.
Trusted Hardware Projects. Lie et. al [26] propose the
eXecute Only Memory (XOM). XOM uses the combination
of encryption, ownership tags, and MACs to protect its
memory system. HIDE [42] addresses information leakage
through the address bus, which was overlooked in XOM.
Suh et al. [38] introduce AEGIS, an architecture for a single-
chip processor that is able to work securely under both
software and hardware attacks. AEGIS provides CIA pro-
tection for the main memory using encryption, MACs, and
Merkle Tree. AISE [35] proposes a system resilient against
hardware attacks and employs an address-independent en-
cryption as well as Bonsai Merkle Tree. Bastion [8] pro-
poses a hardware-software architecture to protect sensitive
applications from other untrusted software. Flicker [30] pro-
vides a full isolated system for secure applications against
any hardware and software attacks with a minimal TCB.
Poisonlvy [25] is another architecture recently proposed to
provide speculation for data without a significant overhead.
Phantom [28] proposes a secure CPU that is able to obfus-
cate the addresses; moreover, this secure processor provides
integrity verification by using Merkle tree and MAC gen-
erated by HMAC algorithm. SecureME [10] provides both
hardware and software protection with a limited change to
the OS. Similar to our work, SecureME considers a unified
integrity tree. However, it does not follow the SGX pro-
gramming model and it considers all the pages as sensitive
for an application. None of the above architectures address
the integrity tree and MAC capacity overheads.

Secure Solutions Based on SGX. Intel’s Software Guard
eXtensions (SGX) [12] is a set of extensions to the Intel
architecture to provide confidentiality and integrity guar-
antees for any secure application. Built on this architecture,
several works have been proposed. Haven [5] guarantees
the confidentiality and integrity of a secure program while
it is still in communication with untrusted applications.

SCONE [2] leverages asynchronous system calls to build a
secure container with a small TCB and a lower overhead.
Graphene [39] demystifies the myth that programmers need
to make a significant change in a program to prepare it to
run in an enclave. Eleos [33] accelerates SGX by managing
the page faults in software level. Finally, HotCall [41] intro-
duces a new interface for enclaves to mitigate the overhead
of system calls.

7 Conclusions

SGX incurs a significant cost when it moves a sensitive
page from the non-EPC region to the EPC. This work pro-
poses extending the EPC to cover the entire physical mem-
ory while allowing the EPC to accommodate non-sensitive
pages. However, naively growing the EPC leads to a large
integrity tree and a significant capacity overhead for MACs.
We introduce VAULT that takes advantage of split counters
to increase integrity tree arity and reduce the intergity tree
storage overhead from 12.5% to 1.6%. Furthermore, we use
a combination of compression and MAC sharing to reduce
the MAC capacity overhead from 12.5% to 3.2%. We observe
that sharing a MAC across 4 or 8 cache lines represents
a sweet spot. Finally, we show that allocating MACs just
for sensitive pages can further reduce MAC overhead. The
combination of all these proposals outperforms SGX by
3.7x while imposing a 4.7% capacity overhead, in a single-
enclave model.

Acknowledgment

We thank the anonymous reviewers for many helpful sug-
gestions and our shepherd, Rob Johnson, who pointed out
a couple of vulnerabilities that we had not anticipated. This
work was supported in parts by NSF grants CNS-1302663,
CNS-1423583, and CNS-1718834.

References

[1] S. Aga and S. Narayanasamy. 2017. InvisiMem: Smart Memory for
Trusted Computing. In International Symposium on Computer Archi-
tecture.

[2] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, An-
dre Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark Stillwell, et al. 2016. SCONE: Secure Linux Containers
with Intel SGX.. In OSDI. 689-703.

[3] A.Awad, Y. Wang, D. Shands, and Y. Solihin. 2017. ObfusMem: A Low-
Overhead Access Obfuscation for Trusted Memories. In International
Symposium on Computer Architecture.

[4] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasin-
ski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga. 1994. The NAS Parallel Benchmarks. The Interna-
tional Journal of Supercomputer Applications 5, 3 (Fall 1994), 63-73.
http://www.nas.nasa.gov/Software/NPB/

[5] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding
Applications from an Untrusted Cloud with Haven. ACM Transactions
on Computer Systems (TOCS) 33, 3 (2015), 8.

[6] Richard W Carr and John L Hennessy. 1981. WSCLOCK: A Simple and

Effective Algorithm for Virtual Memory Management. ACM SIGOPS
Operating Systems Review 15, 5 (1981), 87-95.

[7] D. Champagne, Reouven ElbazRuby, and B. Lee. 2008. The Reduced
Address Space (RAS) for Application Memory Authentication. In Pro-
ceedings of ISC.

[8] D. Champagne and R. Lee. 2010. Scalable Architectural Support for
Trusted Software. In Proceedings of HPCA.

[9] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi,

A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti. 2012. USIMM: the

Utah SImulated Memory Module. Technical Report. University of Utah.

UUCS-12-002.

Siddhartha Chhabra, Brian Rogers, Yan Solihin, and Milos Prvulovic.

2011. SecureME: A Hardware-Software Approach to Full System Secu-

rity. In Proceedings of the international conference on Supercomputing.

ACM, 108-119.

Wind Company. 2007. Wind River Simics Full System Simulator.

(2007). http://www.windriver.com/products/simics/

[12] V. Costan and S. Devadas. 2016. Intel SGX Explained. (2016).

https://eprint.iacr.org/2016/086.pdf.

T. Dierks and E. Rescorla. 2008. The Transport Layer Security (TLS)

Protocol Version 1.2. RFC 5246 (Proposed Standard). In Request for

Command (rfc).

Reouven Elbaz, David Champagne, Ruby B. Lee, Lionel Torres, Gilles

Sassatelli, and Pierre Guillemin. 2007. TEC-Tree: A Low-Cost, Paral-

lelizable Tree for Efficient Defense Against Memory Replay Attacks.

In Proceedings of Cryptographic Hardware and Embedded Systems.

Blaise Gassend, G. Edward Suh, Dwaine E. Clarke, Marten van Dijk,

and Srinivas Devadas. 2003. Caches and Hash Trees for Efficient Mem-

ory Integrity Verification. In Proceedings of the Ninth International

Symposium on High-Performance Computer Architecture (HPCA’03),

Anaheim, California, USA, February 8-12, 2003.

[16] S. Gueron. 2016. A Memory Encryption Engine Suitable for General
Purpose Processors. In Proceedings of IACR.

[17] W. Hall and C. Jutla. 2005. Parallelizable Authentication Trees. In
Proceedings of SAC.

[18] John L. Henning. 2005. SPEC CPU2006 Benchmark Descriptions. In
Proceedings of ACM SIGARCH Computer Architecture News.

[19] R. Huang and G.E. Suh. 2010. IVEC: Off-Chip Memory Integrity Pro-
tection for Both Security and Reliability. In Proceedings of ISCA.

[20] Micron Technology Inc. 2006. DDR3 SDRAM Part MT41J256M8.
(2006).

[21] J. Jeddeloh and B. Keeth. 2012. Hybrid Memory Cube - New DRAM
Architecture Increases Density and Performance. In Symposium on
VLSI Technology.

[22] JRodrigues, LTorre, G.Fernandez, and M.Lopez-Coronado. 2013. Anal-
ysis of the Security and Privacy Requirements of Cloud-Based Elec-
tronic Health Records Systems. Journal of medical internet research
15 (2013).

[23] J.Szefer and S. Biedermann. 2014. Towards Fast Hardware Memory In-
tegrity Checking with Skewed Merkle Trees. In Proceedings of HASP.

[24] J. Kelsey. 2002. Compression and Information Leakage of Plaintext.
In Fast Software Encryption.

[25] T.S.Lehman, A. D. Hilton, and B. C. Lee. 2016. Poisonlvy: Safe Spec-
ulation for Secure Memory. In Proceedings of MICRO.

[26] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln,
Dan Boneh, John Mitchell, and Mark Horowitz. 2000. Architectural
Support for Copy and Tamper Resistant Software. (2000).

[27] C.K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. 2005. Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation. In Proceed-
ings of PLDL

[28] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubia-
towic, and D. Song. 2013. PHANTOM: Practical Oblivious Computa-
tion in a Secure Processor. In Proceedings of CCS.

[29] MACJournals. 2003. The HFS Primer. (2003).
http://macjournals.com/~mwj/mwj_samples/MW)_20030525.pdf

[10

=

[11

—

[13

=

[14

=

[15

[

http://www.nas.nasa.gov/Software/NPB/
http://www.windriver.com/products/simics/
https://eprint.iacr.org/2016/086.pdf
http://macjournals.com/~mwj/mwj_samples/MWJ_20030525.pdf

[30] Jonathan M McCune, Bryan] Parno, Adrian Perrig, Michael K Reiter,
and Hiroshi Isozaki. 2008. Flicker: An Execution Infrastructure for
TCB Minimization. In ACM SIGOPS Operating Systems Review, Vol. 42.
ACM, 315-328.

[31] Ralph C. Merkle. 1980. Protocols for Public Key Cryptosystems. Se-

curity and Privacy, IEEE Symposium on (1980).

Microsoft. 2003. How NTFS Works. (2003).

https://technet.microsoft.com/en-us/library/cc781134(v=ws.10).aspx

[33] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein.
2017. Eleos: ExitLess OS Services for SGX Enclaves. In EuroSys. 238—
253.

[34] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry. 2012. Base-Delta-Immediate Compression: Practical
Data Compression for On-Chip Caches. In Proceedings of PACT.

[35] Brian Rogers, Siddhartha Chhabra, Yan Solihin, and Milos Prvulovic.
2007. Using Address Independent Seed Encryption and Bonsai Merkle

(32

—

Trees to Make Secure Processors OS- and Performance-Friendly. In
Proceedings of MICRO.

[36] A. Shafiee, M. Taassori, R. Balasubramonian, and A. Davis. 2014.
MemZip: Exploiting Unconventional Benefits from Memory Com-
pression. In Proceedings of HPCA.

[37] G.Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and

Srinivas Devadas. 2003. Efficient Memory Integrity Verification and

Encryption for Secure Processors. In Proceedings of the 36th Annual

IEEE/ACM International Symposium on Microarchitecture.

G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and

Srinivas Devadas. 2003. AEGIS: Architecture for Tamper-Evident and

Tamper-Resistant Processing. In Proceedings of the 17th Annual Inter-

national Conference on Supercomputing.

Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. Graphene-SGX:

A Practical Library OS for Unmodified Applications on SGX. In 2017

USENIX Annual Technical Conference (USENIX ATC).

[40] M.N. Wegman and J. lawerence. 1981. New Hash Functions and Their
Use in Authentication and Set Equality. Journal of computer and sys-
tem sciences 22 (1981).

[41] Ofir Weisse, Valeria Bertacco, and Todd Austin. 2017. Regaining Lost

Cycles with HotCalls: A Fast Interface for SGX Secure Enclaves. In

Proceedings of the 44th Annual International Symposium on Computer

Architecture. ACM, 81-93.

X. Zhuang, T. Zhang, and S. Pande. 2004. HIDE: An Infrastructure

for Efficiently Protecting Information Leakage on the Address Bus. In

Proceedings of ASPLOS.

(38

[t

(39

—

(42

—

https://technet.microsoft.com/en-us/library/cc781134(v=ws.10).aspx

	Abstract
	1 Introduction
	2 Background
	2.1 Threat Model
	2.2 Merkle Trees
	2.3 Bonsai Merkle Trees
	2.4 Intel SGX Baseline costandevadas16

	3 Proposed Techniques
	3.1 Unifying the EPC and non-EPC Regions
	3.2 Variable Arity Unified encrypted-Leaf Tree (VAULT)
	3.3 Shared MAC with Compression (SMC)
	3.4 On-Demand MAC Allocation (ODMA)
	3.5 Security Analysis
	3.6 Discussion

	4 Methodology
	5 Results
	5.1 Evaluation of VAULT
	5.2 Evaluation of Reset Overhead and VAULT
	5.3 Evaluation of SMC
	5.4 Impact of Caching the Integrity Tree Nodes
	5.5 Page Fault Overhead
	5.6 Summary of the Proposed Methods

	6 Related Work
	7 Conclusions
	References

