
Efficient Scrub Mechanisms for Error-Prone Emerging Memories ∗

Manu Awasthi± †

manua@cs.utah.edu

Manjunath Shevgoor±

shevgoor@cs.utah.edu

Kshitij Sudan ±

kshitij@cs.utah.edu

Bipin Rajendran ‡

brajend@us.ibm.com

Rajeev Balasubramonian ±

rajeev@cs.utah.edu

Viji Srinivasan ‡

viji@us.ibm.com

±University of Utah, ‡IBM T.J. Watson Research Center

Abstract

Many memory cell technologies are being considered as possi-

ble replacements for DRAM and Flash technologies, both of which

are nearing their scaling limits. While these new cells (PCM, STT-

RAM, FeRAM, etc.) promise high density, better scaling, and non-

volatility, they introduce new challenges. Solutions at the architec-

ture level can help address some of these problems; e.g., prior re-

search has proposed wear-leveling and hard error tolerance mech-

anisms to overcome the limited write endurance of PCM cells.

In this paper, we focus on the soft error problem in PCM, a topic

that has received little attention in the architecture community.

Soft errors in DRAM memories are typically addressed by having

SECDED support and a scrub mechanism. The scrub mechanism

scans the memory looking for a single-bit error and corrects it be-

fore the line experiences a second uncorrectable error. However,

PCM (and other emerging memories) are prone to new sources of

soft errors. In particular, multi-level cell (MLC) PCM devices will

suffer from resistance drift, that increases the soft error rate and

incurs high overheads for the scrub mechanism. This paper is the

first to study the design of architectural scrub mechanisms, espe-

cially when tailored to the drift phenomenon in MLC PCM. Many

of our solutions will also apply to other soft-error prone emerg-

ing memories. We first show that scrub overheads can be reduced

with support for strong ECC codes and a lightweight error de-

tection operation. We then design different scrub algorithms that

can adaptively trade-off soft and hard errors. Using an approach

that combines all proposed solutions, our scrub mechanism yields

a 96.5% reduction in uncorrectable errors, a 24.4 × decrease in

scrub-related writes, and a 37.8% reduction in scrub energy, rela-

tive to a basic scrub algorithm used in modern DRAM systems.

1 Introduction

Challenges in DRAM and Flash scaling [23, 19] have ig-

nited great interest in alternative memory technologies such

as PCM, STT-RAM, Memristors, and FeRAM. Most archi-

tectural studies to date have focused on the primary prob-

lems with these new technologies: long latencies, energy-

intensive writes, and limited write endurance. The last prob-

lem has fueled several recent solutions that attempt wear-

leveling and hard error tolerance (Pairing [14], ECP [35],

∗This work has been supported in parts by NSF grants CCF-0811249,

CCF-0916436, and NSF CAREER award CCF-0545959
†The author is currently at Micron Technology Inc..

SAFER [37], FREE-p [45]). However, little attention has

been paid to the problem of soft error tolerance in emerging

memories. This is especially true as scaling continues and

as these emerging devices employ multi-level cells (MLCs).

In particular, PCM and FeRAM devices are expected to suf-

fer from the problem of resistance drift. The resistance of a

cell is expected to drift upward over time, eventually caus-

ing a cell to represent a wrong state. This is a well docu-

mented problem for PCM MLCs [5] and is also listed as an

important research need for PCM and FeRAM devices by

the Semiconductor Research Corporation [2].

Drift-based errors require new error tolerance solutions

within the memory system. Unlike DRAM errors which

are largely random, drift-based errors in PCM are imminent

over long time periods and multi-bit errors are expected to

be very common. This is a problem that can be mitigated

with device-level solutions, but not completely eliminated.

Hence, ultimately, the PCM device will expose multi-bit er-

rors and it is up to the architecture and OS to provide fault-

tolerance. This technology model is no different than what

is currently assumed for state-of-the-art DRAM systems;

while DRAM devices provide error margins, occasional er-

rors are possible, and ECC support and scrub mechanisms

are required to tolerate these errors. Typically, SECDED

(Single Error Correct, Double Error Detect) codes are used

to recover from a single bit error in DRAM. If a line already

has an error, it is vulnerable to a second bit error that cannot

be corrected. To prevent the occurrence of this second er-

ror, the memory is constantly examined in the background.

When a single bit error is detected, it is corrected and the

line is written back. This is referred to as Scrubbing [15].

DRAM multi-bit error rates are small because for the most

part, each bit error is an independent event1. Hence, the

DRAM scrub mechanism can be very basic and it incurs

a very small overhead (one DRAM read and write every

200,000 cycles). In MLC PCM, errors are not independent;

if one cell has drifted to the wrong state, there is a high

probability that other cells will drift in the near future [5].

1In this work, we will ignore chipkill support, which is an orthogonal

consideration. If an entire chip were to fail, the handling strategy is not

affected by whether the chip is DRAM or PCM.

Hence, multi-bit error rates for MLC PCM will be much

higher. Our analysis shows that a DRAM-like scrub mecha-

nism will have to issue a PCM read in nearly every cycle to

achieve tolerable error rates. To address this high overhead,

more sophisticated scrub mechanisms are required. This is

the first body of work that observes non-trivial overheads for

scrubbing and proposes optimizations to scrub mechanisms

for MLC PCM. We expect this to be an important area of

research for future memories with higher error rates.

To reduce scrubbing overheads, we first advocate the use

of multi-bit error correction support and quantify its impact

on PCM device lifetime. We then propose a lightweight

read mechanism that performs approximate error detection

on the PCM chip itself and reduces data transfer energy to

the memory controller. Next, we introduce three variants

to the scrub algorithm that are synergistic with the approx-

imate error detection mechanism. Our policies and results

expose new trade-offs in PCM design and represent differ-

ent points in the energy, hard error rate, and soft error rate

design spectrum. We show that our architectural policies are

more effective than device-level solutions at handling drift-

based errors with low overheads.

2 Background

2.1 Error Tolerance in DRAM Systems

All memory devices are expected to yield soft errors.

Studies have shown that DRAM systems require varying

forms of error tolerance support from the architecture or

OS [36]. At a bare minimum, SECDED support is required.

Many platforms augment this with a scrubbing mecha-

nism [15, 36]. A few high-end systems invest significant

architecture support to provide chipkill correctness [39, 44].

Future PCM based devices will require greater architec-

ture (and possibly, OS) support because soft error rates and

multi-bit error rates in PCM devices are expected to bemuch

higher. The topic of multi-bit error correction in DRAM has

received little attention because low-frequency scrubbing

can easily handle such errors. Schroeder et al. [36] report

a typical scrubbing rate of 1 GB every 45 minutes, which

is a small overhead (one 64 B cache line every 200,000 cy-

cles). Every scrub operation transfers a cache line from the

DIMM to the memory controller, where error detection and,

if required, write of the corrected data is performed. As

we show later, an unoptimized PCM system would incur a

significant overhead from the basic scrubbing mechanism;

a cache line would have to be transferred to the processor

almost every other cycle.

2.2 PCM MLCs

While the phenomenon of drift manifests in multiple

memory cell technologies and there may be many sources

of soft errors in future memories, this paper will focus on

drift-induced soft errors in MLC PCM devices.

PCM cells are programmed with electrical pulses that

heat the chalcogenide material. A cell can be programmed

to a high-resistance amorphous state, a low-resistance crys-

talling state, or states that lie between these two extremes.

A single-level cell (SLC) only uses the extreme states and

assigns a 1 (SET) value to the crystalline state and a 0 (RE-

SET) value to the amorphous state. By suitably controlling

the programming process, a cell can be programmed into

a hybrid state with a given percentage of amorphous ma-

terial. As a result, a cell can have any resistance between

the purely crystalline and purely amorphous extremes. The

available resistance range (usually between 103 and 106 Ω)
can be partitioned into multiple regions, each region repre-

senting a different state. This gives rise to multi-level cells

(MLCs), where a single cell can represent n bits of infor-

mation by partitioning the material’s resistance range into

2n different levels. Figure 1 shows the distribution of re-

sistance in an MLC, and the subsequent onset of drift. The

resistances that represent the boundaries between neighbor-

ing levels (states) are referred to as the boundary resistance

thresholds (R1, R2, and R3 in Figure 1b). For example,

a cell may represent the ‘10’ state if its resistance is be-

tween the boundary resistance thresholds of 104.5 (R2) and
105.5 (R3) Ω. It is expected that MLCs will be the primary

source of density increments across successive PCM gener-

ations [1].

The programming process for MLCs is iterative [29].

After an initial Reset pulse, many short pulses are pro-

vided to gradually decrease the cell’s resistance. After each

pulse, the cell is read to confirm if the resistance is within

the specified programmed resistance range for the desired

state. To provide margin for error, the programmed resis-

tance range for a state is usually tighter than the gap be-

tween the surrounding boundary resistance thresholds. At

the end of a successful write, a cell’s resistance is within the

programmed resistance range for that state, but the exact

resistance will be a function of variations in the manufac-

turing, programming, and crystallization processes. Prior

work [17, 4] has shown that after the programming process,

the resistance of the cell will follow a normal distribution:

with a high probability, the cell resistance will be at the mid-

point of the resistance range; with a small probability, the

resistance will lie at the edges of the range (solid line distri-

butions in Figure 1b).

2.3 Resistance Drift in PCM

Once a cell is programmed, the presence of defect struc-

tures in the chemical lattice of the chalcogenide material

leads to changes in the programmed resistance, or short-

term resistance drift [28]. The “defective crystals” stabilize

over time; the material becomes more amorphous and ac-

quires a higher resistance. Such defects are less common in

the crystalline state and hence resistance drift is less signif-

icant for a cell programmed into a state with a higher per-

centage of crystalline material (depicted in Figure 1a). The

drift is not affected by read operations; it is corrected only

when the cell is written, at which point, the drift process

starts all over again.

The move from SLC to MLC introduces one significant

�

�
��

��

���������	
�����	�

�����

�
�
��
��
�
�
�
	

���������

�

�

��

�
�

�
�

���
�

	�
���

����

(a)Initial programmed resistance (A) and resistance (B) after some
elapsed time for a single cell.

 c
e

lls
 a

t
a

 g
iv

e
n

 r
e

si
st

a
n

ce

01 11 10 00

R1 R2 R3
Boundary

Resistance

Thresholds

Programmed

Resistance

Range

Drift with tighter writes

Drift with relaxed writes

Resistance

N
u

m
b

e
r

o
f
ce

Distribution of

initial resistance

Distribution of

resistance after time t

(b)Distribution of initial programmed resistance and
resistance after drift

Figure 1: Illustration of the resistance drift phenomenon.

challenge - drift-induced soft errors. Drift is not a problem

for SLC PCM for two reasons. First, the rate of resistance

drift is very small if the cell is programmed as mostly crys-

talline (Figure 1a shows that each cell drifts at a different

rate). Hence, it will take a very long time for a cell pro-

grammed to be crystalline (SET) to drift to a high resistance

value that represents the RESET state. Second, a cell pro-

grammed to be in the RESET state has a high rate of drift,

but all resistances above the specified boundary resistance

threshold represent the RESET state; so drift does not cause

the cell to represent an erroneous state. However, as shown

in Figure 1a, in a 4-level MLC PCM, drift can lead to fre-

quent errors. The drift rate is higher for cells programmed

with higher resistances. Consider a cell that is programmed

to have an initial resistance A that represents the 10 state.

Such a cell has a high rate of drift and after a relatively short

period of time, the cell’s resistance B becomes higher than

the boundary resistance threshold. At this point, it starts to

represent the neighboring 00 state, causing an error. This is

an example of a “soft” or “transient” error. The error rate

will increase dramatically as the resistance range is parti-

tioned into more levels and boundary resistance thresholds

are more closely spaced.

When a cell is programmed to a given state, its initial

resistance R0 will lie somewhere within the programmed

resistance range for that state and follows a normal distri-

bution (solid curves in Figure 1b). The dotted curves in

Figure 1b show the distribution of resistances after some

time has elapsed. In essence, each resistance has drifted to

a higher value, with some cells having a resistance that lies

within the threshold boundaries of the adjacent state.

Drift within the RESET state (00 in a 4-level MLC or

000 in an 8-level MLC) is not problematic because a higher

resistance will continue to represent the RESET state. How-

ever, its adjacent state (10 in the 4-level MLC in Figure 1b)

is considered the most drift-prone as it has the next highest

drift rate and is at risk of drifting past the resistance thresh-

old of the RESET state. Hence, to a large extent, this pa-

per will focus on worst-case behavior in cells that are pro-

grammed to the most drift-prone state (10). We assume the

use of a Gray code mapping policy that ensures that adja-

cent states differ in only one bit. Thus, every drift-based

cell error corresponds to only a single bit error. As shown

in Figure 1, we assume that the mapping of states in order

is 00 (amorphous), 10, 11, 01 (crystalline).

2.4 Modeling Drift

Jeong et al. [16] describe the following equation to mea-

sure resistance drift. Given an initial resistance of R0, the

resistance Rdrift(t) can be calculated as : Rdrift(t) =
R0 × tα, where α represents the drift exponent and t is the

time elapsed (in seconds) since programming the cell.

The value of R0 for a given state follows a normal dis-

tribution with the mean lying at the mid-point of the pro-

grammed resistance range defined by the iterative write pro-

cess [24] for that state. For most experiments in this paper,

we will assume that the programmed resistance range is set

to include resistances that are within (±) 2.75σ of the mean,

where σ refers to the standard deviation of the normal dis-

tribution. The boundary resistance threshold is at a distance

of (±) 3.0σ from the mean, allowing some margin for drift.

Other programmed resistance ranges are also considered in

Sections 2.5 and 5.5.

The drift exponent α depends on a number of factors.

The value of α is impacted most by the state represented by

the cell. The higher the initial resistance R0, the higher the

value of α. For the nominal material thickness, we adopt

expected values of α for each state according to empirical

data [33, 17, 4, 13]. The exact value of α for each state

follows a normal distribution around the expected value for

that state and is also modeled. The parameters for our drift

model are based on the assumptions of Xu and Zhang [43,

42] and are summarized in Table 1.

The type and thickness of chalcogenide material impacts

the drift exponent. For this study, we assume the empirical

values of α recommended for standard GST material [16,

18]. Temperature also impacts the drift rate [34, 12, 46].

For this study, we assume that page coloring/wear leveling

techniques will ensure load balance across banks and not

4 levels/Cell

Storage level Data
lg R0 α

mean deviation mean SDMR

0 01 3.0

0.17

0.001

40%
1 11 4.0 0.02

2 10 5.0 0.06

3 00 6.0 0.10

Table 1: Configuration of 4 Level MLCs [43]. SDMR stands for

Standard Deviation to Mean Ratio.

10
0

10
2

10
4

10
6

10
8

10
10

10
12

 1 1.5 2 2.5 3

T
im

e
 t
o
 c

ro
ss

 b
o
u
n
d
a
ry

 r
e
si

st
a
n
ce

 t
h
re

sh
o
ld

 (
s)

Separation between mean cell resistance and programmed resistance (units of σ)

R11 = 10
4

R10 = 10
5

512 Seconds

Figure 2: Representative time to drift for cells in most drift-prone

states (10 and 11) in 4 level MLC as a function of separation

from the mean of programmed resistance. For example, 2.5 on

the X-axis refers to a cell that was programmed to a resistance of

mean + 2.5σ. Boundary thresholds are at mean + 3σ. Models

assumed described in Table 1, verified against published experi-

mental data [17, 4, 13]. 512 seconds is the maximum Refresh Rate

considered in this study.

create localized hotspots. If the uniform temperature of a

PCM chip increases, scrub rates must be increased, and such

adaptive policies are discussed in Section 3.3.

2.5 Inadequacy of Device-Level Solutions

We validated that the drift times estimated from the

above drift model match the drift times derived using the

distributions of R0 and α from empirical data in prior

work [43, 17, 4, 13]. Using the model discussed above, we

show in Figure 2 the drift time for a 4-level cell programmed

in one of the drift-prone states (10 or 11).

Figure 2 shows that for a given boundary threshold (3σ
from the mean), if the cell is programmed in the 10 state at

1σ from the mean, drift time for error is under 104 seconds.
Furthermore, the drift time drops to less than 100 seconds

when the cell is programmed at 2σ from the mean resis-

tance. Therefore, it is clear that if the problem of resistance

drift is not addressed effectively, cells that have been pro-

grammed reasonably accurately cannot be treated as truly

non-volatile [5].

To delay the onset of drift, it may be possible to widen

the state’s boundary thresholds. However, doing so com-

promises the density advantage of PCM, and significantly

reduces the number of levels of a multi-level cell. In fact, we

expect that the boundary thresholds will be squeezed closer

together with each new generation.

It is not possible to introduce a correction to the read re-

sistance during a read. For example, it has been suggested

that a reference cell in a row be used to normalize the re-

sistance of each cell in that row [26]. But this is likely to

not be very effective because of the significant difference

in drift times for different cells programmed to the same

state, as can be seen in Figure 2. Some recent work has

also proposed mitigating the effects of drift with better cod-

ing strategies [26]. While coding strategies can help and are

better than reference cell based strategies, they cannot elim-

inate drift-based errors. Papandreou et al. [26] show that

modulation coding can help an MLC PCM exhibit a raw er-

ror rate of 10−5 after 37 days at room temperature; this is

well short of the 10−15 error rate target that is acceptable

for such an experiment. This shows that two of the leading

device-level solutions (coding and reference cells) to date

are not adequate.

Based on various initial empirical data, for most of this

study we assume that the boundary threshold for a state

is 3σ away from the mean and the programmed resistance

range is within 2.75σ from the mean. The drift time for

the worst-case cell can be as low as 1.81 seconds, mak-

ing it necessary to explore techniques to effectively mitigate

the effects of resistance drift. If the programmed resistance

range is made narrower with a more precise write process,

the worst-case drift time can be increased. However, do-

ing so causes an increase in write latency and a drop in cell

endurance. The corresponding trade-offs showing that ar-

chitectural techniques are more effective than precise write

process to combat drift are discussed in Section 5.5.

In summary, various device-level strategies can be used

to delay the onset of drift. These strategies can therefore

mitigate the problem, but not eliminate it; they must be

augmented with architectural solutions. These device-level

strategies also incur significant cost. Our goal here is to

out-do these device-level techniques with simple architec-

tural policies. This is a philosophy similar to that used for

modern-day DRAM – DRAM chips are produced at very

low cost and exhibit errors; these errors are toleratedwith ar-

chitectural solutions that use error correction codes, RAID-

like redundancy, and scrubbing.

2.6 Naive Refresh and Basic Scrub

DRAM systems employ a refresh operation to handle

charge leakage in cells and a scrub mechanism to correct

single-bit errors. We first show that such baseline mecha-

nisms are highly inadequate for PCM MLC systems.

The drift problem can be addressed if a row can be read

and re-written before the worst-case cell can drift to a neigh-

boring state. For most of this study, we assume that the it-

erative write process can force R0 to be in a well-defined

programmed resistance range (within 2.75σ of the mean),

so cells will not immediately be on the brink of drifting to a

neighboring state. With such a baseline, the worst-case drift

time is 1.8 seconds and every line must be refreshed ev-

ery 1.8 seconds. Since a cell can typically only endure 108

writes, this limits the PCM device’s lifetime to 1.8×108 sec-

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

1.6E+05

1.8E+05

2.0E+05

2 Seconds 8 Seconds 32 Seconds 128 Seconds 512 Seconds

E
rr

o
rs

Refresh/Scrub Rate

mean+2.75sigma (Baseline)

mean+1.375sigma (Baseline)

mean+2.75sigma (ECC-1)

mean+1.375sigma (ECC-1)

Figure 3: Uncorrectable errors in baseline systems for different

programmed resistance ranges for 107 long-term writes. Baseline

refers to a model where a re-write (refresh) is performed for each

line at the specified interval. ECC-1 refers to a DRAM-like scrub

mechanism where a re-write is performed only after a single error

is detected. The error is detected by issuing reads at the specified

interval.

onds, or only 5.7 years (ignoring short-term writes 2). More

importantly, we must refresh all of the billion 64 byte lines

in a high-capacity PCMmemorywithin 1.8 seconds; assum-

ing 1000 ns for a PCM write [31], we must handle simulta-

neous refresh of about 600 lines (each 64 bytes), a process

that will overwhelm the PCM system. If we assume that

writes are precise enough such that the programmed resis-

tance is within 1.375σ of the mean, the worst-case drift time

is now around 500 seconds. As we show later, precise writes

are expensive for many reasons: they incur a longer write

time, worsen performance, and degrade lifetime. Even with

such a device-level solution, simultaneous refresh of about

4 64-byte lines will have to happen simultaneously, much

more onerous than the current refresh process in DRAM.

Alternatively, each line can have a SECDED code and

we can keep reading PCM lines at a specified rate until a

single error is detected. Only then is the corrected line re-

written. Since the decoding for the SECDED code is per-

formed at the memory controller, every line read during the

scrubbing process must be sent to the processor over the

memory channel, assuming an on-chip controller in mod-

ern processors. This is the basic scrub mechanism in use

for DRAM-based systems today. Figure 3 shows the uncor-

rectable error rates for this scrubbing mechanism (ECC-1)

for different programmed resistance ranges and different in-

tervals for the read operation (detailed methodology in Sec-

tion 4). Even if we assume precise writes and a 2-second

read interval, as many as 97 uncorrectable errors are en-

countered. Further, the entire PCM main memory capac-

ity will have to be sent to the processor within 2 seconds

(roughly one cache line every 2 cycles), more than saturat-

2If the gap between writes to a block is very high, the writes are referred

to as long-term. Such blocks are vulnerable to drift-based errors.

ing even the highest-performing modern memory channel

and incurring high dynamic energy cost. If the read interval

is increased to a more manageable 512 seconds, the uncor-

rectable error rates are well over 104. Thus, modern solu-

tions that work well for DRAM are highly inadequate for

PCM in terms of their impact on error rates, lifetime, en-

ergy, and bandwidth needs.

3 Architectural Support for Efficient Scrub

Drift-prone PCM systems introduce a new energy, per-

formance, and endurance bottleneck: the scrubbing process.

We carefully consider the design of efficient scrub mech-

anisms and propose novel solutions.We introduce a three-

pronged approach to tackle the drift problem: (i) stronger

ECC codes, (ii) low-cost and approximate error detection

within a PCM chip, and (iii) scrub algorithm extensions that

are conservative and adaptive. Most results are presented

in Section 5. We mention a few in this section to preserve

context. Please refer to Section 4 for detailed methodology.

3.1 Multi-Bit Error Correction Support

DRAM-based systems assume SECDED support and

have a scrubbing process to trigger error correction before

the incidence of a second error. If the gap between the first

and second error is shorter than the scrub interval for a line,

the second error may manifest before the first can be cor-

rected, resulting in an uncorrectable multi-bit error. Thank-

fully, this gap is very high in DRAM systems and even a

large scrub interval (3 hours for a 4 GB memory system)

can yield very low uncorrectable error rates [36]. In MLC

PCM devices, the gap between the first and second error in

a line is much smaller than in DRAM devices, requiring a

faster scrub rate. It appears intuitive that we can lower the

scrub rate if we had support for multi-bit error correction. If

we assume that we have a code that can correct E errors3,

then the scrub mechanism initiates recovery when it detects

the Eth error. The required scrub rate is determined by the

typical gap between the Eth and E + 1th errors in a line.

For the drift model described in the previous section, we

observe that as E increases, this gap does increase. Hence,

if we have support to recover from many errors, we can get

by with a longer scrub interval. The reason is the exponent

term in the drift equation and the gaussian distributions of

R0 and α. In short, the worst-case cell has an order of mag-

nitude less drift time than the next-worst cell, and so on.

Hence, the first change that we advocate is the introduc-

tion of multi-bit error correction codes. For a 512-bit line,

Table 2 quantifies the storage overhead incurred by multi-

bit error correction codes, as expressed by the Hamming

bound [10]. The storage for ECC bits grows linearly with

E. We observe that eight errors can be corrected with a

storage overhead of 14.25%. We argue that this is an ac-

ceptable overhead as it is similar to the overhead for modern

SECDED DRAM systems that have an 8-bit SECDED code

for each 64-bit word.

3As a shorthand, we refer to such a code as ECC-E.

Number of Additional Bits of ECC Storage Overhead

Correctable Errors Storage (512-bit line) (% for 512-bit line)

1 10 1.95%

2 19 3.71%

4 37 7.22%

8 73 14.25%

Table 2: ECC Overheads.

A second problem with using large ECC codes is that

ECC codes can reduce PCM device lifetime [35]. When

writing a PCM line, to improve endurance, we assume that

a cell is written to only if the state has changed [20, 47].

While data bits in a cache line don’t always undergo change,

ECC bits have high entropy, i.e., they are very random and

very likely to flip (from 0 to 1 or vice versa) on every write.

If we are writing a 512-bit line (256 4-level cells), we ob-

serve that across a suite of benchmark programs, 118 cells

(46%) are expected to be re-programmed. For the corre-

sponding 37 ECC-8 coding cells, 75% of the cells are ex-

pected to be re-programmed, i.e., a much higher level of

write activity. If we assume that word and row-shifting

wear-leveling optimizations [32, 6, 31, 47] are employed,

we can claim that the higher activity in the ECC code will

be spread across all cells. By adding an ECC-8 code to a

512-bit word, as done above, the average write activity of a

cell is increased by a factor of 1.07. This 7% reduction in

lifetime is worth noting; the corresponding reduction in life-

time for an ECC-4 code is only 4%. As we show later, the

more efficient scrubbing process can reduce the number of

scrub-related writes and possibly offset this 7% drop. This

observation highlights that a scrub process must be designed

carefully to balance several soft error, hard error, energy,

and storage considerations. A third problem with strong

ECC codes is the high cost of encoding and decoding. We

will address this concern in the next sub-section.

While the use of strong ECC codes has been proposed

here for soft error tolerance, it also doubles up as a hard er-

ror tolerance mechanism. Programming a PCM cell results

in repeated expansion and contraction of the chalcogenide

alloy. This increases the probability that the material physi-

cally detaches from the heating element, resulting in the cell

being permanently stuck-at some value. Recently proposed

techniques such as Pairing [14], ECP [35], SAFER [37], and

FREE-p [45] address hard error tolerance in PCM, but do

not address drift-induced soft errors. On the other hand, the

proposed ECC-E code can be used to tolerate up to E errors

and these errors can be either hard or soft errors. Since ECC

is beingmaintained across a fairly large line, an ECC-8 code

has a storage overhead of only 14%. In comparison, for an

ECP scheme [35] to tolerate eight hard errors in a 512-bit

line, a storage overhead of 16% would be incurred, and the

PCM device would be intolerant of soft errors.

3.2 Light Array Read for Drift Detection
(LARDD)

In conventional scrub mechanisms for DRAM, a scrub

operation is issued once every 200,000 cycles [36]. This is

an infrequent operation and is not worth optimizing. How-

ever, as shown in Section 2.6, scrub operations in MLC

PCM devices are expected to be much more frequent. We

therefore propose a different access pipeline for scrub oper-

ations.

Already, in DRAM systems, refresh is known to be a

growing bottleneck because retention times are not chang-

ing, but capacity continues to increase. As a result, refresh

control is moving from the memory controller to the DRAM

chips [15]. Modern DRAM chips already have structures

that can track the last refreshed row and timing deadlines

for the next refresh operation. In a similar vein, we propose

localized PCM chip control for scrub operations so that data

is not constantly being shipped to the memory controller on

the memory bus.

We advocate that, similar to a DRAM refresh operation,

PCM rows are read from arrays, and simple logic on the

PCM chip performs error detection. If panic is not triggered,

the chip moves on to the next operation and no write is per-

formed. The memory controller and processor are involved

only if the error detection panics and demands that the row

be corrected and re-written. The key to making this happen

on a PCM chip is simple error detection. As described ear-

lier, it is desireable to have support for codes that can correct

multi-bit errors. However, the encoding and decoding cost

for BCH codes is significant. The required circuitry [27]

can likely not be accommodated on high-density memory

chips. We therefore add a simpler error detection mecha-

nism in addition to the BCH codes. The BCH codes are

still required for eventual error correction at the memory

controller, but the simpler error detection logic is invoked

in the common case when the scrub operations are issued

within a PCM chip. Our error detection logic is a parity-like

scheme. For a 256-cell line, we partition it into eight 32-

cell fields. Within each 32-cell field, we count the number

of drift-prone (10) states and track if this number is odd or

even (“parity”). During a scrub operation, we check to see

if the number of drift-prone states within each 32-cell field

has deviated from the recorded “parity”. Every deviation is

counted as an error and we sum the number of errors across

all eight 32-cell fields. Such error estimation is clearly ap-

proximate; we must therefore be conservative in flagging a

panic and re-writing a line. In Section 5, we show that such

a circuit has very low cost and can possibly be included on

a PCM chip. The storage overhead for parity is 8 bits per

512-bit line, a 1.625% overhead in addition to the 14.25%

already being incurred for the BCH code.

We assume that parity is maintained for each 32-cell field

within a PCM chip so that the chip can perform its own au-

tonomous scrub operation in the common case without co-

ordinating with other PCM chips. The BCH code may be

associated per cache line and could be striped across mul-

tiple PCM chips. The entire cache line (plus BCH code) is

read out of all PCM chips in the rank only when a panic is

triggered.

The proposed read pipeline is referred to as a Light Ar-

ray Read for Drift Detection (LARDD). The PCM chip se-

quentially reads each row, performs the approximate parity-

based error detection, and moves on if no re-write is re-

quired. If the error detection raises a panic signal, the row

is shipped to the memory controller where error correction

and re-write are handled. This is unlike the DRAM scrub

process, where every cache line is shipped to the memory

controller. The scrub process is therefore made up of sev-

eral periodic LARDDs and occasional re-writes to a line.

The scrub interval is the time between successive LARDDs

to a given PCM row.

3.3 Scrub Algorithms

Our basic scrub algorithm issues LARDDs at a speci-

fied frequency, and triggers a line re-write when a minimum

number of parity-based errors are encountered in that line.

We now introduce a few extensions to this basic algorithm

that make the scrubbing process more efficient.

Headroom. The first extension is the use of headroom. If

we assume that we have an ECC-8 code that can recover

from up to eight errors, a line re-write must be triggered

before the line encounters its ninth error. If the LARDD

triggers a re-write after observing eight parity-based errors,

many uncorrectable errors may slip through. This can hap-

pen for two reasons. One, the parity-based error detection

mechanism is approximate; eight parity-based errors may

represent more than eight actual errors and the line would

be uncorrectable. Second, if the eighth and ninth errors hap-

pen in quick succession without an intervening LARDD, the

line becomes uncorrectable. The probability of such uncor-

rectable errors can be reduced by triggering a line re-write

well before the maximum error budgetE is reached. This is

referred to as the Headroom scheme, where a line re-write

is triggered as soon as the parity-based error detection cir-

cuit identifies at least E − h errors. If a high headroom h

is provided, the uncorrectable error rate drops significantly.

But because we are being conservative in our error correc-

tion, line re-writes are triggered more often, thus acceler-

ating wearout and increasing the hard error rate. Thus, the

choice of headroom introduces a trade-off between hard er-

ror rates and uncorrectable soft error rates.

Gradual. The Gradual scheme uses non-uniform LARDD

rates for each line. If a line has very few drift-based er-

rors, it is unlikely that the next LARDD will trigger a re-

write. Hence, a line can employ a small LARDD frequency

and increase the frequency as more drift-based errors are

detected. To keep the design simple, we assume only two

LARDD frequencies. The LARDD frequency is doubled af-

terE−h−g parity-based errors are encountered. Each line

must maintain a Gradual bit to track its LARDD frequency;

those lines with a Gradual bit set to zero will skip every

alternate LARDD. These Gradual bits can be stored in the

PCM memory itself. An entire row of Gradual bits (repre-

senting hundreds of PCM rows) can be read at a time by the

LARDD controller on the PCM chip. After all those rows

have been scrubbed, the updated row of bits can be writ-

ten back into PCM cells. The Gradual scheme can cause

a slight increase in the uncorrectable error rate (in the rare

event that a flurry of soft errors happen between consecutive

LARDDs), but it can significantly reduce the energy over-

head associated with LARDDs.

Adaptive. The uncorrectable error rate can be a function

of dynamic events. For example, prior work [46] has shown

that drift is accelerated at higher temperatures. If a PCM de-

vice heats up, the pre-selected LARDD rate may lead to an

unexpected number of uncorrectable errors. Similarly, if we

execute a workload that has many more drift-prone states,

the error rate would again go up. In yet another example,

that will be used as an adaptive LARDD case study in this

paper, as a PCM device ages, the number of worn out cells

(hard errors) in a line increases. This reduces the soft error

budget for that line as only a maximum of E errors (hard

or soft) can be corrected by the ECC-E code. Again, a pre-

selected LARDD rate will cause more uncorrectable errors

as the number of hard errors in the device increases. As a

result, the LARDD rate will necessarily have to be adaptive.

Every epoch (say W writes), we examine the uncorrectable

errors in the last epoch, and double the LARDD rate if the

errors exceed a threshold. Assuming that we start with a

LARDD policy with headroom h, we get rid of the head-

room policy after a line is known to have at least E − h− 1
hard errors (to prevent the full re-write from happening al-

most immediately after the write). We also consider an

adaptive policy where the faster LARDD rate is only ap-

plied to lines with greater than HE hard errors. Similar to

the Gradual optimization described earlier, a bit is tracked

per line to figure out when LARDDs must be skipped.

4 Simulation Methodology

Since we must model millions of writes to a PCM device

over its lifetime, detailed cycle-by-cycle simulations with

real workloads is not an option. However, our experiments

are frequently guided by observations and data from de-

tailed Simics simulations which model PCM as main mem-

ory storage behind a 256 MB DRAM cache, and simu-

late multi-threaded and multi-programmed workloads from

PARSEC [3] and SpecJBB2005.

In each experiment, we model the behavior of 107 long-
term writes to 64 byte cache lines. For each write, we prob-

abilistically estimate the cells that will encode states 00, 01,
10, and 11 (for a 4-level MLC). The probabilities are de-

rived from Simics simulations which capture the percentage

occurrence of each state in actual cache line data. For each

cell, we estimate the value ofR0 and α based on the normal

distributions specified in Table 1. Based on this, we com-

pute the time for each cell to drift to a neighboring state and

identify the cells that will be among the first to fail.

We assume robust wear-leveling techniques [32, 6, 31,

47] will be used, and a 64 GB PCMmain memorywill likely

handle well over 1017 writes in its lifetime. Many lines may

have successive writes within a short interval and will not

be prone to drift-based errors, i.e., the line is re-written be-

fore its worst-case cells drift to neighboring states. But we

expect many of the lines in the PCM device to have a long

interval between successive writes, especially in the follow-

0.0E+0

2.0E+4

4.0E+4

6.0E+4

8.0E+4

1.0E+5

1.2E+5

1.4E+5

1.6E+5

1.8E+5

2.0E+5

2 seconds 8 seconds 32 seconds 128 seconds 512 seconds

E
rr

o
rs

Refresh/LARDD Interval

Baseline ECC-1

ECC-8 ECC-8-headroom-3

ECC-8-headroom-5 ECC-8-headroom-3-G-1

(a) Uncorrectable Errors

0

0.2

0.4

0.6

0.8

1

1.2

2 seconds 8 seconds 32 seconds 128 seconds 512 seconds

S
cr

u
b

 R
e

la
te

d
 W

ri
te

s
N

o
rm

a
li

ze
d

 t
o

B
a

se
li

n
e

Refresh/LARDD Interval

Baseline ECC-1

ECC-8 ECC-8-headroom-3

ECC-8-headroom-5 ECC-8-headroom-3-G-1

(b) Scrub-Related Writes

0

0.2

0.4

0.6

0.8

1

1.2

2 seconds 8 seconds 32 seconds 128 seconds 512 seconds

E
n

e
rg

y
 N

o
rm

a
li

ze
d

 t
o

 B
a

se
li

n
e

Refresh/LARDD Interval

Baseline ECC-1

ECC-8 ECC-8-headroom-3

ECC-8-headroom-5 ECC-8-headroom-3-G-1

(c) Scrub Energy

Figure 4: Error rates, scrub-related writes, and scrub energy for various schemes as a function of Refresh/LARDD interval.

EnergyRead Write Write Write Write

Energy01 Energy11 Energy10 Energy00

10 pJ 50 pJ 100 pJ 400 pJ 1600 pJ

Table 3: Per (Cell) Access Read and Write Energy for different

programmed values derived from [41].

ing situations: (i) read-only data structures in long-running

applications, (ii) data of long-running applications that are

resident in the DRAM cache for a very long time, and (iii)

filesystem data when PCM is used as persistent storage. Our

simulations are focused on estimating error rates for the first

107 such long-term writes, i.e., we always assume that drift-

based errors show up before the next write to that line. For

each such write, we estimate if a given error tolerancemech-

anism would have allowed an error to escape correction.

To get an estimate of the impact of our proposed policies

on cell endurance, we report the total number of scrub or

refresh related writes to a line. The eventual impact of this

on lifetime will be a function of the percentage of long-term

writes in a workload.

Energy per read and write is estimated based on the data

of Xu et al. [41] for each cell state and is summarized in

Table 3. We also quantify the energy cost of the parity-

based error detection circuit (described shortly). Our energy

estimates only include the energy consumed within PCM

chips for scrub operations; we do not include the energy

cost of data transfers on the memory channel or the cost of

ECC encode/decode at the memory controller.

We compare our proposedmechanisms against two base-

line techniques described in Section 2.6. The first technique

is similar to DRAM refresh that blindly reads and re-writes

lines at a specified rate. The second is a basic scrub mech-

anism (ECC-1) similar to that used in DRAM, where reads

are issued at the specified rate and a SECDED code is used

to correct any observed single-bit errors.

5 Results

5.1 Impact of Strong ECC Codes

We first show the impact of strong ECC codes on drift-

induced error rates. We assume a scrub mechanism that

maintains an ECC-E code per line, issues LARDDs at a

given frequency, and re-writes the line if E errors are de-

0.0E+0

2.0E+4

4.0E+4

6.0E+4

8.0E+4

1.0E+5

1.2E+5

1.4E+5

1.6E+5

1.8E+5

2.0E+5

2 seconds 8 seconds 32 seconds 128 seconds 512 seconds

U
n

re
c
o

v
e

ra
b

le
 E

rr
o

rs

Refresh Interval

Baseline

ECC-1

ECC-2

ECC-4

ECC-6

ECC-8

Figure 5: Uncorrectable errors for 107 long-term writes for the

proposed scrub mechanism as a function of E and LARDD inter-

val. The ECC-1 model represents a DRAM-like scrub mechanism.

tected. Even with strong ECC support, there are occa-

sions when errors go undetected or cannot be corrected;

this happens when multiple errors happen between succes-

sive LARDDs. For a given LARDD rate, the error rate as

a function of E depends on how errors are clustered over

time. Since the values of R0 and α follow a normal distri-

bution, there are few outlier worst-case cells that are sepa-

rated significantly in their drift times (roughly by a factor

of two). Hence, we observe that as E increases, the error

rate drops sharply (as the likely time gap between the Eth

and (E + 1)th error goes up) as shown in Figure 5. Also,

for a given E, the uncorrectable error rate increases sharply

as the LARDD interval is increased. With an 8-second in-

terval between LARDDs, the ECC-8 scheme yields signif-

icantly fewer uncorrectable errors (228) than the baseline

ECC-1 scrub mechanism (9,016). However, the error rate

with ECC-8 is still very high. Figure 5 shows that while

multi-bit error tolerant codes can help the basic scrub mech-

anism, there is still much room for improvement.

5.2 Impact of Headroom and Gradual

Headroom. To reduce the likelihood of errors slipping

through, the Headroom scheme triggers a re-write operation

even before the Eth error happens. In our nomenclature,

Policy Reduction in uncorrectable error rate Reduction in scrub-related writes Reduction in scrub energy

ECC-8 92% 173.7× 52.4%

ECC-8-headroom-3 99.6% 18.8× 35.4%

ECC-8-headroom-3-gradual-1 96.5% 24.4× 37.8%

Table 4: Summary of improvements with proposed scrub mechanisms for a 512 second LARDD interval, relative to the ECC-1 baseline.

a headroom-h scheme triggers a re-write after the LARDD

detects at least E − h errors. An uncorrectable error with a

headroom-3 scheme now happens if errors E − 3, E − 2,
E−1,E, andE+1, all happenwithin one LARDD interval,

an event with significantly lower probability.

Figure 4a shows that headroom-h helps reduce error rate,

and also helps reduce LARDD frequency for a given error

rate. The ECC-8-headroom-3 scheme is able to yield only

647 errors at a LARDD rate of 512 seconds (roughly one

cache line read every 500 cycles). In comparison, the ECC-

1 baseline yields 105 errors at that LARDD rate.

However, since the policy panics and re-writes sooner

than the no-headroom policy, the number of scrub-related

writes increases as shown in Figure 4b. Thus, there is a

clear and significant trade-off between endurance (hard er-

ror rates) and uncorrectable soft error rates when designing

scrub policies for MLC PCM. The ECC-8 scheme issues

173× fewer scrub-related writes than the ECC-1 scheme;

the ECC-8-headroom-3 scheme gives up some of this ad-

vantage and is only 19× better than the ECC-1 baseline

for scrub related writes. While some recent papers have

shown that wear-leveling and other optimizations can in-

crease PCM lifetimes to over 10 years, it is important to re-

alize that some of that lifetime may be lost to drift-induced

soft-error tolerance techniques. Hence, another conclusion

of our study is that hard error avoidance and tolerance in

PCM will be even more important in the future.

Using the energy estimates in Table 3, we compare en-

ergy consumption of various headroom schemes in Fig-

ure 4c. While the ECC-E scheme is more energy-efficient

than the ECC-1 baseline, an ECC-E-headroom-h scheme

consumes more energy compared to its ECC-E counterpart

because of the higher re-write frequency. So the use of head-

room introduces a trade-off involving uncorrectable soft er-

ror rates, hard error rates, and energy.

Headroom-Gradual. As described in Section 3.3, to re-

duce the energy overhead of LARDD operations, we em-

ploy adaptive LARDD rates. If a line has fewer than

E − h − g errors, we halve the LARDD frequency. Our

analysis shows that such a scheme reduces the number of

LARDDs, but leads to a higher error rate. We also observe

that the error rates are manageable only when it is combined

with a headroom scheme. For all of our evaluations, we only

show results for g = 1.

Figure 4 shows that at a 512-second LARDD interval,

headroom-gradual leads to an 8× higher error rate than the

headroom scheme, but reduces the number of LARDDs by

25.5%, thus consuming 5% less scrub-related energy.

For a given ECC support, we can make two significant

conclusions from Figure 4 - (i) increased headroom leads

to fewer errors, but decreases lifetime and increases energy

consumption, and (ii) a headroom-gradual scheme leads to a

Policy 2 s 8 s 32 s 128 s 512 s

LARDD-ECC-8 45 84 632 2,043 4,153

LARDD-ECC-8-headroom-3 0 0 15 1,491 2,441

LARDD-ECC-8-headroom-5 0 0 0 6 486

LARDD-parity-4/8 0 19 29 871 2,647

Table 5: Uncorrectable errors with parity and ECC schemes. A

parity-based scheme that panics at 4 parity errors has similar un-

correctable error rates as a scheme that panics at 5 actual errors

(ECC-8-headroom-3).

higher uncorrectable error rate as compared to a pure head-

room scheme, but decreases energy consumption, and has

a very small (negative) effect on lifetimes. The quantita-

tive improvements for the proposed schemes, relative to the

ECC-1 baseline are summarized in Table 4.

5.3 Impact of Parity-Based Approximate
Error Detection

Strong ECC codes incur a non-trivial overhead in terms

of circuit complexity, latency, and energy. Since any off-

chip storage array is likely to have some form of error pro-

tection, incurring this overhead on every request out of the

LLC is to be expected. However, incurring this cost on ev-

ery LARDD will likely be prohibitively expensive.

We first describe a basic baseline ECC circuit. We use

a BCH scheme similar to the one used in [27] to correct

up to 8 errors. The ECC circuitry is split into two parts,

the first used to detect and the second used to correct er-

rors. Since error detection is used on every LARDD, the

error detect circuitry is optimized to complete in one cycle.

To minimize area and leakage power overheads, the encode

and decode circuitry are shared. Also, since error correction

is only performed when an error is detected, the correction

circuitry is power gated when not in use to reduce leakage

power. It uses Berlekamp-Massey algorithm to calculate the

error location polynomial and Chien search to evaluate error

position. From [27] and [7], we estimate the energy used by

an ECC circuit capable of correcting 8 errors for a 512 bit

line to be 192 pJ. This is in addition to the 2560 pJ incurred

on average for every PCM line read [41].

To alleviate this cost, and make it possible to perform

error detection on the PCM chip itself, we introduce the

parity-based approximate error detection circuit described

in Section 3.2. Our error detection circuit can be approx-

imate because we provide headroom. Assuming that an

ECC-8 code exists for a 256-cell line, a full re-write is trig-

gered as soon as 4 of the 8 32-cell words flag a parity error.

Our parity scheme consists of simple combinational

logic per bit to detect the drift prone 10 states and signal

a 1. Each PCM line consists of 256 PCM cells and this is

divided into 8 sets of 32 cells each. Parity is calculated for

each of these sets by XORing all the bits of the detector cir-

cuit. The parity calculated for every 32 cell set is compared

with a parity bit stored during the write. If more than 4 sets

have mismatches, a Panic signal is raised, which triggers a

full re-write. The energy (1.47 pJ) used by this parity cir-

cuit is estimated by synthesizing this circuit using 65 nm

libraries in Synopsys Design Compiler assuming worst case

switching. The parity optimization makes a LARDD even

lighter, reducing the cost of a line read from 2752 pJ to 2561
pJ (a 7% reduction). Even more importantly, the area of our

parity-based circuit (1, 656µ2 at 65 nm) is 11 times less than

that of the baseline ECC circuit [27].

We note that the overhead of proposed LARDD schemes

can be further reduced by using 3D-stacked memory chips.

The logic interface dies on such 3D stacks can accommo-

date circuits for error detection and adaptive LARDD rates,

without impacting PCM cell density. This is consistent with

a recent trend [38] to move more functionality to the logic

interface dies on 3D stacks to save bandwidth.

We carry out simulations on real cache line data so that

the distribution of drifted cells across the 8 32-cell words

is cognizant of how states are distributed across real cache

lines. In Table 5, we compare the error rates for our initial

LARDD-ECC-8 policies and the LARDD-parity-4/8 policy

and show that the error rates are not much more than the

headroom-3 scheme.

5.4 Adaptive Scrub Rate Case Study

Drift times and error rates are a function of many factors.

We expect that the OS will track error rates over time and

occasionally increase or decrease LARDD rates to best bal-

ance the error rate and LARDD overhead. As a case study,

we evaluate such an approach for an important scenario: the

emergence of hard errors over the lifetime of a PCM chip.

We simulate a model where a line may have a number

of hard errors (but less than E hard errors) with a proba-

bility that is linearly proportional to the number of writes

already seen by the simulation. In other words, there are

few hard errors early in the simulated lifetime of the line,

but the number of hard errors gets closer to E by the end

of the simulated lifetime. A line is considered defunct if it

has E hard errors. As the hard errors increase, we effec-

tively can handle fewer soft errors and the error rates start

to increase.

In our experiments, we assume that E is 8, h is 3, and

HE is 2. Recall from the discussion in Section 3.3 that a

faster LARDD rate is only used if a line has more thanHE

hard errors. We start with a LARDD interval of 16 seconds

and the interval is halved if more than 5 uncorrectable errors

are detected in the previous epoch (105 long-termwrites). In

a baseline with zero hard errors, a total of 4 uncorrectable er-

rors were detected in the entire simulation. Once hard errors

were introduced as described above, the number of uncor-

rectable errors grows to 149,000. With our dynamic policy,

the LARDD interval is progressively reduced in the latter

half of the simulation to 64 ms, while keeping the number of

uncorrectable errors below 1,000. If a longer LARDD inter-

val is used for lines with fewer thanHE errors, LARDD en-

ergy is reduced by 22%, but the number of errors increases

by 18%. We also observed similar trends when we assumed

other hard error proliferation rates. The OS would have to

consider the above trade-offs when setting the parameters of

such adaptive policies.

5.5 Comparison Against Device-Level So-
lutions

In this section, we consider two of the most effective

device-level solutions to delay the onset of drift-based er-

rors. We show that architectural solutions are superior to

these device-level alternatives in almost every regard.

The first device-level solution is non-uniform banding.

Instead of splitting the available resistance range equally

among all resistance states, the range is split in a non-

uniform manner so that drift-prone states have more widely

spaced boundary resistance thresholds. This device-level

solution does not incur higher implementation complexity,

but is less effective as the number of levels in a cell is in-

creased. In our experiments, the boundary resistance thresh-

old for the two drift-prone states is widened by 10%, while

that for the non-drift-prone states is reduced by 10%.

The second device-level solution attempts more precise

writes. In most experiments in this paper, we assume that

the programmed resistance range allows cells with resis-

tance at most 2.75σ from the mean. Instead, we can im-

plement more precise writes by halving the programmed re-

sistance range to allow cells with resistance at most 1.375σ

from the mean. This means that a cell will have to drift fur-

ther to cross the boundary threshold (which is situated at a

resistance 3σ from the mean), allowing the baseline device

to get away with a much longer refresh/LARDD interval.

We’ll shortly compare the error rates with these competing

approaches. The cost of this device-level solution is sum-

marized next.

Currently, not much work exists on the viability of pre-

cise writes in PCM. Based on work in [21, 22, 25, 11], we

project the following impacts on latency, energy, and en-

durance. The iterative write process subjects a cell to mul-

tiple current pulses and after every pulse, we check to see if

the resistance is within the programmed resistance range. If

we provide a pulse that causes a big jump in resistance, it

may be possible to miss the acceptable range altogether. So

the typical jump needs to be a little bit smaller than the width

of the acceptable resistance range. Thus, with a high like-

lihood, the final pulse will place the cell within the accept-

able range. However, as already discussed, because of vari-

ations, the resistance follows a normal distribution within

that range.

If a write must be made more precise (narrower accept-

able range), each pulse will have to cause a smaller jump in

resistance. So the write will involve many short resistance

jumps. Assuming a fixed pulse width (say, 5 ns), the cell

can be either programmedwith many low-amplitude pulses,

or a few high-amplitude pulses [21, 22]. The former pro-

vides the higher precision at a latency penalty. Typically, if

the programmed resistance range is being halved, we will

need twice as many pulses, each causing half the resistance

jump. Fortunately, the higher precision write also consumes

Policy/Improvement Baseline ECC-1 ECC-1 + Precise Write ECC-1 + ECC-8 ECC-8-headroom-3

(2.75σ) (1.375σ) Non-uniform banding (2.75σ) (2.75σ)

Uncorrectable errors 153,164 26,610 70,935 11,293 674

Table 6: Uncorrectable errors for a LARDD interval time of 512 seconds. We show a baseline scrub mechanism (ECC-1) combined with

device-level solutions (precise writes and non-uniform banding). These are compared against architectural solutions that do not change

programmed resistance ranges or boundary resistance thresholds.

less overall energy (since energy is proportional to I2). The

work of Lin et al. [21] shows an example where a write with

twice the precision consumes four times less energy and

twice the latency. To measure the impact of higher write

latency, we ran detailed Simics simulations with a state-of-

the-art memory scheduling model that buffers writes and

drains them once they reach a high water mark. We ob-

served that a 200-cycle increase in write latency can reduce

IPC by 5.2%. The impact of write precision on endurance

is not yet exactly known (to the best of our knowledge).

The work of Goux et al. [9, 8] shows that endurance is very

strongly influenced by the RESET pulse at the start of the

iterative write process. Subsequent pulses have a smaller

impact, as they typically do not result in melting the active

volume. Endurance is also a linear function of the number

of pulses. Thus, we can conclude that a write that is twice as

precise and needs twice as many low-amplitude pulses will

have an endurance that may be at most 2× worse. Thus,

the precise write incurs a penalty in terms of latency and

endurance.

We see how the competing approaches compare in terms

of error rates. Table 6 considers a baseline PCM device

(with the 2.75σ programmed resistance range), a PCM de-

vice with a more precise 1.375σ programmed resistance

range, and a PCM device with non-uniform bands (10%

wider boundary thresholds for drift-prone states). All three

models have a basic DRAM-like scrubbing mechanism

(ECC-1) with a LARDD interval of 512 seconds. We see

that precise writes and non-uniform banding are able to

bring the error rate down from 153.2K in the baseline to

26.6K and 70.9K, respectively. Instead, if the baseline was

augmented with architectural solutions (scrub with ECC-8

and scrub with ECC-8-headroom-3), while keeping the pro-

grammed resistance range fixed at 2.75σ, we are able to

bring the errors down to 11.3K and 674, respectively. The

architectural solutions are also superior because they delay

the issue of writes, thus improving energy and endurance.

The precise write approach also degrades performance be-

cause it increases write latency. Thus, if we had to pick a

single approach to mitigate drift-based errors, an architec-

tural solution with LARDDs, multi-bit error correction, and

headroom appears most desireable. The architectural solu-

tion can be combined with device-level solutions to achieve

even higher gains.

6 Related Work

Recently, many architecture-level solutions have been

proposed to address PCM challenges [32, 31, 20, 47, 30,

46]. Only one targets resistance drift in MLC PCM [46]. In

the eDRAM space, strong BCH based ECC methods have

been used for a variety of purposes, most recently in Hi-

ECC [40]. Hi-ECC uses 5EC6ED codes to reduce refresh

power in eDRAM, along with other optimizations.

Mitigating Resistance Drift A few device-level solutions

for drift mitigation have been proposed recently [18, 34, 16,

43, 42, 26]. These techniques are in early stages of design

and range from corrective voltage pulses to dopant mate-

rials to reference cells and modulation coding. Zhang and

Li [46] propose the Helmet architecture that uses a number

of methods to counter drift: encodingmechanisms to reduce

the occurrence of drift-prone states, switching fromMLC to

SLC mode, and modifying the OS for temperature-aware

page allocation. Our work looks at a completely distinct set

of optimizations that are focused on scrub-based tolerance

of errors exposed by drift. We anticipate that some of the

Helmet optimizations can be combined with our scrub poli-

cies to further reduce error rates and overheads.

HardError Correction Ipek at al. [14] propose a dynam-

ically replicated memory architecture that allows for contin-

ued operation through graceful degradation of PCM cells.

Schechter et al. [35] attempt to deal with hard errors in re-

sistive memories by tracking worn out cells and storing a

pointer to these cells along with the cache line. Seong et

al. [37] propose SAFER, a technique to recover from the

“stuck-at” hard errors in PCM based on the observation that

even if a bit is stuck at a particular value, that value is still

readable with the right encoding (inversion or not). Yoon et

al. [45] propose FREE-p, where a failed data block stores

a pointer to another data block that is used as a substitute.

These solutions can only handle cells that are known to have

failed and are not effective for soft error tolerance.

In Flash, strong error correction codes and adaptive

programming voltages are employed, with no background

scrub mechanism. Apart from the Flash coding strategies,

to the best of out knowledge, we are not aware of other work

that combines lightweight detection codes with stronger

correction codes. The lightweight LPDC error detection

strategy for Flash is more sophisticated and longer latency

than parity-based schemes proposed in this work.

7 Conclusions

In this work, we show that drift-based multi-bit errors in

PCM MLC devices are a significant problem. Traditional

scrub mechanisms that have worked for DRAM are highly

inadequate for MLC PCM. We show how scrub mecha-

nisms can be extended with stronger ECC codes, headroom

schemes, and adaptive scrub rates. These extensions have

an impact on uncorrectable soft error rates, lifetime, and en-

ergy. Our combined policy (ECC-8-headroom-3-gradual)

yields a 96.5% error rate reduction, a 24.4 × reduction in

scrub-related writes, and a 37.8% reduction in scrub energy,

relative to a DRAM-like (ECC-1) scrub mechanism. The

impact of this improvement on overall device lifetime and

FIT rates would depend on a number of factors, including

the frequency of long-termwrites in the workload. We show

that these architectural techniques are much more effective

than device-level approaches.

References

[1] Multilevel Phase Change Memories. http://www.
thinfilmproducts.umicore.com/feature.asp?
page=art6.

[2] Research Needs for Memory Technologies. Technical re-
port, Semiconductor Research Corporation (SRC), 2011.
www.src.org/program/grc/ds/research-needs/2011/memory.pdf.

[3] C. Benia et al. The PARSEC Benchmark Suite: Characterization and
Architectural Implications. Technical report, Princeton University,
2008.

[4] M. Boniardi, D. Ielmini, S. Lavizzari, A. Lacaita, A. Redaelli, and
A. Pirovano. Statistical and scaling behavior of structural relaxation
effects in phase-change memory (PCM) devices. 2009.

[5] G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto,
K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras,
A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy. Phase Change
Memory Technology, 2010. http://arxiv.org/abs/1001.1164v1.

[6] S. Cho and H. Lee. Flip-N-Write: A Simple Deterministic Technique
to Improve PRAM Write Performance, Energy, and Endurance. In
Proceedings of MICRO, 2009.

[7] W. Gao and S. Simmons. A study on the VLSI implementation of
ECC for embedded DRAM. In Proceedings of IEEE CCECE, 2003.

[8] L. Goux, T. Gille, D. Castro, G. Hurkx, J. Lisoni, R. Delhougne,
D. Gravesteijn, K. De Meyer, K. Attenborough, and D. Wouters.
Transient Characteristics of the Reset Programming of a Phase-
Change Line Cell and the Effect of the Reset Parameters on the Ob-
tained State. Electron Devices, IEEE Transactions on, 56(7), 2009.

[9] L. Goux, D. Tio Castro, G. Hurkx, J. Lisoni, R. Delhougne,
D. Gravesteijn, K. Attenborough, and D. Wouters. Degradation of
the Reset Switching During Endurance Testing of a Phase-Change
Line Cell. Electron Devices, IEEE Transactions on, 56(2), 2009.

[10] R. Hamming. Error detecting and error correcting codes. Bell System
Technical Journal, 1950.

[11] Y. Hwang, C. Um, J. Lee, C. Wei, H. Oh, G. Jeong, H. Jeong, C. Kim,
and C. Chung. MLC PRAM with SLC write-speed and robust read
scheme. In Proceedings of Symposium on VLSI Technology, 2010.

[12] D. Ielmini, M. Boniardi, A. Lacaita, A. Redaelli, and A. Pirovano.
Unified mechanisms for structural relaxation and crystallization in
phase-change memory devices. Microelectronic Engineering, 86(7-
9):1942 – 1945, 2009. INFOS 2009.

[13] D. Ielmini, D. Sharma, S. Lavizzari, and A. Lacaita. Reliability Im-
pact of Chalcogenide-Structure Relaxation in Phase-Change Memory
(PCM) Cells ;Part I: Experimental Study. Electron Devices, IEEE
Transactions on, 56(5), may 2009.

[14] E. Ipek, J. Condit, E. Nightingale, D. Burger, and T. Moscibroda.
Dynamically Replicated Memory : Building Reliable Systems from
nanoscale Resistive Memories. In Proceedings of ASPLOS, 2010.

[15] B. Jacob, S. W. Ng, and D. T. Wang. Memory Systems - Cache,
DRAM, Disk. Elsevier, 2008.

[16] C.-W. Jeong, D.-H. kang, H.-J. Kim, S.-P. Ko, and D.-W. Lim. Mul-
tiple Level Cell Phase-Change Memory Devices Having Controlled
Resistance Drift Parameter, Memory Systems Employing Such De-
vices and Methods of Reading Memory Devices, 2008. United States
Patent Application, Number US 2008/0316804 A1 .

[17] S. Kang, W. Y. Cho, B.-H. Cho, K.-J. Lee, C.-S. Lee, H.-R. Oh, B.-
G. Choi, Q. Wang, H.-J. Kim, M.-H. Park, Y. H. Ro, S. Kim, C.-D.
Ha, K.-S. Kim, Y.-R. Kim, D.-E. Kim, C.-K. Kwak, H.-G. Byun,
G. Jeong, H. Jeong, K. Kim, and Y. Shin. A 0.1- µm 1.8-V 256-Mb
Phase-Change Random Access Memory (PRAM)With 66-MHz Syn-
chronous Burst-Read Operation. Solid-State Circuits, IEEE Journal
of, 42(1), jan. 2007.

[18] A. Kostylev and W. Czubatyj. Method of Eliminating Drift in Phase-
Change Memory, 2004. United States Patent Application, Number
US 2004/0228159 A1 .

[19] S. K. Lai. Flash memories: Successes and challenges. IBM Journal
of Research and Development, 52(4.5), 2008.

[20] B. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting Phase Change
Memory as a Scalable DRAM Alternative. In Proceedings of ISCA,
2009.

[21] J.-T. Lin, Y.-B. Liao, M.-H. Chiang, I.-H. Chiu, C.-L. Lin, W.-C. Hsu,
P.-C. Chiang, S.-S. Sheu, Y.-Y. Hsu, W.-H. Liu, K.-L. Su, M.-J. Kao,
and M.-J. Tsai. Design optimization in write speed of multi-level

cell application for phase change memory. In Intl. Conf. of Electron
Devices and Solid-State Circuits, 2009.

[22] J.-T. Lin, Y.-B. Liao, M.-H. Chiang, and W.-C. Hsu. Operation
of Multi-Level Phase Change Memory Using Various Programming
Techniques. In Proceedings of ICICDT, 2009.

[23] W. Mueller, G. Aichmayr, W. Bergner, E. Erben, T. Hecht,
C. Kapteyn, A. Kersch, S. Kudelka, F. Lau, J. Luetzen, A. Orth,
J. Nuetzel, T. Schloesser, A. Scholz, U. Schroeder, A. Sieck,
A. Spitzer, M. Strasser, P.-F. Wang, S. Wege, and R. Weis. Chal-
lenges for the DRAM cell scaling to 40nm. 2005.

[24] T. Nirschl, J. Phipp, T. Happ, G. Burr, B. Rajendran, M.-H. Lee,
A. Schrott, M. Yang, M. Breitwisch, C.-F. Chen, E. Joseph, M. Lam-
orey, R. Cheek, S.-H. Chen, S. Zaidi, S. Raoux, Y. Chen, Y. Zhu,
R. Bergmann, H.-L. Lung, and C. Lam. Write Strategies for 2 and
4-bit Multi-Level Phase-Change Memory. 2007.

[25] A. Pantazi, A. Sebastian, N. Papandreou, M. J. Breitwisch, C. Lam,
H. Pozidis, and E. Eleftheriou. Multilevel Phase-Change Memory
Modeling and Experimental Characterization. In Proceedings of EP-
COS, 2009.

[26] N. Papandreou, H. Pozidis, T. Mittelholzer, G. Close, M. Breitwisch,
C. Lam, and E. Eleftheriou. Drift-tolerant multilevel phase-change
memory. In Proceedings of International Memory Workshop (IMW),
2011.

[27] S. Paul, F. Cai, X. Zhang, and S. Bhunia. Reliability-Driven ECC Al-
location for Multiple Bit Error Resilience in Processor Cache. IEEE
Transactions on Computers, 99, 2010.

[28] A. Pirovano, A. Lacaita, F. Pellizzer, S. Kostylev, A. Benvenuti, and
R. Bez. Low-field amorphous state resistance and threshold voltage
drift in chalcogenide materials. IEEE Transactions on Electron De-
vices, 51(5), may 2004.

[29] M. Qureshi, M. Franceschini, and L. Lastras. Improving Read Perfor-
mance of Phase Change Memories via Write Cancellation and Write
Pausing. In Proceedings of HPCA, 2010.

[30] M. Qureshi, M. Franceschini, L. Lastras-Montano, and J. Karidis.
Morphable Memory System: A Robust Architecture for Exploiting
Multi-Level Phase Change Memory. In Proceedings of ISCA, 2010.

[31] M. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali. Enhancing Lifetime and Security of PCM-Based Main
Memory with Start-Gap Wear Leveling. In Proceedings of MICRO,
2009.

[32] M. Qureshi, V. Srinivasan, and J. Rivers. Scalable High Performance
Main Memory System Using Phase-Change Memory Technology. In
Proceedings of ISCA, 2009.

[33] A. Redaelli, A. Pirovano, A. Locatelli, and F. Pellizzer. Numeri-
cal Implementation of Low Field Resistance Drift for Phase Change
Memory Simulations. In Non-Volatile Semiconductor Memory Work-
shop, 2008.

[34] S. Kostylev and T. Lowrey. Drift of Programmed Resistance In Elec-
trical Phase Change Memory Devices, 2008.

[35] S. Schechter, G. Loh, K. Strauss, and D. Burger. Use ECP, not ECC,
for hard Failures in Resistive Memories. In Proceedings of ISCA,
2010.

[36] B. Schroeder, E. Pinheiro, and W. Weber. DRAM Errors in the Wild:
A Large-Scale Field Study. In Proceedings of SIGMETRICS, 2009.

[37] N. Seong, D. Woo, V. Srinivasan, J. Rivers, and H. Lee. SAFER:
Stuck-At-Fault Error Recovery for Memories. In Proceedings of MI-
CRO, 2010.

[38] A. Udipi, N. Muralimanohar, R. Balasubramonian, A. Davis, and
N. Jouppi. Combining Memory and a Controller with Photonics
through 3D-Stacking to Enable Scalable and Energy-Efficient Sys-
tems. In Proceedings of ISCA, 2011.

[39] A. N. Udipi et al. Rethinking DRAM Design and Organization for
Energy-Constrained Multi-Cores. In Proceedings of ISCA, 2010.

[40] C. Wilkerson, A. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar,
and S.-L. Lu. Reducing Cache Power with Low-Cost, Multi-Bit Error
Correcting Codes. In Proceedings of ISCA, 2010.

[41] W. Xu, J. Liu, and T. Zhang. Data Manipulation Techniques to
Reduce Phase Change Memory Write Energy. In Proceedings of
ISLPED, 2009.

[42] W. Xu and T. Zhang. A time-aware fault tolerance scheme to improve
reliability of multilevel phase-change memory in presence of signif-
icant resistance drift. IEEE Transactions on VLSI Systems, PP(99),
2010.

[43] W. Xu and T. Zhang. Using Time-Aware Memory Sensing to Ad-
dress Resistance Drift Issue in Multi-Level Phase Change Memory.
In Proceedings of ISQED, 2010.

[44] D. Yoon and M. Erez. Virtualized and Flexible ECC for Main Mem-
ory. In Proceedings of ASPLOS, 2010.

[45] D.-H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan, N. Jouppi,
and M. Erez. FREE-p: Protecting Non-Volatile Memory against both
Hard and Soft Errors. In Proceedings of HPCA, 2011.

[46] W. Zhang and T. Li. Helmet: A Resistance Drift Resilient Architec-
ture for Multi-level Cell Phase Change Memory System. In Proceed-
ings of DSN, 2011.

[47] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A Durable and Energy
Efficient Main Memory Using Phase Change Memory Technology.
In Proceedings of ISCA, 2009.

