
Edicts: Implementing Features with Flexible Binding Times

Venkat Chakravarthy John Regehr Eric Eide

University of Utah, School of Computing

{vchakra, regehr, eeide}@cs.utah.edu

Abstract

In a software product line, the binding time of a feature is the
time at which one decides to include or exclude a feature from
a product. Typical binding site implementations are intended to
support a single binding time only, e.g., compile time or run time.
Sometimes, however, a product line must support features with
variable binding times. For instance, a product line may need to
include both embedded system configurations, in which features
are selected and optimized early, and desktop configurations, in
which client programs choose features on demand.

We present a new technique for implementing the binding sites
of features that require flexible binding times. Our technique com-
bines design patterns and aspect-oriented programming: a pat-
tern encapsulates the variation point, and targeted aspects—called
edicts—set the binding times of the pattern participants. We de-
scribe our approach and demonstrate its usefulness by creating a
middleware product line capable of serving the desktop and em-
bedded domains. Our product line is based on JacORB, a middle-
ware platform with many dynamically configurable features. By
using edicts to select features at compile time, we create a ver-
sion of JacORB more suited to resource-constrained environments.
By configuring four JacORB subsystems via edicts, we achieve a
32.2% reduction in code size. Our examples show that our tech-
nique effectively modularizes binding-time concerns, supporting
both compile-time optimization and run-time flexibility as needed.

1. Introduction

Software product lines are an attractive solution for software devel-
opment because they are economical and adaptable to change. A
software product line, as defined by Clements and Northrop [2], is
“a set of software-intensive systems that share a common, managed
set of features. . . and that are developed from a common set of core
assets in a prescribed way.” The members of a product line—i.e.,
individual products—differ from each other according to their sets
of selected features.

The selection of features in a product can occur at different
times, as required by many development issues [22]. For example,
consider the input-handling feature for text-processing software on
a device like a cell phone. If the device supports only a keypad, then

This material is based upon work supported by the National Science
Foundation under Grant No. 0410285.

c© ACM, 2008. This is the author’s version of the work. It is posted here by permission

of ACM for your personal use. Not for redistribution.

The definitive version was published in Proceedings of the Seventh International

Conference on Aspect-Oriented Software Development (AOSD), Brussels, Belgium,

Mar.–Apr. 2008, http://doi.acm.org/10.1145/1353482.1353496

there is only one possible method of input. In this case, the keypad
input feature can be selected early—e.g., by the system builder,
when the software for the phone is compiled. However, one can also
imagine advanced handsets that support interactive input through
a combination of a keypad, a touch-screen stylus, and voice. In
this situation, the selection of a specific input handler must occur
late—e.g., at run time—based on the input mode the user chooses.
A company may want to develop a single software product line
that supports both cases described above. That is, it would like to
provide two cell-phone software systems that have many features
in common (both support keypad input) but which differ in when
those features are selected. It would be convenient if the software
developers could easily choose the feature selection times when
configuring their software for different cell phone models.

In product line terminology, variation points control the inclu-
sion or exclusion of features within the products that are part of a
product line. A binding site is the realization of a variation point in
the implementation; in general, a single conceptual variation point
may translate to numerous (scattered) binding sites in the code.
Binding time refers to the time at which the decisions for a vari-
ation point are set [5]: in other words, it is the time at which feature
selection occurs. There are many different binding times available
to a software designer—e.g., compile time, link time, and run time.
A software development technique that is used to implement a vari-
ation point is called a variability mechanism [12].

Configuration scripts, conditional compilation, static and dy-
namically linked libraries, virtual dispatch tables, reflection, and
dynamic class loading are examples of mechanisms that can be
used to implement variation points [7, 8]. Each of these, however,
is strongly tied to a particular choice of binding time. When one of
these mechanisms is used to bind a feature, any subsequent need to
change the binding time means replacing the mechanism: that is,
modifying the source code of every binding site. In a continuously
evolving product line, where binding times may change based on
existing, evolving, or expanding domain requirements, this process
is error-prone and the code modifications are tedious to track. In-
deed, others have previously identified binding-time flexibility as
an important concern for product-line software [23].

In this paper, we describe a novel technique to provide binding-
time flexibility in a modular and convenient manner. Our variabil-
ity mechanism makes it possible to choose between compile-time
and run-time binding for selected features. In general, earlier bind-
ing times enable better static analysis and system optimization,
whereas later binding times enable configuration by users and post-
deployment updates. Compile-time binding is therefore often ap-
propriate for constrained systems, where constraints may be set by
the purpose or operating environment of the software. For example,
because embedded systems have limited memories and real-time
deadlines, such systems may only support a subset of the features
available in a product line. Conversely, desktop and server systems
can easily support large and feature-rich software packages, and so
may favor run-time binding.

1

The variability mechanism we propose uses design patterns and
aspect-oriented programming in combination to achieve binding-
time flexibility. First, a programmer encapsulates a variation point
within the implementation of a design pattern [9]. The pattern
serves to make the point identifiable and stable, and it provides the
“hooks” that are necessary for changing the point’s binding time.
The programmer then writes edicts to manipulate the binding times
at such points. An edict is a targeted aspect that enables a partic-
ular binding time. At the time of product assembly (i.e., when the
parts of a product are selected, collected, and configured to work
together), a product assembler uses knowledge about the domain
and chooses edicts to implement the desired feature-binding strate-
gies. The assembled system can be statically optimized, based on
information obtained from the chosen edicts.

We demonstrate and evaluate our technique by creating a
small product line from an existing middleware system called
JacORB [13]. The original JacORB is designed to run on PC-
class (Java SE) devices and has many dynamically configurable
features. Our experiment was to extend JacORB to be suitable for
smaller, handheld-class devices (Java ME-CDC platforms) as well.
By reimplementing some variation points using edicts, we made it
possible to create both “desktop” and “embedded” versions of the
middleware from a single code base. In the desktop configuration,
features are still bound at run time as in the original software. In
the embedded configuration, however, edicts enforce compile-time
binding at key variation points—“hard-wiring” features as appro-
priate for a smaller, more special-purpose device.

We show that when compile-time binding is used, our tech-
nique improves the effectiveness of static program analyzers such
as ProGuard [16]. We use ProGuard in several experiments to
“shrink” the bytecode of both the original JacORB middleware,
minimally modified for fixed feature selection, and our modified
JacORB, configured with edicts that implement compile-time fea-
ture binding. The optimized, edict-based middleware is consis-
tently smaller—up to 32.2% smaller—than the optimized, non-
edict-based middleware. This savings could be further improved,
we believe, if we applied our technique to more than the four vari-
ation points we have modified thus far.

The contributions of this paper are as follows:

• We present our technique—our variability mechanism—for im-
plementing binding sites that support features with variable
binding times. Handling such variability is a significant chal-
lenge in the implementation of product-line software.

• We define a systematic method for applying our technique.

• We demonstrate our approach within an example middleware
product line, one designed to encompass both constrained
(Java ME-CDC) and feature-rich (Java SE) platforms.

• We evaluate the benefits of our mechanism in terms of its ability
to create feature-subsetted middleware products with reduced
resource demands.

Our approach changes the binding time of a feature from being
a design-time attribute of a product line to being an assembly-
time attribute of a product. It builds upon the modularity, stability,
and traceability provided by design patterns and targeted aspects,
thus promoting understanding by programmers and optimization by
compilers. When our technique is applicable, it can help software
architects use a single code base to create a wide variety of products
that satisfy the requirements of disparate domains.

2. Background: Feature Modeling

Feature modeling [4] is a technique that helps the designers of a
product line identify the characteristics that are common in applica-

Figure 1. Hypothetical feature model for a media player

tions and also those that are different among the applications writ-
ten for a domain. A feature model is an abstract representation of
the variability present in a software product line. The model uses
diagrammatic notations to represent various features present in the
software system, their dependencies and interactions, and the soft-
ware domain concerns in a structured format. It helps anticipate the
addition of new or removal of old features and maintain a record of
all variants in the product line. We use the notations defined by the
Feature-Oriented Domain Analysis (FODA) [14] to create feature
models in this work.

Continuing the cell phone example from Section 1, let us as-
sume that the cell phone has media playing capabilities. We can
represent the cell phone’s media player subsystem using FODA
notations, as shown in Figure 1. The topmost box represents the
system itself, and all other boxes represent features.

Notations on edges describe constraints on how features can be
combined. The filled-circle arrowheads on the edges from “Me-
dia Player” to its immediate children indicate that “A-V Codecs”
and “Language Interface” are mandatory features—present in all
media players. All players come configured with a basic set of
audio and video codecs, but a deluxe model is configured with
advanced codecs. This is an optional feature as represented by
the unfilled circle arrowhead. The codecs are or-features: either
or both may be present in the system. The filled arc below the
“A-V Codecs” subsystem represents this constraint. Similarly, the
language interface may be provided in English or in German but
not in both. The unfilled arc below the language interface feature
represents these alternative features.

The attachment points for optional, or-, and alternative features
—where choices must be made—are called variation points. An
important step in building a feature model is specifying when the
decisions at each variation point must be set. These are the variation
points’ binding times, and typical binding times include:
• Preprocessing time and compile time. Preprocessor directives

and compile-time features strongly influence the ways in which
a product is configured and optimized.

• Link time. Linking can be performed at various times and
depends upon the software deployment environment. It could
occur immediately after compilation, for example, or even after
the program starts running.

• Initialization time. This is a precursor phase before the pro-
gram starts it normal operation. Interpreting directives from a
configuration file at program startup, for example, is a common
form of the initialization-time feature binding.

• Run time. The binding of features can occur while the program
is running. Object-oriented programming languages provide a
great deal of support for run-time feature selection.

Finer distinctions are possible [4]. In this paper, we are mainly
interested in features that must be bound at compile time in some
products and at initialization or run time in others.

2

3. Flexible Binding Times via Edicts

Some software product lines require variation points with flexible
binding times. In this section, we describe our technique for im-
plementing such points in a convenient and modular fashion. Our
approach utilizes design patterns to encapsulate variation points in
conjunction with targeted aspects, called edicts, that determine the
binding times of features. The benefits of our technique include
configurability, meaning that product assemblers can change bind-
ing times without rewriting source code; traceability, meaning that
binding-time concerns are well modularized and identifiable within
a system’s implementation; and specializability, meaning that sig-
nificant static optimizations can be achieved when compile-time
bindings are chosen.

3.1 Overview and rationale

An edict is an aspect that implements a strategy for feature selection
within the implementation of a variation point. To apply an edict,
it must be possible to accurately identify the implementation of the
variation point—i.e., the binding sites—that we want to affect.

To make the binding sites for a variation point apparent, we
implement the sites in terms of a design pattern. In a feature model,
a variation point represents a connection between two features at a
high level. The nature of that connection can be complex, and often,
the relationship between two features is more than can be expressed
by a single programming language construct by itself. In other
words, the “interface” between two features is often more than a
single method or a single class [17]. In our experience, however,
the interface between two features can be often (but not always)
described in terms of one or more design patterns.

Design patterns are a common and popular technique for de-
scribing collections of program elements that work together [9].
Patterns are useful because they help people understand software
implementations in terms of abstract but well-understood structur-
ing concepts. They help to describe both the purpose and expected
modularity of a set of program elements—e.g., the roles that are
served by objects of various classes, and the ways in which the par-
ticipating objects should and should not communicate with each
other. Because patterns make the relationships between program
elements more apparent, and at the same time communicate mod-
ularity expectations to people, design patterns help to create and
preserve points of stability within a software architecture. The ex-
pressiveness and stability properties of patterns make them suit-
able for implementing many kinds of feature connections. More-
over, patterns are suitable for implementing many kinds of varia-
tion points—i.e., places where features are included or excluded
based on decisions that are made by a software developer or user.

Typical implementations of design patterns are intended to sup-
port run-time decisions through the dynamic creation, configura-
tion, and connection of objects. As shown in previous work, how-
ever, patterns can also be useful for implementing decisions that are
set before run time, when a product is compiled or assembled [6].

To support multiple binding times most effectively, the imple-
mentation of a pattern must vary according to the times at which
the participants and relationships described by the pattern become
known. Although it is possible to implement static relationships via
dynamic mechanisms, such techniques tend to obscure information
that could be used statically to check and optimize software. There-
fore, when relationships within a pattern instance are known stati-
cally, we would like to choose a pattern implementation that makes
the static information immediately and readily apparent to program
development and analysis tools.

Aspect-oriented programming provides the power that is needed
to set or modify the implementation of a design pattern to suit the
binding times of the participants. Through pointcuts and advice, an
aspect can modularize both the identification and manipulation of

public aspect Edict {
// Use ‘‘marker interfaces’’ to identify the roles
// of the classes within the design pattern impl.
public interface [Role] {};
declare parents: [Class] implements [Role];

// Use ITDs to implement pattern’s methods according
// to the desired binding strategy.
... [Role].[method](...) { ... }

// Use pointcuts to identify interactions among the
// classes of the design pattern impl.
pointcut [pcname](...):

[call or execution](...)
[&& target(...)] [&& within(...)] && args(...);

// Use ‘around’ advice to implement binding strategy
// at points of interaction.
... around(...): [pcname](...) { ... }

}

Figure 2. The structure of a typical edict

the many classes that implement the design pattern. We can write
multiple aspects that apply to a single design pattern instance (i.e.,
a single variation point): one aspect may implement early binding,
and another late binding. We refer to these aspects as “edicts” be-
cause they represent our intent to impose—as much as possible—
statically available knowledge about the domain into the design of
the product. This static knowledge is the choice of a binding time
and, in the case of an early-bound feature, an optimization opportu-
nity. One can view this as a targeted, human-directed form of pro-
gram specialization [3]. The intent and controlled scope of edicts
distinguish them from aspects in general.

3.2 The implementation of edicts

An edict is implemented using AspectJ aspects, and the recipe
for a typical edict is shown in Figure 2. Using intertype declara-
tions (ITDs) and around advice, an edict “fleshes out” or modifies
the implementation of a variation point as necessary to enable a par-
ticular binding time. An edict may contain any number of intertype
and advice declarations, as required to affect multiple sites (bind-
ing sites) within the implementation of a variation point. By imple-
menting variation points as design patterns, as discussed above, we
help to ensure that the essential join points within the implementa-
tion can be clearly identified by AspectJ pointcuts. Typically, only
call and execution join points are needed to identify locations of
interest, although other pointcut designators, such as within and
target, are needed to restrict the edict to the implementation of a
particular variation point.

Because edicts are intended to support static optimizations, they
are applied when a product is compiled. For every feature con-
trolled by edicts, the product assembler chooses the edict that im-
plements the desired feature binding time, and he or she includes
that edict in the product build.

One way to implement binding-time flexibility is to keep late
(run-time) binding code intact in the “ordinary” implementation of
a design pattern, and write edicts only to impose early (compile-
time) binding choices via around advice. Based on our experi-
ence, however, we recommend against this approach. In early
experiments, we observed that the static analysis tool we use—
ProGuard—sometimes could not exploit the fact that the code for
late binding had been made dead by around advice. As a result,
when an early-binding edict was applied, our optimizer was unable
to remove large amounts of dead code from our programs. (We
describe ProGuard in more detail in Section 5.1.)

3

Figure 3. The hierarchy of edicts

We therefore recommend writing separate edicts for run-time
and compile-time bindings, as illustrated in Figure 3. A program-
mer encapsulates a variation point within a design pattern, but he
or she leaves the parts related to binding-time decisions unfinished
in the “base” implementation of the software. He or she then writes
an abstract aspect, with pointcuts that target the binding-time de-
cision points. The abstract aspect declares and applies marker in-
terfaces as well. Finally, the programmer implements run-time and
compile-time binding strategies as individual, concrete subaspects.
Each of these contains code that completes the pattern as needed for
a particular feature binding time. This approach helps to ensure that
optimization opportunities are apparent to program analysis tools.

3.3 Example

To better describe edicts, we show how they could be applied to
a simple example. Our example is a model of a message-display
subsystem with optional features, such as one might find in a
cell phone product line. The optional features control how text
is displayed, e.g., in different fonts or colors. We can control the
binding times of these features by using edicts in conjunction with
the Decorator pattern.

Figure 4 shows the structure of our example program using a
modified UML notation. For now, ignore the edicts on the left-hand
side. The structure of the messaging program overall is based on
the Decorator pattern, and the code of our program is shown in
Figure 5. Message is an interface implemented by the Concrete-
Message class, which prints text. QuoteDecorator is a decorator
that surrounds output strings with quotes. The main program dy-
namically chooses whether or not to apply the decorator, and then
prints a string.

The quoting of the output message is the optional feature, and
currently, this feature is bound at run time. We want to modify the
program so that we can make a compile-time decision to (1) enable
or disable the feature at compile time, or (2) allow the selection to

occur at run time, as happens in the current program.1

Capturing feature selection. To solve the problem with edicts,
we must capture the variation point within a design pattern, which
is already done in this example. In addition, we must modularize
the ways in which binding decisions—as opposed to binding-time
decisions—are made. Concretely, we must modularize not only the
binding sites of a feature but also the parts of the program that
interact with the design pattern to select features. We refer to those
parts of the program as clients of the pattern, and in our example,
the client is the main program.

1 One could use a general-purpose program specializer to achieve the de-
sired effect in this example by specializing with respect to args. For large
programs, performing specialization requires sophisticated dataflow anal-
ysis between feature-configuration and feature-use sites, which due to im-
precision may not achieve complete optimizations. Edicts, conversely, are
intended to support straightforward analyses by programs and people.

Figure 4. The structure of a message-display program

public interface Message {
public void printThis(String s);

}
public class ConcreteMessage implements Message {

public void printThis(String s) {
System.out.print(s);

}
}

public class QuoteDecorator implements Message {
protected Message m;

public QuoteDecorator(Message m) {
this.m = m;

}
public void printThis(String s) {

m.printThis("‘‘" + s + "’’");
}

}

public class Main {
public static void main(String[] args) {

Message msg = new ConcreteMessage();
if ((args.length > 0) && (args[0].equals("1")))

msg = new QuoteDecorator(msg);
msg.printThis("Hello");

}
}

Figure 5. Implementation of the example message-display pro-
gram. Message quoting is an optional feature, bound at run time.

The Main class in Figure 5 has inlined logic—the if statement—
to perform feature selection. The next step in applying edicts to
this example, therefore, is to refactor the main program so that
feature selection occurs where it can be stably identified by an
AspectJ pointcut expression. Figure 6 shows the result, in which
the feature selection logic has been extracted to a method called
makeMessage. This method is not defined in the Main class.
Rather, it will be introduced by an edict in order to implement
a desired binding time. If there were several clients, it would be
necessary to refactor all of them in a similar manner.

Implementing run-time binding. We are now ready to imple-
ment our edicts. The left-hand side of Figure 4 illustrates how our
edicts will affect the classes within our application. The diagram
shows the edict hierarchy, and the semi-circular dual arrowhead
represents the application of advice and ITDs. The arcs connect-
ing the edict hierarchy with the ConcreteMessage and Quote-
Decorator classes, and the unfilled arc between these connectors,
represents the edict’s ability to “fill in” the pattern.

Given the refactored main program, it is straightforward to write
an edict that implements late (run-time) feature binding. This edict

4

public class Main {
public static void main(String[] args) {

Main app = new Main();
Message msg = app.makeMessage(args);
msg.printThis("Hello");

}
}

Figure 6. The refactored Main class

public aspect LateBindDecorators {
public interface Client{};
declare parents: Main implements Client;

public Message Client.makeMessage(String[] args) {
Message msg = new ConcreteMessage()
if ((args.length > 0) && (args[0].equals("1")))

return new QuoteDecorator(msg);
return msg;

}
}

Figure 7. An edict to select message-quoting at run time

is shown in Figure 7.2 The edict declares a marker interface and
uses it to identify all the clients of our message feature. Next, the
edict defines an implementation of makeMessage that performs
feature selection according to the run-time values of args, as was
done in the original Main class of Figure 5.

Implementing compile-time binding. Two edicts are required
to implement early (compile-time) feature selection: one that dis-
ables the message-quoting feature, and one that enables it. These
are shown in the top two panels of Figure 8, and they are similar
to the edict for late binding that was described above. If we had a
wider variety of decorators, a programmer could easily write edicts
for those as well (perhaps in a style supporting decorator composi-
tion, which is not shown in this simple example).

To produce a version of the message-printing program, a pro-
grammer includes exactly one of the late-binding, early-binding-
disable, and early-binding-enable edicts in the compilation. These
correspond to three unique software products with different combi-
nations of features and binding times.

There are three additional and important points to note about
our early-binding edicts.

First, if a product designer selects the EarlyBindDisable-
Decorators edict, it is nearly trivial for a static program analyzer
to remove the unused QuoteDecorator from the compiled prod-
uct. This is because there are no references to QuoteDecorator in
any class that is reachable from Main.main().

Second, the early-binding aspects in this example include dy-
namic checks to ensure that the command-line options, which con-
trolled message-quoting in the original program, are consistent with
the feature configuration of the current program. The need for such
checks depends on how feature selection is expected to occur in a
particular system. We could have chosen to ignore the command-
line arguments, but this would create an obvious source of confu-
sion if the user believes that the command-line options should still
be effective. We discuss this issue further in Section 3.4.

Third, because an edict controls the implementation of a design
pattern, it sometimes has flexibility in terms of mapping pattern-
defined roles onto the concrete classes of an application. Said dif-
ferently, an edict can often be implemented in several different

2 Because this is a simple example, we choose not to implement the abstract
aspect that is part of most edict hierarchies (Section 3.2).

public aspect EarlyBindDisableDecorators {
public interface Client {};
declare parents: Main implements Client;

public Message Client.makeMessage(String[] args) {
if ((args.length > 0) && (args[0].equals("1")))

throw new RuntimeException();
return new ConcreteMessage();

}
}

public aspect EarlyBindEnableDecorators {
public interface Client {};
declare parents: Main implements Client;

public Message Client.makeMessage(String[] args) {
if ((args.length > 0) && (args[0].equals("0")))

throw new RuntimeException();
return new QuoteDecorator(new ConcreteMessage());

}
}

public aspect EarlyBindEnableDecorators_v2 {
public interface Client {};
declare parents: Main implements Client;

public Message Client.makeMessage(String[] args) {
if ((args.length > 0) && (args[0].equals("0")))

throw new RuntimeException();
return new ConcreteMessage();

}

pointcut MessageMethodCall(String s):
call(* *.printThis(..)) &&
target(Message) && args(s) && within(Main);

// Perform ‘QuoteDecorator’ behavior.
void around(String s): MessageMethodCall(s) {

s = "‘‘" + s + "’’";
proceed(s);

}
}

Figure 8. Edicts to bind (disable or enable) the message-quoting
feature at compile time

ways to achieve the same effect, while addressing different imple-
mentation concerns. For example, the third panel of Figure 8 shows
an alternative implementation of the edict that enables message-
quoting at compile time. This version implements the message-
quoting decorator as around advice, and in the process, makes the
QuoteDecorator class dead. Reassigning roles becomes more dif-
ficult as the complexity of a program increases, of course, but our
point is that an edict provides the modularity mechanism for mak-
ing such changes. Choosing the “best” implementation of an edict
is a matter of engineering; our technique permits a variety of edict
implementations that may be tailored to different contexts.

3.4 Discussion

Based on our experience, we make some additional observations
about the applicability and implementation of edicts.

Applicability. In this paper, we use edicts in combination with
four patterns from Gamma et al. [9]: Abstract Factory, Decorator,
Factory Method, and Proxy. We believe that edicts can be useful in
combination with many other design patterns as well, to capture
relationships whose binding times are variable across a product
line. Chakravarthy’s thesis [1] analyses the applicability of edicts
to all of the patterns presented by Gamma et al.

5

Edicts and patterns. We found that design patterns were use-
ful for implementing the different feature variation points that we
encountered in this work. The patterns we applied helped us mod-
ularize the implementations and expose join points that we needed
in order to control binding-time decisions via edicts.

That said, we do not claim that patterns are sufficient or neces-
sary for implementing all variation points in software product lines.
For example, features that are logically part of an application’s exe-
cution environment—e.g., automatic object persistence and profil-
ing support—are examples that do not fit with our notion of edicts
as “targeted aspects.” Conversely, the “interfaces” to some features
are simple enough that a programmer does not to need patterns to
encapsulate their bindings. In these cases, simpler application pro-
gram interfaces (APIs) could be targeted by edicts to implement
binding-time flexibility. What is important is the ability to identify
binding sites in the code, in a modular fashion. For the features we
studied, patterns provided the modularity we needed.

Dynamic configuration. When a variation point may be bound
early or late, software must be designed carefully so that attempts
to dynamically select a feature do not conflict with choices that
were made statically. We mentioned this problem in Section 3.3.
For users, the ultimate solution is communication: providers must
make the capabilities of their products clear to users. Even when
users know what to expect, however, our experience highlights an
implementation problem: it can be difficult to fully modularize the
code that leads to a dynamic feature selection.

For example, features may be selected based on data read from a
user’s configuration file. The flow of information from the file to the
configuration point can be arbitrarily complicated, and therefore, it
can be difficult to modularize the entire program “slice” that leads
to a particular binding decision.

In practice, therefore, when transforming a variation point into
one that supports both early and late binding, we take a pragmatic
but safe approach. We leave configuration parsing code intact, and
find a program point at which we can insert a run-time check to
ensure that an early-bound feature choice is compatible with any
incoming dynamic configuration data. For example, we might use
a set join point to check values that are written into an object
that holds data read from a configuration file. Ideally, this point
is reached early in the program (during system initialization) so
that conflicts are detected and handled as quickly as possible. The
important issue is that edicts allow us to support both flexible fea-
ture binding times and consistency. A well-designed edict can in-
troduce both early bindings—supporting optimizations—and dy-
namic checks when necessary—supporting safety—to ensure that
products with early-bound features are used correctly.

3.5 A method for utilizing edicts

In this section we describe a general procedure for introducing
binding-time flexibility using edicts into a software product line.
Figure 9 illustrates the workflow, consisting of the steps described
below. The steps are shown in the figure as circled numbers.

Step 1: Identify and characterize the variation points. In the
initial stages of software development, a feature model helps to de-
fine software behavior and guide the discovery of variation points.
Once variation points are identified, a designer must analyze the
behaviors of those points. If applicable, for each point, the designer
chooses one or more design patterns to capture the behavior. The
selected patterns clearly characterize the behavior by identifying
the participants and their roles and interconnections.

Step 2: Express domain concerns using binding times. Vari-
ability arises from the need to address different domain concerns,
and some concerns can be addressed by choosing the times at
which features are bound. In some cases, a variation point may
need a flexible binding time in order to address different concerns

across different products. Variation points exhibiting this hierar-
chy are picked out and examined. For every such variation point,
the software designer reexamines the design pattern that charac-
terizes the point’s behavior. The selected pattern must be flexible
enough to allow a product assembler to be able to make the choice
to add/remove variants or effect static/dynamic behavior at the vari-
ation point as late as possible in the development process.

Step 3: Implement the pattern. Design patterns can be im-
plemented in different ways. The traditional approach outlined by
Gamma et al. [9] implements the pattern within the participants’
code. An alternate approach is described by Hannemann et al. [11]:
their technique encapsulates the roles of the participants and ab-
stracts the pattern from its application. (Garcia et al. compare the
benefits of these approaches [10].) Either approach can be em-
ployed in conjunction with edicts. Often, parts of the pattern im-
plementation are deferred to edicts, which are written next.

Step 4: Introduce binding-time variability using edicts. We
suggest that as an initial step, the design pattern implementation
support only run-time binding. This helps to clarify and direct the
process of introducing binding-time variability; basically, it helps
identify and if necessary implement a parameterized method in
which configuration is carried out. Based on the knowledge gained
in step 2, the designer writes pointcuts to intercept the run-time
binding decisions. As this pointcut will be utilized by both early-
and late-binding edicts, the pointcut is written in an abstract aspect.
The original pattern is refactored to move the binding time decision
code into the late binding edict. Similarly, the early-binding edict
is written to enforce static assertions.

Step 5: Optimize the resulting configured products. Edicts
assist code optimizers by fostering static information in cases in-
volving early binding times. As an example, consider a design pat-
tern involving many possible types of participants. In the imple-
mentation of the pattern, the participants can usually be imple-
mented as discrete classes. In situations involving compile-time
binding, only one of the participants may be chosen. This choice
is enforced by returning an object of the participating class at the
variation point. This kind of explicit choice, enforced by an edict,
is the static information that helps guide a code optimizer.

The process described above has been useful to us for incorpo-
rating binding-time flexibility into product-line software. It is our
belief that the technique can improve safety in deployed products as
well. Additional safety comes from the possible use of a static con-
figurability checker to perform checks on configurations. For do-
mains favoring early binding times, this checking would help eval-
uate the configuration against the domain constraints. By factoring
out unsupported features, the checker would be able to provide ef-
ficient product customization.

4. Case Study: A JacORB Product Line

We now describe our application of edicts to four variation points
within JacORB [13], an open-source CORBA implementation writ-
ten in Java. We used JacORB version 2.2.3 in all our experiments.
Ordinarily, JacORB runs on the Java SE (Standard Edition) plat-
form. We created a product line by modifying JacORB to run on
the embedded Java ME (Micro Edition), specifically the Connected
Device Configuration (CDC), platform. We were unfamiliar with
JacORB’s implementation when we started this work, but we had
significant expertise with CORBA implementations in general.

JacORB running on the Java ME-CDC platform provides the
middleware advantage: a generic interface that developers can use
for writing cross-platform applications. However, simply providing
a generic interface is not enough. The Java ME-CDC platform is
designed to run on devices with relatively small amounts of mem-
ory (512 KB to several MB). JacORB and its applications must fit
within this constrained memory. To facilitate this, we used edicts

6

Figure 9. A method of using edicts to implement binding-time flexibility

Figure 10. Feature model of a GIOP subsystem

to implement flexible binding times for four selected features in
JacORB. The edicts provided the required balance between gener-
ality and platform-specialization in our JacORB product line.

Following the method of Section 3.5, we identified variation
points in JacORB that benefit from binding-time variability be-
tween the Java SE and Java ME-CDC platforms. We chose fea-
ture selection points within of the GIOP, security, and portable in-
terceptor subsystems in JacORB. We then (re-)implemented those
variation points using design patterns. Finally, we wrote edicts in
AspectJ to manipulate binding times at those points.

To configure JacORB for Java ME-CDC, we used edicts to
enforce compile-time bindings at our selected variation points—
effectively “hard-wiring” certain feature choices. In this config-
uration, edicts allowed us to optimize JacORB for the memory-
constrained platform. For Java SE, on the other hand, we compiled
JacORB with edicts that enabled run-time feature selection.

The rest of this section describes how we implemented binding-
time flexibility for our selected variation points within JacORB.
Section 5 describes the benefits that we obtained.

4.1 GIOP version selection

CORBA middleware uses the General Inter-ORB Protocol (GIOP)
to encode messages between client and server programs. JacORB
supports three versions of GIOP: 1.0, 1.1, and 1.2. There are sub-
stantial differences between the versions of the protocol. GIOP also
leaves policy decisions, such as choice of connection management
strategy, open at the client and server sides. We modeled these
choices in a feature model of the GIOP subsystem, depicted in Fig-
ure 10. We consider GIOP version selection below, and connection
management in Section 4.2.

As suggested by our feature model, not all versions of GIOP
need to be supported when JacORB is run on a limited-memory

Figure 11. The Abstract Factory for GIOP Request messages

device. JacORB and its clients can run fine with just GIOP 1.0,
which is supported by nearly all CORBA systems.

The original implementation of the GIOP-version selection
logic in JacORB used if-else constructs to select among GIOP
versions. This selection logic was duplicated across six different
classes—obviously inefficient and not amenable to change or fea-
ture subsetting. We re-implemented the GIOP version selection
code using the Abstract Factory design pattern. We introduced new
class and edict hierarchies as part of our pattern implementation,
and refactored the above six locations with calls to the pattern. Fig-
ure 11 summarizes our GIOP Abstract Factory and the edicts for
controlling binding time.

The Abstract Factory pattern supports the creation of related
objects without specifying the concrete classes [9]. Each GIOP
version (1.0, 1.1, and 1.2) is represented by a factory class. These
factories are used to construct different version-specific kinds of
messages: request, reply, locate-request, and so on.

We used edicts to implement binding-time behavior at bind-
ing sites in the Abstract Factory. The binding sites are the calls
to createReqMsg() (in the six refactored classes) that construct
Request messages. Our late-binding edict inserts advice that im-
plements dynamic binding: the decision about the GIOP version for
the Request message is made dynamically using a run-time argu-
ment. We wrote three early-binding edicts, one for each version of
GIOP. Each uses advice that creates a Request for the version of
GIOP that was chosen at compile time by the product assembler.

4.2 GIOP client-server selection

In JacORB, client and server applications use different function-
ality within the GIOP subsystem. An ORB installed on a mobile
embedded device is most likely to function as a client, connecting
to servers running on resource-rich machines.

7

Figure 12. The Factory Method for GIOP connection management

The original implementation of JacORB did not cleanly sep-
arate client and server behaviors within its implementation—an
ORB could always function as both client and server. We refactored
JacORB’s GIOP subsystem to separate client and server operations.
More specifically, we used the Factory Method design pattern and
edicts to enable the creation of client-only, server-only, and client-
server ORBs. Figure 12 illustrates the pattern and our edicts.

Using Factory Method, we described JacORB functionality
such as connection management and communication message types
in interfaces. Client and server classes then provided their own im-
plementations of the interface methods. The parameterized factory
methods are the binding sites where edicts manipulate the binding
times of client and server features. Our late-binding edict allows the
ORB to dynamically behave as either a client or server. We used
early-binding to create a client-only ORB for the Java ME-CDC
version of JacORB.

4.3 The security subsystem

JacORB provides a generic socket interface for communication.
Sockets can either be secure (using SSL) or insecure. Secure com-
munication is desirable, but comes with heavy requirements on
memory and computation power. We decided to forgo secure sock-
ets for the Java ME version of JacORB in favor of smaller static
code footprint.

Secure communication in JacORB is provided by two separate
implementations: the IAIK Java Cryptography Extension (IAIK-
JCE) package and the Java Secure Socket Extension (JSSE) pack-
age. Both implement the SSL protocol and provide data encryption,
authentication, and message integrity. Non-secure communication
in JacORB is also implemented in two ways: a default implementa-
tion using simple Java sockets, and another that ensures all socket
port addresses fall within a specific range.

In the original JacORB, the different socket types were im-
plemented as classes that implement the generic socket interface.
JacORB-based applications chose a communication strategy by re-
ferring one of the four concrete socket classes. Although this design
was modular, it was not very abstract. Furthermore, the choice of
a socket class was generally made by reading a value from a con-
figuration file at initialization time, when JacORB started up. The
unavailability of configuration data before initialization time made
it difficult to get rid of unused socket classes.

We re-implemented the interface to sockets using the Proxy
design pattern. As shown in Figure 13, applications now use the
SocketInterface to make socket connections. An application
is provided with a SocketProxy object. Our late-binding edict
allows an application to pick, at run-time, either secure or inse-
cure communication. An early-binding edict advises all clients of
the SocketInterface, bypassing the proxy, and provides appli-
cations with the non-secure, default socket implementation. The
edict’s static choice in the Java ME version of JacORB causes all
the other socket implementations to be dead code.

Figure 13. The Proxy pattern for the security policies

Figure 14. The Decorator pattern for Portable Interceptors

4.4 Portable interceptors

Portable Interceptors (PIs) are a framework for introducing new
behavior into an ORB, e.g., tracing or security. PIs can intercept
messages between clients and servers, modify the communication,
and thereby change the behavior of a system. An example of this
kind of usage would be to perform load balancing among several
servers, transparently to the clients that issue requests.

There are different types of PIs: client, server, and IOR. The
first provides interception points for client ORBs, and the latter two
provide interception points for server ORBs. The original JacORB
provided support for all three kinds of PIs—supporting only client-
side or server-side PIs was not a configurable option. We decided to
implement this choice, since we wanted to support only client-side
PIs in our Java ME version of JacORB.

We found that all three kinds of interceptors could be imple-
mented as decorators of the generic Interceptor interface. Fig-
ure 14 summarizes our new implementation, which applies the
Decorator pattern to Portable Interceptors. The DefInterceptor
class provides a default implementation of the Interceptor in-
terface. Decorator classes implement the client, server, and IOR
interceptors. To provide early binding, we wrote edicts that stati-
cally bind support for the client interceptor only. In the case of late
binding, a client chooses the decorator that it needs to use.

5. Evaluation

In applying edicts to JacORB, our goal was to create a software
product line that allows us to tailor the middleware for memory-
constrained, Java ME-CDC devices. Because edicts control the
binding times of features, the primary metric for evaluating edicts
in this context is the achieved reduction in the static code size of the
middleware. (Edicts do not generally affect how features operate
internally, and thus, have minimal impacts on dynamic metrics
such as execution time.) The use of design patterns and edicts does

8

not produce static optimizations by itself. Rather, as we show, our
technique allows static code optimizers to be much more effective.

5.1 Experiment setup

We implemented edicts in JacORB 2.2.3 as described in Sec-
tion 4. To configure JacORB for Java ME-CDC, we included early-
binding edicts in the compilation of the middleware. These select
GIOP 1.0, default (non-secure) sockets, and client-side features
only. To configure the middleware for Java SE (desktops), we ap-
ply late-binding edicts, which allow feature selection at run time.
We compile the middleware with ajc version 1.5.3.

We used ProGuard [16], version 4.0 beta, as our static program
optimizer. ProGuard implements three primary transformations,
which it calls shrinking, optimization, and obfuscation.

• Shrinking is based on a whole-program, inter-procedural,
flow-insensitive, and context-insensitive analysis that identifies un-
used classes, methods, and fields within a program. Starting from a
set of roots, the shrinker finds all the program elements that may be
(directly or indirectly) referenced at run time. Elements that cannot
be referenced are then removed, thereby reducing the program’s
static code size.

• Optimization implements a family of bytecode transforma-
tions intended to make programs smaller (and faster, in general).
Many transforms, such as dead-code elimination, are driven by
a (context-insensitive) partial evaluator for methods, which tracks
values through local variables and the stack. Other optimizations,
such as inlining methods and removing write-only fields, are driven
by whole-program control-flow and dataflow analyses. ProGuard
normally runs its shrinker before optimization, to save analysis
time. It also runs the shrinker afterward, to remove elements that
the optimizer made—or revealed to be—dead.

• Obfuscation replaces program symbols—e.g., class, method,
and field names—with shorter ones, without otherwise affecting the
program. In our experiments, we disabled obfuscation because it is
unrelated to the bytecode analyses that are affected by edicts.

In summary, ProGuard implements a set of program analyses
that are reasonably sophisticated but somewhat limited in terms of
their ability to discover and exploit static information within a Java
program. In our results below, we show how edicts allow ProGuard
to be more effective, by putting optimization opportunities within
the reach of its shrinking and optimization passes.

We applied ProGuard in two ways to highlight the benefits of
edicts in different situations. First, we used ProGuard to specialize
JacORB in a way that preserves the entire API of the middleware.
This describes the case in which the middleware is the “delivered
product,” intended to support many (possibly unknown) applica-
tions. We refer to this as the API-Preserving JacORB. Second, we
used ProGuard to specialize JacORB for a particular application;
this represents the case in which the application is the delivered
product. We refer to this as the Application-Specific JacORB.

For the application-specific case, we wrote a simple client pro-
gram that fetches and displays text messages from a server. We
ran this application on an emulator of a Sony Ericsson P990 series
cell phone [19]. The P990 supports Java ME-CDC; we emulated a
phone model with 1.5 MB of application memory.

5.2 Subsystem-level results

Each of the four subsystems that we modified is contained in its
own Java package hierarchy. Most of our work using patterns and
edicts was localized in these packages; the remaining refactoring
occurred in the classes that used the features we modified.

Figure 15 shows how the static sizes of these subsystems are af-
fected by patterns and edicts, prior to shrinking and optimization by
ProGuard. Here, static size is the sum of the sizes of the class files
in the compiled subsystem; this includes classes that are dead. Each

 0

 50

 100

 150

 200

 250

 300

GIOP Vers. GIOP Cli-Serv Security Port. Int.

P
a

c
k
a

g
e

 S
iz

e
 i
n

 K
B 197 197

159

102

244

209

165

121

246

216

167

126

Original (No edicts)
Early-binding edicts
Late-binding edicts

Figure 15. Per-subsystem static code sizes, before optimization

 0

 50

 100

 150

 200

 250

 300

GIOP Vers. GIOP Cli-Serv Security Port. Int.

P
a

c
k
a

g
e

 S
iz

e
 i
n

 K
B

183 183

146

93

162
153

133

88

196
186

152

101

Original (No edicts)
Early-binding edicts
Late-binding edicts

Figure 16. Per-subsystem static code sizes, after optimization

subsystem is measured in three configurations: the original JacORB
implementation, our modified version using an early-binding edict,
and our modified version using a late-binding edict.

As the graph shows, we observed an increase in the package
sizes for the early- and late-bound edict implementations across all
subsystems. We looked at the bytecode of the compiled classes to
understand the cause of this increase. Overall, we were able to at-
tribute this to two factors: (1) re-implementing the subsystems with
patterns and aspects introduced new classes into each subsystem;
and (2) ajc adds bytecodes to perform aspect weaving. The pack-
age sizes for the early- and late-binding edict versions are roughly
equal. This happens because, although an early-binding edict en-
forces a static choice, this does not cause dead code to be removed.

We are now in a position to apply ProGuard to the three versions
of each JacORB subsystem. Before optimizing the original JacORB
versions, we modified JacORB’s dynamic feature-selection code so
that it would make hard-wired feature choices equivalent to those
made by our early-binding edicts. This introduced information into
JacORB that could conceivably be used by ProGuard to optimize
the original subsystems.

Figure 16 shows the static sizes of the subsystems after shrink-
ing and optimization by ProGuard. Here, the benefits of early-
binding edicts become apparent. Across all subsystems, the early-
bound versions are smaller than the optimized, original versions.
With late binding, the “edictized” subsystems are comparable to—
but still larger than—the optimized, original subsystems.

Despite the increases before applying ProGuard, the early-
bound edicts enable better dead-code elimination and whole-
program optimization. Most of these size reductions are attributable
to the specialization of the patterns and the removal of classes that
represent features not selected by the early-binding edicts. In the
original implementation, ProGuard was unable to exploit the static
feature-selection information that we provided: it could not prop-

9

 0

 500

 1000

 1500

 2000

 2500

GIOP Vers. GIOP Cli-Serv Security Port. Int.

M
id

d
le

w
a

re
 S

iz
e

 i
n

 K
B

1843 1843 1843 1843
1897

1849 1846 1852
1897 1860 1857 1859

Original (No edicts)
Early-binding edicts
Late-binding edicts

Figure 17. JacORB static code sizes, before optimization

 0

 500

 1000

 1500

 2000

 2500

GIOP Vers. GIOP Cli-Serv Security Port. Int.

M
id

d
le

w
a

re
 S

iz
e

 i
n

 K
B

1450 1450 1450 1450
1382 1344

1408 1422
1481 1474 1473 1463

Original (No edicts)
Early-binding edicts
Late-binding edicts

Figure 18. API-Preserving JacORB: code size after optimization

 0

 100

 200

 300

 400

 500

 600

 700

 800

GIOP Vers. GIOP Cli-Serv Security Port. Int.

M
id

d
le

w
a

re
 S

iz
e

 i
n

 K
B

507 507 507 507

467

430
445 443

524 516 527
513

Original (No edicts)
Early-binding edicts
Late-binding edicts

Figure 19. App.-Specific JacORB: code size after optimization

agate our hard-wired feature choices from where they were set to
where they were used. To have succeeded, ProGuard would have
needed to perform a complex, whole-program, inter-procedural
dataflow analysis capable of tracking values through fields in heap
objects. In contrast, when early-binding edicts are used, the struc-
ture of the program (woven bytecode) makes the desired optimiza-
tions obtainable via much simpler program analyses—like those
implemented by ProGuard’s shrinker and optimizer.

5.3 Whole-middleware results

In this section we again measure the effects of individual edicts,
but in the context of the complete middleware. Figure 17 shows
the static code size of JacORB—the size of all class files in the
middleware—when we introduce edicts for individual subsystems.
For example, for the security subsystem results, we applied edicts
only to that subsystem while leaving the other subsystems in their
original un-edictized forms. The size of the original middleware

(without any edicts) is of course the same across all four sets of
bars. The data show that the size increase of any one unoptimized
edict is small, relative to the total size of JacORB.

As described in Section 5.1, we explored the results of opti-
mizing JacORB in two ways. First, we ran ProGuard to produce
an API-Preserving JacORB. We directed ProGuard to retain all of
the functionality that was part of the core ORB’s API. This yielded
a generic middleware system that could be reused to write many
applications. Second, we created an Application-Specific JacORB
by directing ProGuard to retain only the code that was used by
our sample Java ME-CDC messaging application. This produced
a minimal middleware system, like one that a vendor might incor-
porate into a specific application product. In both cases (and as de-
scribed previously), before optimizing the original JacORB, we in-
serted static feature-selection data into the part of JacORB that is
normally responsible for configuring features dynamically. Thus,
ProGuard had access to equivalent static information when opti-
mizing the original and early-bound versions of the middleware.

API-preserving JacORB. Figure 18 shows the results of ap-
plying shrinking and optimization to obtain an API-Preserving
JacORB. Again we show the effect of enabling one edict at a time,
and we show the size of the optimized, original middleware in
each group of bars. All early-bound JacORB versions show smaller
code sizes across all subsystems. Moreover, in comparison to the
subsystem-level results shown previously in Figure 16, the abso-
lute code-size savings due to each early-binding edict are larger.
These improvements at the middleware level can be attributed to a
“cascade effect” caused by the early-binding edicts in the optimiza-
tion process. The edicts specialized the pattern and thereby exposed
static information within the clients of the pattern. This in turn al-
lowed ProGuard to perform its optimizations more effectively.

As an example, consider the Factory Method modification in
the GIOP client-server subsystem. There were four pointcuts in the
early-binding edict used with the Factory Method. These pointcuts
advised five different classes that used the Factory Method at eight
different locations. Three of the classes that were advised were
classes where core ORB processing occurred. By making static
information available at these call sites, whole sections of code—
methods and classes devoted to server-side processing—became
dead and were removed by ProGuard.

In the case of late-binding edicts, the sizes of the API-preserving
JacORBs are again slightly larger but very close to the size of the
original-code JacORB.

Application-specific JacORB. Figure 19 shows the static code
size results after optimizing JacORB with respect to our sam-
ple application to produce a custom version of the middleware.
When compared with the unoptimized JacORB implementations
from Figure 17, we observe massive savings in code sizes. The
original JacORB version shrunk to 507 KB from 1843 KB, a sav-
ings of 72.5%. However, in all cases the early-binding edict ver-
sions of JacORB achieved even greater savings, as shown. The
four application-specific, early-edict versions of the middleware
are 7.8%, 15.2%, 12.2%, and 12.6% smaller than the application-
specific, original JacORB.

The code sizes of the optimized JacORBs with late-binding
edicts are again similar to the sizes of optimized, original JacORB.

5.4 Combined early-bound configurations

Finally, we combine the modifications that we performed for the
four individual subsystems and choose the early-binding edicts in
all subsystems. As mentioned previously, we use early binding to
select GIOP version 1.0, a client-only GIOP connection, no SSL
sockets for communication, and client-side Portable Interceptors.
We compile JacORB with all of these edicts selected. Finally, we

10

Figure 20. Early-bound edicts for API-preserving JacORB

Figure 21. Early-bound edicts for application-specific JacORB

run ProGuard to create both an API-preserving JacORB configura-
tion and an application-specific JacORB configuration.

Figure 20 summarizes the results for the early-bound, API-
preserving version of JacORB. The top-left box in the diagram
shows the static code size of the original JacORB: we did not insert
patterns or aspects into this implementation, and all features are
bound either at initialization time or at run time. The size before
applying ProGuard is 1.84 MB. After refactoring the four subsys-
tems with edicts, we enabled early-binding of features in each of
them. The size of this version of JacORB, before ProGuard pro-
cessing, is 1.89 MB: a 2.9% increase in size due to the edict refac-
torings. The top-right box in the diagram represents this refactored,
early-bound implementation. After processing both the original and
early-bound JacORB versions with ProGuard, the API-preserving
ORBs have sizes of 1.45 MB and 1.18 MB respectively. Comparing
the sizes in the lower two boxes shows that for an API-preserving
ORB, there is an overall 18.5% reduction in static code size for the
early-bound JacORB as compared to original JacORB. This result
is the approximate sum of the individual improvements observed in
the four subsystems under a similar setup.

Figure 21 shows our results for an early-bound, application-
specific version of JacORB. Following a similar analysis as above,
for an application-specific version of JacORB with early-binding
enabled in all four subsystems, after processing with ProGuard, we
derived a 32.2% improvement in static code size as compared to
the original, late-bound JacORB implementation.

6. Related Work

Binding time has long been known to be an important concern in
product line software development [2, 4, 5, 21], and it continues
to be an active focus of research. Svahnberg et al. [22] provided a
classification of many variability realization techniques, including
techniques based on aspect-oriented programming, and cataloged
the techniques according to the binding times that they support.
In their classification system, the use of edicts to provide binding-
time flexibility falls in the category of “Code Fragment Superim-
position.” This category encompasses a variety of aspect-like tech-
niques that overlay new features onto an existing software system.
Edicts, however, are more specific: edicts are not intended to in-

troduce new features per se, but rather to control the selection and
binding times of existing features. To achieve this, we realize fea-
ture variation points using design patterns and then superimpose
the edict “code fragments” on those pattern implementations only.
Thus, edicts are intended to be stable under program evolution,
in the spirit of recent work on stable programming interfaces for
aspect-oriented design [20].

Binding-time flexibility was explored previously in Koala [23],
a system for consumer electronics software. Whereas we have de-
scribed an idiom for implementing binding-time flexibility, the
Koala component model provides a specific construct for control-
ling the binding times of features within software products. In
Koala, a product is an assembly of components that are imple-
mented in C and connected via an explicit linking graph. A link
from one component’s export to another component’s import can
be routed through a construct called a switch, which directs func-
tion calls from a “client” component to one of many “service”
components that provide implementations. Thus, a switch encap-
sulates a variation point. A single switch can also be used to route
multiple client-service connections in a coordinated manner. The
setting of a switch can be determined at run time or at compile
time; Koala applies a partial evaluator at compile time to optimize
switched connections as far as possible. Koala’s switches are there-
fore quite similar, both in intent and functionality, to the imple-
mentations of variation points that we create using design patterns
and aspects. However, whereas Koala switches are provided by a
specialized component model for C, our technique is realized via
standard programming idioms and AOP for Java. In addition to
being widely applicable, our approach makes it possible for pro-
grammers to readily perceive variation points as implementations
of patterns—information that may be obscured when a pattern is
implemented as linkages in a component assembly [6].

Edicts facilitate optimization in design pattern implementations
that correspond to variation points. Partial specialization [3] and
specialization patterns [18] are techniques intended to optimize
programs and design pattern implementations more generally. Par-
tial evaluators follow the technique of reduction by proof : a partial
evaluator uses knowledge provided by a programmer or a static
analysis to evaluate program fragments and replace them with
their results. This analysis process can be quite complex and time
consuming; moreover, the transformations that are performed by
a general partial evaluator can be difficult for a programmer to
predict and understand. Edicts, however, provide useful informa-
tion in a human-understandable manner, and the effect of an edict
can replace general-purpose analyses for variation points and/or
make subsequent analyses more predictable. For example, an early-
binding edict can save the expensive computation an evaluator
would have to perform to reach the same result that is stated di-
rectly by the edict. In this way, the use of edicts is complementary
to the use of general partial evaluators. Specialization patterns use
partial evaluation to specialize implementations of design patterns;
overheads introduced by abstraction are removed. Edicts work with
design patterns in a similar but human-directed way, to express fea-
ture bindings in a way that is obvious to software developers.

We created a middleware product line by refactoring one of
its subsystems to produce a range of configuration options. Mid-
dleware specialization and product lines are an active area of re-
search. For example, the FOCUS toolkit [15] is designed to spe-
cialize TAO-based middleware products. FOCUS uses annotations
in the code and a post-processor to perform specializations. Every
annotation has a start and end; method calls that fall with an anno-
tation section may be replaced by optimized calls. This process is
effective, but requires that annotations be placed at scattered points
in the middleware implementation. Our technique is more closely
tied to the code: rather than annotate points for specialization, we

11

use design patterns to make specialization points identifiable by
AspectJ pointcuts. We benefit from AspectJ’s support for general-
purpose AOP, whereas the developers of FOCUS had to implement
specialized tools to achieve their goals.

Refactoring middleware using aspects has been addressed by
Zhang et al. [24, 25], and they propose a post-postulated architec-
ture [24] for middleware to deal with customization. Our approach
is complementary to theirs: whereas they focus on variations of
feature assemblies, we focus on varying features’ binding times.
Edicts leverage the benefits of design patterns and aspects to im-
prove the configurability of feature-based software product lines.

7. Conclusion

We have presented and evaluated a new technique—a variability
mechanism—for implementing the binding sites of software fea-
tures that require flexible binding times. Binding time flexibility is
important in software product lines where some products are fully
featured and others—due to resource constraints or other reasons—
implement a subset of the full functionality. Our variability mech-
anism uses design patterns in combination with targeted aspects,
called edicts, in order to support flexible binding times for features.
When a product assembler chooses to bind a feature at compile
time, our approach results in code that supports compile-time anal-
ysis and optimization. In short, edicts help to ensure that opportu-
nities for static optimization are not lost.

We have described a method for introducing edicts into existing
software, and we have demonstrated the utility of edicts by using
them to create a middleware product line based on JacORB. Early-
binding edicts were successful in creating stripped-down versions
of the middleware that were smaller than the original middleware.
By applying early-binding edicts to just four variation points within
JacORB, we created middleware configurations that were consis-
tently smaller—up to 32.2% smaller—than the original JacORB
software optimized without edicts.

Acknowledgments

We thank David Johnson and the anonymous AOSD reviewers for
their insightful comments on drafts of this paper. Their suggestions
helped us to improve this paper greatly.

References

[1] V. Chakravarthy. Adaptive product line design using aspects and
design patterns. Master’s thesis, University of Utah, 2008.

[2] P. Clements and L. Northrop. Software Product Lines: Practices and

Patterns. Addison Wesley, 2001.

[3] C. Consel, L. Hornof, F. Noel, J. Noye, and N. Volansche. A uniform
approach for compile-time and run-time specialization. In Selected

Papers from the 1996 International Seminar on Partial Evaluation,
pages 54–72, Dagstuhl Castle, Germany, Feb. 1996. Springer-Verlag,
Berlin, Germany.

[4] K. Czarnecki and U. W. Eisenecker. Generative Programming:

Methods, Tools and Applications. Addison Wesley, 2000.

[5] E. Dolstra, G. Florijn, and E. Visser. Timeline variability: The
variability of binding time of variation points. In Proc. of the 2003

Workshop on Software Variability Management (SVM), pages 119–
122, Gronigen, The Netherlands, Feb. 2003.

[6] E. Eide, A. Reid, J. Regehr, and J. Lepreau. Static and dynamic
structure in design patterns. In Proc. of the 24th International Conf.

on Software Engineering (ICSE), pages 208–218, Orlando, FL, May
2002.

[7] C. Fritsch, A. Lehn, and T. Strohm. Evaluating variability implemen-
tation mechanisms. In Proc. of the 2002 Workshop on Product Line

Engineering: The Early Steps: Planning, Modeling, and Managing

(PLEES), pages 59–64, Seattle, WA, Nov. 2002.

[8] C. Gacek and M. Anastasopoulos. Implementing product line
variabilities. In Proc. of the 2001 Symposium on Software Reusability

(SSR), pages 109–117, Toronto, ON, 2001.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison Wesley,
1995.

[10] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena,
and A. von Staa. Modularizing design patterns with aspects: A
quantitative study. In Transactions on Aspect-Oriented Software

Development, volume 3880 of LNCS, pages 36–74. Springer, 2006.

[11] J. Hannemann and G. Kiczales. Design pattern implementation
in Java and AspectJ. In Proc. of the 2002 ACM SIGPLAN

Conf. on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA), pages 161–173, Seattle, WA, Nov. 2002.

[12] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse: Architecture,

Process and, Organization for Business Success. Addison Wesley,
1997.

[13] JacORB. http://www.jacorb.org/.

[14] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-
Oriented Domain Analysis (FODA) feasibility study. Software
Engineering Institute Technical Report CMU/SEI-90TR-21, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
1990.

[15] A. S. Krishna, A. S. Gokhale, D. C. Schmidt, V. P. Ranganath, and
J. Hatcliff. Context-specific middleware specialization techniques for
optimizing software product-line architectures. In Proc. of EuroSys

2006, pages 205–218, Leuven, Belgium, Apr. 2006.

[16] E. Lafortune. ProGuard. http://proguard.sourceforge.net/.

[17] R. E. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating support
for features in advanced modularization technologies. In Proc. of the

19th European Conf. on Object-Oriented Programming (ECOOP),
pages 169–194, Glasgow, UK, July 2005.

[18] U. P. Schultz, J. L. Lawall, and C. Consel. Specialization patterns.
In Proc. of the 15th IEEE International Conf. on Automated Software

Engineering (ASE), pages 197–206, Grenoble, France, Sept. 2000.

[19] Sony Ericsson. Symbian OS Docs & Tools. http://developer.
sonyericsson.com/site/global/docstools/symbian/p_
symbian.jsp.

[20] K. Sullivan, W. G. Griswold, Y. Song, Y. Cai, M. Shonle, N. Tewari,
and H. Rajan. Information hiding interfaces for aspect-oriented
design. In Proc. of the 10th European Software Engineering Conf.

and 13th ACM SIGSOFT International Symposium on Foundations of

Software Engineering (ESEC/FSE), pages 166–175, Lisbon, Portugal,
Sept. 2005.

[21] M. Svahnberg and J. Bosch. Issues concerning variability in software
product lines. In Proc. of the Third International Workshop on

Software Architectures for Product Families, pages 146–157, Las
Palmas de Gran Canaria, Spain, Mar. 2000.

[22] M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy of variability
realization techniques. Software—Practice & Experience, 35(8):705–
754, 2005.

[23] R. van Ommering. Building product populations with software
components. In Proc. of the 24th International Conf. on Software

Engineering (ICSE), pages 255–265, Orlando, FL, May 2002.

[24] C. Zhang, D. Gao, and H.-A. Jacobsen. Towards just-in-time
middleware architectures. In Proc. of the 4th International Conf.

on Aspect-Oriented Software Development (AOSD), pages 63–74,
Chicago, IL, Mar. 2005.

[25] C. Zhang and H.-A. Jacobsen. Resolving feature convolution
in middleware systems. In Proc. of the 2004 ACM SIGPLAN

Conf. on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA), pages 188–205, Vancouver, BC, Oct. 2004.

12

