
An Isotach Implementation for Myrinet

John Regehr

Technical Report CS-97-12

Department of Computer Science

University of Virginia

Charlottesville, VA 22903

Email: regehr@virginia.edu

May 16, 1997

ii

Contents

1 Introduction 1

2 Background 3

2.1 Isotach Logical Time . 3

2.1.1 De�nition . 3

2.1.2 Implementation . 5

2.2 The DARPA Prototype . 6

2.3 Myrinet . 7

2.4 Fast Messages . 8

2.5 Linux . 11

2.6 The Prototype Network . 12

3 Implementation 13

3.1 User Programs' View of Isotach . 13

3.2 The Shared Memory Manager . 15

3.2.1 Design Issues . 16

3.2.2 Data Structures . 17

3.2.3 Message Types . 18

3.2.4 Issuing an Isochron . 19

3.2.5 Executing Isotach Operations . 20

3.2.6 Implementation of Isotach Operations 21

3.2.7 Isochronous Messages . 22

3.3 The Switch Interface Unit . 22

iii

iv Contents

3.4 An Example . 26

3.5 The Token Manager . 27

3.6 The Front End . 28

3.7 Implementation Di�culties . 28

3.7.1 Porting Fast Messages . 28

3.7.2 Debugging LANai Code . 29

4 Correctness and Performance 31

4.1 Correctness . 31

4.2 Performance . 32

4.2.1 Read Latency . 33

4.2.2 Isochron Throughput . 36

4.2.3 Rate of Progress of Logical Time . 37

5 Summary and Future Plans 39

A Example Isotach Programs 41

A.1 lat.c . 41

A.2 thru.c . 46

A.3 philo.c . 48

B The Isotach API 53

B.1 Introduction . 53

B.1.1 Conventions . 53

B.2 Isotach con�guration �les . 54

B.2.1 fmcon�g . 54

B.2.2 shmem map . 54

B.3 Isotach library routines . 54

B.3.1 iso init() . 54

B.3.2 iso deinit() . 55

B.3.3 iso start() . 55

B.3.4 iso end() . 56

Contents v

B.3.5 iso read32() . 56

B.3.6 iso read64() . 56

B.3.7 read iso var32() . 57

B.3.8 read iso var64() . 57

B.3.9 iso write32() . 58

B.3.10 iso write64() . 58

B.3.11 iso sched() . 58

B.3.12 iso assign32() . 59

B.3.13 iso assign64() . 59

B.3.14 iso poll() . 60

B.3.15 iso send msg() . 60

B.3.16 iso set handler() . 61

B.4 Isotach constants and system variables . 61

B.4.1 NODEID . 61

B.4.2 NUMNODES . 61

B.4.3 MAX ISO MSG SIZE . 62

B.4.4 MAX ISO HANDLERS . 62

B.5 Isochronous Messages . 62

B.6 Example isotach programs . 63

B.6.1 Skeleton isotach program . 63

B.6.2 Dining philosophers . 63

B.6.3 LU decomposition . 63

B.7 The FM 1.1 con�guration �le . 63

vi Contents

List of Figures

2.1 Access sequence for an isotach variable. 5

2.2 Alternative con�gurations of the prototype network. 12

3.1 Structure of an isotach node. 14

3.2 Schematic diagram of the SMM. 15

3.3 Schematic diagram of the SIU. 23

3.4 Token paths. 27

4.1 Timing analysis of a remote read. 34

vii

viii List of Figures

1

Introduction

An isotach network provides strong guarantees about message delivery order. We show that

an isotach network can be implemented e�ciently entirely in software, using commercial o�-

the-shelf hardware. This report describes that e�ort. Parts of this implementation could be

performed much more e�ciently in hardware; we are currently developing custom hardware

components to do this. The all-software version then serves several purposes:

� to develop a working isotach system rapidly, for use as a platform for development of

higher level software

� to �nd potential problems in the hardware design

� to pre-test software components of the system so that they will not have to be de-

bugged at the same time as hardware

� to achieve as much performance as possible without hardware acceleration

The implementation was successful; it works, and performs well. A number of features

that will be present in the hardware version are not yet implemented; they will be added

in the near future.

1

2 Introduction

2

Background

2.1 Isotach Logical Time

2.1.1 De�nition

An isotach network [4, 16] is designed to reduce synchronization overhead in parallel pro-

grams by providing strong guarantees about the order in which messages are delivered.

These guarantees allow us to enforce atomicity and sequential consistency over the opera-

tions performed by a program. A group of operations is executed atomically if the operations

all appear to be executed at the same time, and an execution is sequentially consistent if

the operations issued by each process appear to be performed in the order in which they

were issued.

Lamport [5] proposed logical time as a way to represent the ordering of events in a

distributed system. Isotach logical times are an extension of Lamport's logical times; they

are ordered n-tuples of non-negative integers. The �rst component is the pulse, followed

by pid and rank. Times are ordered lexicographically, with pulse being the most signi�cant

component. In networks that are point-to-point FIFO, the rank component is unnecessary

and may be omitted.

The key guarantee provided by an isotach network is the isotach invariant. It states

that a message sent at time (i; j; k) will be received at time (i+�; j; k), where � is the logical

distance between the sender and receiver. In other words, messages have a velocity of one

3

4 Background

unit of distance per pulse. A pulse is a unit of logical time. Assuming distances are known,

a process can predict the receive time of messages it sends. This is the basis of isotach

concurrency control techniques.

An isochron is a totally ordered, issue consistent multicast, i.e. the multicast is received in

a consistent order at all destinations, and that order is consistent with isochron issue order.

The operations in an isochron appear to be executed atomically. To issue an isochron,

the isotach runtime system converts the isochron into messages, and times the sending of

the messages so that all components will be received during the same pulse. The receivers

execute all messages received during a pulse in (pid; rank) order. This ensures sequential

consistency. If the triangle inequality holds for logical distances, then message delivery is

causal.

Isochrons that only read from and write to memory are at| they contain no internal

data dependencies. The SCHED and ASSIGN operations allow structured atomic actions

to be performed. A SCHED reserves the capability to write to a memory location at

the logical time that the SCHED is executed, without specifying the value to be written.

Issuing an ASSIGN that corresponds to the SCHED �lls in the value. An isochron that

contains SCHEDs e�ectively reserves a consistent slice of logical time, and can �ll in the

values at a later time. Between the times that the SCHED and ASSIGN are executed,

the value of a memory location is unsubstantiated, and attempts to read it are blocked.

We can represent an isotach variable, the smallest addressable unit of isotach memory,

as an access sequence. An access sequence is the sequence of operations performed on the

variable over time. For a non-isotach variable, the only available value is the value most

recently written; SCHEDs and ASSIGNs make access sequences of isotach variables more

interesting.

Figure 2.1 shows an example of an isotach variable's access sequence at two di�erent

times. Unsubstantiated values are represented by �. The notation we use for isotach

operations is OP(pid; v), where OP is the operation being performed, pid is the pid of the

issuing process, and v is the value to be written, or the variable to have a value read into.

The operations that have been performed in A) are: WRITE(1; 7), SCHED(2;�),

READ(3; x), WRITE(4; 6), READ(5; y). The READ issued by process 3 is blocked,

2.1. Isotach Logical Time 5

TIME

1

2

 3

PID

4

5

7

VAL

λ

λ

6

6

1

2

 3

PID

4

5

7

VAL

9

9

6

6

W

R

OP

W

R

ASSIGN

W

R

OP

S

W

R

S/A

A) B)

Figure 2.1: Access sequence for an isotach variable.

but the READ issued by process 5 has completed because it follows a WRITE. In B),

the operation ASSIGN(2; 9) has been performed; this has unblocked the read by process

3. Operations in the access sequence past the �rst WRITE following the SCHED are

una�ected by the ASSIGN.

2.1.2 Implementation

Assume a network of arbitrary topology, connected by switches. Every node has a switch

interface unit (SIU) that mediates its access to the network. In the isonet algorithm for

implementing isotach, adjacent switches and SIUs are loosely synchronized by exchanging

tokens. Tokens separate pulses of logical time; when an SIU receives the token for pulse

i, any messages that it receives in the future are guaranteed to have pulse greater than i.

When a switch has received token i from all inputs, it sends token i+ 1 to all outputs. An

SIU behaves in the same way, although it has only one input and one output. During a

pulse, a switch always handles the available message with the smallest logical time. SIUs

process the outgoing or incoming message with the lowest tag.

The isonet algorithm is easy to understand, but would be di�cult to implement because

it requires many changes to the network hardware. This report describes the implemen-

6 Background

tation of an equivalent algorithm using only o�-the-shelf components. In this equivalent

algorithm, we avoid delaying messages either at the source, or as they pass through the

network. Instead, messages traverse the network as quickly as possible and are bu�ered at

the receiving node until the correct logical time for their execution is reached. We continue

using tokens to separate pulses.

2.2 The DARPA Prototype

We are building an isotach system under a DARPA contract, using Myrinet, a switched

gigabit network. Three components implement the isotach system: the SIU, the shared

memory manager (SMM), and the token manager (TM). In version 1 (V1) of the prototype,

described in this report, all components are implemented in software. In version 2 (V2),

the TM and SIU will be realized as hardware; the SMM will be a software descendant of

the V1 SMM.

The SIU maintains isotach logical time; it exchanges tokens with a TM, timestamps

outgoing messages with the correct receive time, and noti�es the SMM of important logical

times. The V1 SIU is implemented in software running on a Myrinet board. The V2 SIU

will be a custom hardware device located in-link, i.e., between the Myrinet interface board

and the switch to which the interface is connected.

Every switch in the isotach network has a TM associated with it. The TM exchanges

tokens with all hosts attached to its switch, and with all TMs attached to switches directly

connected to its switch. In other words, it exchanges tokens with all hosts of distance one

and all TMs of distance two. Like the V1 SIU, the V1 TM is implemented in software on

a Myrinet board. The host whose Myrinet interface is being used as a token manager is

e�ectively a life-support system for the TM, and does not participate in the isotach network.

The V2 TM will be a custom hardware device attached to a switch port.

The SMM is responsible for maintaining isotach shared memory. It receives isochrons

from its host and splits them into local and remote components; the remote component is

sent to the SIU for delivery onto the network. Local operations, along with remote requests

received from the SIU, are executed at the correct logical time.

2.3. Myrinet 7

2.3 Myrinet

Myrinet [2] is a local area network based on technology developed for massively parallel

processors. Distinguishing features of Myrinet are:

� high bandwidth and low latency

� very low error rate

� cut-through routing

� arbitrary topology

� ow control on all links

� programmable network interfaces

A Myrinet link is a full-duplex pair of 1.28 Gb/s point-to-point channels. A channel

transmits 160 million 9-bit its per second. Each it is either a byte of data or a control

symbol. Control symbols are used for ow control, to mark packet boundaries, and to

indicate error conditions. The bit error rate of a Myrinet link is below 10�15. 1

A Myrinet switch is a crossbar; current models have 4 or 8 ports, and 16-port switches

should be available in 1997. Routing is cut-through: as a packet arrives, the switch imme-

diately directs it to the correct output port. The output port is determined by decoding

the �rst it of the message and interpreting it as an o�set from the message's input port.

The switch consumes the route it; this establishes the invariant that at each switch the

�rst it of a message indicates the correct output port.

If the output port required by a message is being used, the switch uses ow control

to block the incoming message. Every link has ow control, so the sender will eventually

be blocked if the output port remains unavailable. This protocol ensures that the network

never drops a message. Deadlock is possible in a cyclic network; deadlock avoidance or

1This �gure, from [2], applies to cables up to 25m long using the slow (80Mhz) Myrinet protocol. There

is no reason to believe that the error rate is any higher for the current protocol, which runs at 160Mhz over

cables up to 10m long.

8 Background

recovery is the responsibility of higher network layers. An algorithm to map a Myrinet

network, and to construct mutually deadlock-free routes between hosts, can be found in [8].

Myrinet is a switched point-to-point network rather than a bus such as Ethernet or

FDDI. For reasonable topologies, aggregate bandwidth scales with network size because

packets may be using many channels concurrently. An 8-port switch has a bisection band-

width of more than 10Gb/s.

A Myrinet host interface is controlled by a general purpose microprocessor called a

LANai. The LANai executes a Myrinet control program (MCP) that is stored in a block of

high performance SRAM. Additionally, the SRAM is used to bu�er incoming and outgoing

messages that go through the LANai's send and receive DMA engines. The SRAM is

accessible to the host through programmed I/O, and a third DMA engine allows the LANai

to transfer data between the SRAM and the host computer's main memory.

Because the LANai is relatively slow (30{40MHz), use of DMA is crucial to a high

performance MCP. It is also important to avoid loading the LANai with functionality that

could be implemented by the host. 2

We decided to use Myrinet because it is a very fast, scalable network. Also, Myricom

provides source code for all Myrinet software, and has worked with us to resolve prob-

lems. [1] compares Myrinet with ATM and Fast Ethernet in the context of parallel cluster

computing.

2.4 Fast Messages

Historically, networks such as Ethernet have been slow enough that the overhead associated

with the TCP/IP stack has not been a limiting factor in communication bandwidth or

latency. However, Myrinet is fast enough that protocol processing and related data copying

can easily become performance bottlenecks. A common approach to avoid this overhead

is to use a user-level network layer, which resides in the same address space as the user

program and accesses the network hardware directly. This keeps the operating system out

of the critical path for performance, and allows the protocol be tailored to the speci�c

2The LANai 5.0, currently under development, will be much less of a bottleneck than current LANai

processors. It runs at 66Mhz and has 64-bit internal data paths.

2.4. Fast Messages 9

network and application.

Illinois Fast Messages version 1.1 [11, 12] is a high performance user-level messaging

layer for Myrinet and the Cray T3D. It provides reliable, in-order delivery of messages, as

well as bu�ering to decouple the network from the processor. Because Fast Messages (FM)

is a purely user-level protocol, the application must poll the network for new messages.

Polling adds overhead even when no messages are arriving and can be inconvenient, but has

the advantage of allowing the application to chose when messages are received. This helps

avoid cache pollution and eliminates most synchronization concerns|message handlers are

atomic. The handler for a message is a function speci�ed by the sender that is executed

by the receiver when it polls the network after a message has arrived. Good discussions

comparing polling and interrupts can be found in [3] and [6].

Recent versions of FM have no facility for packet retransmission; they assume that the

network will never drop or corrupt a packet. In general, this is a safe assumption for Myrinet.

FM must still provide ow control, because even if the network is reliable, multiple senders

can overwhelm a receiver with data and force it to drop packets due to lack of bu�er space.

It is inappropriate to use Myrinet ow control to prevent receive bu�ers from overowing;

this could block packets inside the network for relatively long periods of time, causing other

routes to become unavailable.

FM implements a sender-based ow control protocol. Every host in the network manages

a block of receive bu�er space on every other host. This allows a sender to determine when

to stop sending data to a receiver, so packets will never be dropped even if the receiver

does not poll the network for long periods of time. Because bu�ers for di�erent nodes

are independent, the many-to-many ow control problem is reduced to the point-to-point

case. Packets coming from the network are held on the Myrinet board for as short a time

as possible. As soon as the LANai-to-host DMA engine is available, it is used to transfer

messages into host receive bu�ers. Receive bu�ers must be located in DMA-able memory;

on our hardware this means that it must be non-pageable and physically contiguous.

After the receiver consumes a packet by executing its handler, a credit is sent to the

sender to inform it of the newly available bu�er space. Credits are aggregated and pig-

gybacked onto normal messages, so no explicit credit messages are sent when tra�c is

10 Background

reasonably bidirectional.

When there is not enough credit to perform a send, the send is blocked and FM enters

a polling loop until credit for the receiver becomes available. Consider the case in which an

FM handler attempts to send a message, and no send credit is available. The only way to

get the credit necessary to complete the send is to process messages later in the incoming

message stream than the message whose handler is currently running. This violates the

FIFO delivery guarantee provided by FM. Therefore, handlers are not allowed to send

messages. 3

Although sender-based ow control is simple and fast, it uses bu�er space ine�ciently

because it pessimistically allocates the same amount of memory to each host, regardless

of actual communication patterns. In order to achieve reasonable performance, the non-

pageable receive bu�er space allocated to FM must increase linearly with network size.

This means that Fast Messages will not scale gracefully to networks containing hundreds

or thousands of nodes.

Fast Messages 1.1 achieves a one way message latency of about 11�s for small messages,

and a bandwidth of over 250Mb/s for large messages. Although this is well below the peak

bandwidth of Myrinet, for the small messages that isotach uses FM is competitive with all

other messaging layers that we considered. Because it has very low overhead per message,

the message half-power point (the message size at which half of the peak bandwidth is

achieved) for FM is quite low.

In summary, FM was chosen because it is a high performance network layer for Myrinet

that provides strong message delivery guarantees. Also, it is available in source form, and

the code is well written and easy to modify. Other messaging layers under consideration

were Berkeley's Active Messages (AM) [15] and Myricom's Myrinet API [10]. AM is similar

to FM in many ways, although it does not guarantee in-order delivery of messages; the

decision to use FM rather than AM was therefore somewhat arbitrary. We rejected the

Myricom API because it does not guarantee reliable or in-order delivery, and is signi�cantly

slower than FM and AM.

3Handlers in Fast Messages 2.0 are allowed to send messages, but must be prepared for the send to fail

if there is insu�cient credit.

2.5. Linux 11

2.5 Linux

Linux [7] is an implementation of Unix that is being developed cooperatively over the

Internet. It provides virtual memory, preemptive multitasking, TCP/IP networking, and

most other features that are expected of a modern Unix. Linux 2.0 runs on a variety of

platforms including the x86, Alpha, Sparc, and PowerPC. Several features of Linux make

it an especially suitable base for the isotach system:

� source code is freely available under terms of the GNU Public License

� a complete and easy-to-install Linux distribution is available

� it supports symmetric multiprocessor machines

� a Myrinet device driver is available

Our development machines run Red Hat Linux, a commercial distribution that is avail-

able over the Internet. It includes a package manager, system administration tools, and

a su�cient variety of software packages that little or nothing has to be downloaded and

installed by hand.

Symmetric multiprocessor machines based on x86 CPUs are becoming increasingly pop-

ular, and provide a cheap way to increase the performance of a PC. Linux supports up to 16

CPUs, although its naive kernel locking policy would cause machines that large to perform

poorly. 4 It works very well for dual processor machines.

Since it uses user-level networking, the isotach prototype's dependence on Linux is

minimal. It could be easily ported another operating system for which a Myrinet driver

is available. The operating systems for PC hardware that Myricom currently supports are

Linux, Solaris x86, BSDi, and OSF-1. Windows NT support will be available soon.

An important reason for choosing Linux is simply that it works well. It is powerful and

e�cient, and supports a wide variety of PC hardware. If development kernels and cheap

hardware are avoided, Linux is very stable. Generally, bugs are �xed quickly once they

become known to the developers.

4Linux 2.1, currently under development, is beginning to support the �ne-grained kernel locking that is

necessary to perform well on large multiprocessors.

12 Background

SWITCH SWITCH SWITCH

Configuration 1 Configuration 2

HOST 2 HOST 3 HOST 3HOST 2

TM2TM1HOST 1TM

HOST 1

Figure 2.2: Alternative con�gurations of the prototype network.

2.6 The Prototype Network

Our network (�gure 2.2) contains three dual-processor 180Mhz Pentium Pros and two

uniprocessor 166Mhz Pentiums, each equipped with a Myrinet interface. With two 8-port

switches, we have two interesting topologies:

1. Three nodes and one token manager connected to one switch.

2. Two nodes and a TM on one switch and one node and a TM on the other.

We are in the process of acquiring three more dual-processor Pentium Pros, to expand

our network to eight machines.

3

Implementation

Together, the shared memory manager (SMM) and switch interface unit (SIU) provide a

host's interface to the isotach network. A number of isotach hosts and token managers

(TMs) connected with switches implement an isotach network. This chapterdescribes the

implementation of the SIU, SMM, and TM in detail. Figure 3.1 gives a high-level view of

an isotach node.

3.1 User Programs' View of Isotach

To an application, the isotach system appears to be a large memory array with special access

semantics. A node may perform READ, WRITE, SCHED, and ASSIGN operations on

memory locations; operations grouped into isochrons are performed atomically.

Isotach operations are non-blocking; this allows pipelining within the network. An

issuing node is blocked only when a value requested in a read is actually used. In other

words, only true data dependencies stall a processor. If an application is able to issue reads

far enough ahead of when the values are needed, then all network latency is hidden and the

computation is never blocked.

Isotach memory is divided into pages. Each page has a copyset|the set of nodes

that have a local copy of that page. Pages are composed of isotach variables, the smallest

addressable units of memory. The page location of an isotach variable does not a�ect

its semantics, but may impact performance. A READ to an isotach variable goes to the

13

14 Implementation

Srefs,

Isochron Markers
EOP Markers,

Returned
read
values

Implemented on
the LANai in V1,
and in-link in V2

Isotach Messages,
Non-isotach Messages,
Tokens

Isochrons

Srefs

SMM

 Isotach Application

Implemented
on the host
processor

SIU

Network

Figure 3.1: Structure of an isotach node.

3.2. The Shared Memory Manager 15

Isotach
application

Addressing

Sref Execution

Srefs,
Isochron markers

Memory
operations

SIU

SMM

Isochrons

EOP markers

Srefs

Srefs

Remote srefs

Pulse buckets

Hit buffer

Isotach
memory
pages

Read values

Read values

Local srefs

Figure 3.2: Schematic diagram of the SMM.

nearest node in the copyset;WRITEs, SCHEDs, and ASSIGNs are multicast to the entire

copyset. Pages are placed at system initialization time, and do not move while the system

is running. This is a restriction imposed by the design of our prototype network, not a

limitation of isotach.

To issue an isochron, an application calls iso start() followed by one or more of

iso read32(), iso write32(), iso sched(), and iso assign(). A call to iso end()

completes the isochron and issues it to the SIU. The interface is documented in the Isotach

Programmer's Reference Manual (appendix B).

3.2 The Shared Memory Manager

The SMM performs high level isotach functionality that is too complex to implement in

hardware as part of the SIU. Figure 3.2 depicts the structure of the SMM, which we will

describe in detail in this section.

16 Implementation

3.2.1 Design Issues

We considered a number of possible forms for the SMM. They were:

� inside the Linux kernel

� a user process

� a thread in the same address space as the isotach application

� a set of library routines

We decided against putting the SMM in the kernel for a number of reasons. First, Fast

Messages is designed to run in user mode| it requires high frequency polling, which is

ine�cient to do from the kernel. Also, we did not want the isotach program to have to cross

the user/kernel protection boundary for each operation. Finally, such an approach would

have tied us closely to Linux (and possibly to a particular kernel version).

Putting the SMM in a user process (the \isotach daemon" approach) would have given

us more exibility than any of the other options. However, unless a processor could be

dedicated to the SMM, many context switches would be required to poll the network and

to perform isotach operations, and it is likely that they would have been a signi�cant factor

in overall overhead. Also, an extra data copy would be required; at Myrinet speeds this is

undesirable. Extensive use of shared memory could reduce the number of data copies, but

some isotach variables (those allocated on the stack, for example) cannot be accessed easily

by another process.

Unfortunately, the two remaining options do not facilitate supporting multiple isotach

processes on a single machine. We decided that one process per machine is an acceptable

limitation for the software prototype, especially in light of the lack of coordination between

user-level networking and the kernel scheduler. Without coscheduling, user-level networking

will perform very poorly in the presence of multiprogramming.

Implementing the SMM as a kernel thread has many of the same drawbacks as the isotach

daemon approach, but they are less severe. Again, it makes sense only on a machine where

one processor can be dedicated to the SMM thread, that can spend all of its time either

performing isotach operations or polling the network. Since the application and SMM are

3.2. The Shared Memory Manager 17

in the same address space, data sharing is easy. We plan to eventually implement the

SMM as a kernel thread. Then, each isotach host will devote a CPU to running the SMM.

Currently, however, the SMM is a set of library routines. This eliminates data sharing and

synchronization problems.

Because the V1 SMM is a library, its interface with the user program was easy to

implement. The SMM performs well since no context switches or IPC are required. The

disadvantages of the library approach are: lack of concurrency between the application and

SMM, the application must poll the network, and there can be only one isotach process per

host (or rather, per Myrinet interface).

Another design issue for the SMM was the granularity of isotach data. In the interest

of simplicity, we do not permit isotach variables of arbitrary size. They may be either 32

or 64 bits wide (only 32-bit isotach variables are implemented in V1).

The SMM operates \outside" of logical time| it is not capable of responding to network

events within a bounded amount of logical time. The SMM could operate inside logical time

if it had the ability to prevent logical time from progressing; we decided against this because

the SMM runs at the user level and can be descheduled for long periods of time.

3.2.2 Data Structures

The data structures in the SMM serve two main purposes: to maintain the state of isotach

memory, and to handle SREFs as they move through the system. SREFs are messages that

encode shared memory operations. Whenever possible, we use statically allocated memory

for these data structures to improve performance and make debugging easier.

SREFs An SREF encodes a single reference to an isotach variable. It contains a times-

tamp indicating logical execution time, the pid of the source node, the opcode of the opera-

tion being represented, an isotach memory address, and several additional �elds depending

on what kind of operation the SREF represents. Isochrons are converted into SREFs by

the SMM as part of the process of issuing an isochron. Throughout this chapterwe will use

isochron to refer to two things: the group of operations that issued by an application, to

perform atomically, and resulting group of SREFs produced by the SMM.

18 Implementation

The Page Table For every page of isotach memory, we keep track of the copyset of

the page. From the copyset we can derive the maximum logical distance to any node in

the copyset, and whether the page is local or remote. However, these values are stored

explicitly since they are used frequently. If the page is local, we store a copy of the page

itself, represented as an array of isotach variables. Isotach variables contain a 32-bit value

and a ag indicating whether the variable is substantiated or not.

Pulse Buckets SREFs that arrive from the network must be bu�ered until they are

executed at the correct logical time. To facilitate this, they are sorted into buckets by

logical receive time.

The Hit Bu�er When an isochron produces SREFs to be executed locally, they are

placed in the hit bu�er. The SREFs cannot be placed directly into pulse buckets because the

SMM operates outside of logical time, and does not know when to execute them. Isochrons

have a remote component if any SREF produced by the isochron must be executed remotely;

isochrons with no remote component are purely local.

Purely local isochrons are executed as soon as possible after they are issued. To maintain

sequential consistency, they must be executed after any previously issued isochrons; if there

are no pending (issued, but not executed) isochrons, a purely local isochron may be executed

immediately. For isochrons with a remote component, the SIU will notify the SMM when

the local component may be executed.

3.2.3 Message Types

Myrinet messaging layers are required to put a 16-bit message type �eld at the beginning

of every message. This allows di�erent protocols to interact, or at least to ignore messages

that they cannot interpret. Fast Messages (FM) uses the message type �eld to demultiplex

incoming messages. We have added several message types to indicate new packet types.

Non-isotach Message These messages bypass the isotach code paths and are essentially

regular FM packets. They are used to avoid the overhead of the isotach code when it is not

3.2. The Shared Memory Manager 19

needed. For example, values returned from remote reads are sent as non-isotach messages,

as are debugging messages.

Isotach Message All SREFs are sent across the network as isotach messages. They have

a �xed packet format and are subject to the constraints of logical time.

Token Tokens separate and de�ne pulses of logical time. They circulate in waves between

SIUs and TMs, and pairs of TMs. Tokens never reach the SMM.

Isochron Marker When the SMM issues an isochron to the SIU, the SIU returns an

isochron marker indicating the logical execution time of the isochron. Then, the SMM

can execute the local component of the isochron at the correct time. Isochron markers are

placed into pulse buckets along with isotach messages.

End of Pulse (EOP) Marker Although the SMM operates outside of logical time, it

still has to know about some logical times|speci�cally, ones in which it must execute

SREFs. To achieve this, the SIU keeps track of pulses in which it has delivered SREFs

to the SMM. When one of these pulses ends, it sends the SMM an end of pulse marker.

The SMM then executes any SREFs in the bucket corresponding to that logical time. The

network and the rules for assigning timestamps ensure that once we receive the EOP marker

for a pulse, we are guaranteed to have all SREFs that are to be executed in that pulse.

Providing this guarantee is a crucial part of implementing an isotach network.

3.2.4 Issuing an Isochron

As the application issues an isochron, the SMM converts it into SREFs that are stored in

either the hit bu�er if they are local, or a send bu�er otherwise. There are several tasks

that must be performed for each shared memory reference.

Addressing Every reference to shared memory is either local, remote, or both; the SMM

can determine which by consulting the page table. READs are converted into an SREF

20 Implementation

addressed to the nearest host in the copyset; WRITEs, SCHEDs, and ASSIGNs are

converted into SREFs that are multicast to the entire copyset.

Logical Distance Computation The isochron distance is the maximum logical distance

that any SREF in the isochron has to travel. This information is available from the page

table once the addresses of all SREFs produced by the isochron are known.

Delivery to the SIU Before remote SREFs are delivered to the SIU, the SMM must

ensure that ow control will not block the send part-way though. This is because the

SREFs in an isochron are delivered to the SIU as a block to minimize the (real) time that

logical time is prevented from progressing. If the SMM is forced to stop sending SREFs

in the middle of an isochron, logical time can be halted for an unbounded amount of time

as it waits for send credit. Stopping logical time is detrimental to the performance of

the entire isotach system, whereas delaying a single SMM while credits are gathered slows

computation only at that node.

3.2.5 Executing Isotach Operations

Recall that to maintain sequential consistency, isotach operations must be executed in

(pulse; pid; rank) order. Since EOP markers are received in strictly increasing pulse order,

and the design of the SIU and SMM ensures that no isotach message arrives after the EOP

marker for the pulse in which it is to be executed, the �rst component of the ordering is

satis�ed.

In our prototype, pid is equivalent to host number. Messages in a pulse are received in

arbitrary order. In order to satisfy the second component of the ordering, the contents of

a bucket must be sorted by sender pid before execution. We require no explicit rank �eld

because the network is point-to-point FIFO, although a stable sort must be used to avoid

reordering the contents of a bucket.

When an EOP marker is received, the contents of the corresponding bucket are sorted

and executed. When an isochron marker is encountered in the bucket, SREFs are executed

from the hit bu�er until it is empty, or until the second remote isochron is reached. In other

3.2. The Shared Memory Manager 21

words, we execute only one remote isochron (the one that the isochron marker corresponds

to) and as many purely local isochrons as possible.

Since sorting messages is potentially a time consuming part of executing the contents of

a bucket, sorting will be performed in the V2 SIU. The EOP marker sent by the SIU will

contain a sort vector that determines the order in which operations should be executed in

the SMM. The V2 SMM must still be able to sort SREFs because the sorting module of

the V2 SIU will have �nite capacity; some pulse buckets may contain more SREFs than

it can sort. The sorting capacity of the SIU will be chosen so that sorting by the SMM is

unlikely to happen often.

Recall from section 2.4 that an FM handler may not send messages. Because executing

SREFs involves sending messages (for values returned from READs), we cannot execute

the contents of a bucket from the EOP marker handler. Rather, we enqueue the marker

and execute the contents of the bucket later, after the handler has returned control to the

main body of the SMM.

3.2.6 Implementation of Isotach Operations

As SREFs are executed from the pulse buckets and hit bu�er, their opcodes are examined

to determine the speci�c action that must be taken.

Read READs to substantiated memory locations are easy to perform. If the request is

local, the value is simply put into the location speci�ed by the application; if the request

is remote, a non-isotach reply message containing the requested value is sent to the remote

host. If the location is unsubstantiated, we cannot complete the READ until a value is

available| the SREF is stored in a \pending read" list, along with the isotach address of

the READ and the pid of the process that issued the SCHED that the READ is waiting

on.

Write Conceptually, a WRITE is an optimized SCHED/ASSIGN pair. However, the

implementation is simple|the value is written into the isotach memory location speci�ed

by the issuing application.

22 Implementation

Sched The isotach memory location is marked as unsubstantiated, and the pid of the host

issuing the SCHED is recorded. In the current version, we assume that the process that

issues a SCHED is always the same process that issues the corresponding ASSIGN. This

restriction simpli�es the implementation of SCHED and ASSIGN, and will be removed in

the future.

Assign All blocked READs with matching address and process id are allowed to proceed.

An ASSIGN that does not correspond to any SCHED is dropped. Currently, matching

READs are located by a linear search of the pending READ list.

3.2.7 Isochronous Messages

Not all computations are best expressed using a shared memory model. To support message

passing programs, we have implemented isochronous messages, which may be issued in

isochrons just like shared memory references. Since the system enforces isotach guarantees

over all operations, an application may arbitrarily interleave messages and shared memory

references.

Isochronous messages are sent to a speci�c recipient, and (like FM messages) are con-

sumed by a sender-speci�ed handler function at the receiving node. They are treated exactly

like SREFs by the system until they are executed; then the isotach message handler is called

instead of the SREF execution code. Isochronous messages are the basis for an implemen-

tation of a parallel rule-based system using isotach, which is currently being developed.

1

3.3 The Switch Interface Unit

The V1 SIU is implemented as a modi�ed and augmented FM Myrinet control program

(MCP). Therefore, it is not only responsible for isotach functionality, but also for putting

packets onto the network, and for transferring incoming messages into receive bu�ers in

host memory. The V2 (hardware) SIU will reside between the host network interface and a

1See [14] for a detailed description of a parallel rule-based system using isotach.

3.3. The Switch Interface Unit 23

Filter

Logical
time
maintainence

Filter

Scheduler Timestamped
isotach
messages

Isotach and non-isotach messages

Tokens

Tokens

 EOP Markers

Non-isotach messages

 Isotach messages

Isochron markers

NETWORK
SIU

SMM

Figure 3.3: Schematic diagram of the SIU.

switch, and will bu�er packets briey as it timestamps outgoing messages and sorts incoming

messages. Figure 3.3 shows the structure of the SIU; it applies to both versions.

The SIU has three functions: to maintain logical time, to assign a logical receive time

to isochrons and send them out onto the network, and to take messages from the network

and deliver them to the SMM.

Maintaining Logical Time When the SIU receives a token, it sends another token back

to the TM as soon as possible, waiting if necessary until it has �nished sending the current

isochron. If the SIU has passed any SREFs to the SMM that must be executed in the

logical pulse ended by the token, it sends an EOP marker to the SMM. The SIU stores the

current logical time, which is equal to the number of tokens that it has sent since the system

was initialized.

Scheduling The SIU chooses the timestamp (logical execution time) for an outgoing

isochron according to the following criteria:

1. Every SREF must arrive at the correct destination prior to its execution time.

24 Implementation

2. No SREF may be executed before any part of a previously issued isochron. 2

3. Isochrons should be executed as soon as possible, without violating the previous con-

straints.

To implement these requirements, the SIU keeps a variable called last receive time,

which stores the receive time of the last isochron that was issued. When an isochron arrives

at the SIU, it updates last receive time, and then writes it into the timestamp �eld of

each SREF in the isochron before sending it. last receive time is updated as follows:

last receive time = max(last receive time; t+ �)

where t is the current logical time, and � is the isochron distance for the isochron that is

about to be sent. Observe that this method of generating timestamps satis�es the con-

straints:

1. SREFs have an execution time large enough to allow them to arrive at their destina-

tion on time, because isotach messages travel one unit of logical distance per pulse of

logical time.

2. Timestamps are non-decreasing, so no SREF will be executed before an SREF in a

previously issued isochron (recall that for SREFs executed in the same pulse, we can

break ties by examining source pid and issue order).

3. We always increase last receive time by the smallest amount necessary to guarantee

that constraints 1 and 2 hold.

There is a send queue in the SRAM on the Myrinet board; it is written by the SMM and

read by the SIU. To send a non-isotach message, the SIU simply prepends the proper route

its to the outgoing message and sends it using the LANai's send-DMA engine. Isotach

messages are sent in the same way, but they are timestamped �rst.

While the SIU is sending an isochron, logical time is prevented from increasing; no

tokens are sent. Along with the method for choosing the logical receive times and the

2The V2 SIU allows us to relax this requirement when sequential consistency is not necessary.

3.3. The Switch Interface Unit 25

point-to-point FIFO-ness of the network, this ensures that all SREFs will be received in

time to be executed, and that no SREF in the current isochron will be executed before any

SREF in a previously issued isochron.

If isochrons are long enough that freezing logical time during isochron sending signi�-

cantly slows the progress of logical time, the formula for updating last receive time could

be changed to:

last receive time = max(last receive time; t+ � + x)

where x is the maximum number of tokens that can be sent during the transmission of an

isochron. In other words, the sending SIU can give long isochrons a conservative (higher

than necessary) timestamp so that we can send tokens (and thereby increase logical time)

while they are being sent without compromising the requirement that all components of

the isochron arrive at their destinations before their execution time. This feature is not

implemented in the V1 SIU. The rate of progress of logical time is critical to the performance

of an isotach network because we are bu�ering operations at the receiver until a speci�c

logical time is reached; the resulting delay should not dominate the latency of operations.

In addition to timestamping outgoing messages, the scheduling unit must deliver isochron

markers to the SMM because the SMM needs the execution time of each isochron in order

to execute the local component at the correct time. One isochron marker is sent for each

outgoing isochron.

Receiving The receive queue has two components: one in SRAM on the Myrinet board,

and one in the host processor's main memory. As messages arrive at the SIU, it DMAs

them into host memory as quickly as possible, where they are available to the SMM.

Incoming messages are veri�ed to be of the expected length and type, and to have no

CRC errors; only valid messages are passed to the host. The SIU notes logical receive times

of isotach messages it sends. When a token arrives that concludes a pulse in which the

SMM has received at least one SREF, the SIU sends the SMM an EOP marker.

26 Implementation

3.4 An Example

Since the system is somewhat complex, we present a simple example of an isochron's path

through the system. Assume two isotach hosts, 1 and 2, that are separated by logical

distance 5. All memory resides in one page, whose copyset is f1; 2g. The application on

host 1 executes the following code:

iso_start();

iso_read32 (10, &var1);

iso_write32 (20, 555);

iso_end();

The e�ect of this code is to issue an isochron that atomically reads the value from isotach

memory location 10 into var1, and writes 555 into location 20.

The iso read32 generates a local SREF that is stored in the hit bu�er of the SMM for

host 1 (SMM1), because READs are addressed to the nearest node in the copyset. The

iso write32 causes one SREF to be put into the hit bu�er, and one SREF to be put into

the send bu�er, because WRITEs are sent to all members of the copyset. As SREFs are

issued by the application, SMM1 computes the isochron distance. Consequently, during the

call to iso end the isochron distance is known to be 5. The remote SREF is marked with

this distance and delivered to SIU1 after the SMM1 has ensured that enough send credit is

available to send it. SIU1 marks the remote SREF with logical receive time t + 5, where

t is the current time, and sends it to host 2. It also delivers an isochron marker with time

t+ 5 to SMM1.

SIU2 receives the SREF and delivers it to SMM2, which places it into a pulse bucket.

At time t + 5, an EOP marker is delivered to SMM2, which then executes the WRITE.

Also at time t+ 5, SIU1 sends an EOP marker to SMM1, which matches the EOP marker

with the isochron marker in the bucket, and executes the READ and write from the hit

bu�er. This concludes the execution of the isochron.

If the application on host 1 had tried to use the value from var1 immediately after

issuing the isochron, it would have been blocked until the local component of the isochron

had completely executed.

3.5. The Token Manager 27

TM1

SIU1

HOST1

SMM1

TOKEN

SW1 SW2

SIU2

SMM2

HOST2

TM2

OTHER
 NODES

Figure 3.4: Token paths.

3.5 The Token Manager

Token managers are critical to the scalability of an isotach network. Without them, every

SIU would have to exchange tokens with every other SIU|clearly impractical for large

networks.

Every SIU associated with an isotach host exchanges tokens with one TM, and every

TM exchanges tokens with some number of SIUs and other TMs. The V1 SIU and TM

assume that there is exactly one TM per switch.

The TM algorithm is simple: it waits for token t to arrive on all inputs, and then sends

token t + 1 to all outputs. The inputs and outputs are the nodes attached to the TM's

switch, and all TMs attached to switches attached to that switch. Therefore, the maximum

number of tokens that a TM must handle during a pulse is one less than the degree of its

switch. Note that the TM performs the token handling required of the switch by the isonet

algorithm from section 2.1.2.

Conceptually, there is a \loop" between each SIU and a TM. This loop contains a token

28 Implementation

that circulates back and forth; �gure 3.4 shows the token loops for one of the con�gurations

of our prototype network. To increase the rate at which logical time progresses, we can put

more than one token into each loop. Our system currently has two tokens in each loop; this

is implemented by having both the SIU and TM send tokens at system initialization time.

Similar to the SIU, the TM is implemented on a LANai board as a modi�ed FM MCP.

The current version o�ers no fault tolerance; a dropped token will halt the system. Because

Myrinet does not drop packets in practice, implementation of fault tolerance has been a low

priority. The V2 TM will be able to recover from dropped or corrupted tokens.

3.6 The Front End

Initially, launching an isotach application required an open shell on each participating host.

This became cumbersome, so we developed a front end program that is capable of starting

a program on a number of machines at once, and displaying output in di�erent windows.

It was written in Python, a high level interpreted language, using the tkinter interface to

the Tk toolkit.

In addition to providing a convenient interface to isotach, the front end solves another

problem|preventing multiple users from accessing the network at once. There is unfortu-

nately no built-in way to stop a user from loading a Myrinet program and halting whatever

had been running previously. The front end can check a global lock �le to ensure that the

network is not in use.

3.7 Implementation Di�culties

3.7.1 Porting Fast Messages

FM 1.1 was developed for SPARC processors running SunOS or Solaris, with Myrinet inter-

faces containing LANai 2.3 chips. 3 Before we could begin work on the isotach prototype,

3FM 2.0, which has become available since the initial isotach implementation was completed, supports

x86 PCs running Linux, using interfaces containing LANai 4.x chips. We do not plan to use it because some

of the architectural changes conict with our modi�cations, and because the source code is not available.

3.7. Implementation Di�culties 29

we had to port FM to x86 PCs running Linux, and the LANai 4.x. 4

FM is a user-level protocol, so the operating system it runs under is not much of an issue,

especially since the initialization routines provided by Myricom take care of OS speci�c

operations such as allocating DMA-able memory and mapping LANai memory into user

address space.

Because Sparc and LANai CPUs are both big-endian, the original FM 1.1 code freely

shares data between the processors. This does not work on the x86, which is little-endian.

A conservative solution would be to change all data sent from the host to the LANai into

network byte order. This would add overhead at least equivalent to an extra data copy, and

is overkill for a homogeneous network. Instead, we concentrated on �nding all packet �elds

that are interpreted by the LANai and changing those, using the htonx() and ntohx()

macros, and leaving all other data in native host format.

The LANai 2.3 is a 16-bit processor, and the LANai 4.x is a 32-bit processor. Most

of the changes to the MCP involved removing code intended to make the older LANai

interoperate smoothly with a 32-bit host. Other modi�cations included changing the chip-

speci�c initialization, and using the Send Align register to send routing bytes onto the

network using DMA instead of using the slower PIO method.

Because the x86 and LANai 4.x are 32-bit processors, and because code for both chips

is compiled using gcc, structures can be freely shared between the processors provided that

byte-ordering issues are taken into account; this greatly simpli�ed code development.

3.7.2 Debugging LANai Code

A number of factors make LANai programs hard to debug. First and most obviously, the

LANai can do no screen or �le I/O, and lacks a source level debugger, making it di�cult to

know what it is doing. There is an external LED on the Myrinet board that is under LANai

control; in early testing, ashing it in di�erent patterns was the best way to determine what

was happening on the chip.

A more subtle problem was caused by the fact that the LANai is on the wrong side of

4We began our implementation using LANai 4.0 chips, and upgraded to the nearly identical LANai 4.1s

when they became available.

30 Implementation

the x86 memory protection hardware. With its DMA engine, it can write to any location

in host memory without causing a protection violation. Before the FM port became stable,

it was not uncommon for a wild DMA from the LANai to crash the machine being used for

testing; the OS crash then made it di�cult to �gure out what had happened.

A �nal di�culty is a result of the fact that the LANai is a pipelined processor, and

the status register and Myrinet link control registers are mapped into memory. Following a

control register access, there can be a delay of several cycles before the corresponding status

bit in the interrupt status register (ISR) changes. Since the compiler does not understand

this, the programmer is e�ectively forced to add delay slots to the program to avoid race

conditions.

To write or modify an MCP, it is essential to have access to the Myrinet User Docu-

mentation [9]. A useful high-level tutorial about writing Myrinet control programs is [13].

4

Correctness and Performance

4.1 Correctness

It was somewhat di�cult to verify that the isotach system is correct. As in any complex

concurrent system, exhaustive testing is not possible and the possibility of race conditions

and deadlock exists. We have developed several programs designed to test various aspects

of the system. After observing their behavior, inspecting the source code, and including

debugging code and sanity checks, we are convinced that the system operates properly.

Test Programs The �rst test program picks a number of isotach variables scattered over

a number of pages, each with di�erent copysets. Each node repeatedly picks a random

value, issues an isochron that writes the value to all of the isotach variables, and then issues

another isochron that reads all of them. If any read fails to return the same value for all

variables, then sequential consistency has been violated and an error is agged.

Another test program sends isochronous messages between nodes, which verify the con-

tents and order of all messages that they receive. Other isotach test programs include

solutions to the dining and drinking philosopher problems. An error in the system would

cause a violation of the problem constraint, e.g., neighboring philosophers dining at the

same time.

31

32 Correctness and Performance

Paranoid Mode To aid debugging, the system has a paranoid mode, in which senders

tag all messages with sequence numbers that receivers examine to ensure that no messages

are dropped or reordered. Also, the execution of any remote SREF results in a message

being returned to the sender indicating the time at which the SREF was executed; these

are checked against the execution time from the isochron marker. After a node issues an

isochron, it waits for all outstanding SREFs to be executed before issuing another one;

this prevents pipelining of isochrons by allowing only one pending isochron, and therefore

simpli�es the operation of the system. Recall that when the system is operating normally,

a node may have many pending isochrons.

4.2 Performance

To get timing information, we instrumented the system by using the very high resolution

timer found on Pentium and Pentium Pro systems. The RDTSC instruction causes the

number of clock cycles since the processor was reset to be stored into two 32-bit registers.

This gives us a timing resolution of 5.6 ns on a 180Mhz processor. The overhead to read

the timer using inline assembly language is only three instructions since there is no need

to trap to the OS. The actual cost is slightly higher because the instruction overwrites two

registers, and the processor may stall while writing the value to memory.

Each CPU on a multiprocessor has its own time-stamp counter, and the CPUs are

reset at di�erent times, so we had to be careful to avoid erroneous readings due to context

switches. Fortunately, the Linux scheduler implements processor a�nity, so a CPU-bound

process does not tend to move between processors on a lightly loaded machine. Also, we

validated the �ne-grained timing by looking at average latency over many operations, which

was calculated using a timer provided by the OS.

Performance data was gathered using the single-TM con�guration from �gure 2.2, be-

cause testing was done while one of our network interface cards was being replaced.

4.2. Performance 33

4.2.1 Read Latency

The latency of remote operations is an important characteristic of a distributed system;

low latency is critical if �ne-grained computations are to be performed. We will examine

the best case read latency of the isotach system, occurring when a node issues an isochron

containing a single read and other nodes in the network are in a polling loop. The source

code for the latency test program can be found in appendix A.1.

Local Reads To test the overhead of just the SMM, we can issue a read to an isotach

memory location that is present on the issuing node, at a time when we know that no

isochrons are pending. This ensures that the read will be performed immediately. We

obtained performance data as follows:

1. Read the time-stamp counter.

2. Issue an isochron containing a single read.

3. Read the time-stamp counter again.

4. Use the value of the read to ensure that the read has actually completed.

5. Read the value of the timer a third time.

Without instrumentation, a local read takes 1.9�s (about 340 cycles) to complete, calcu-

lated from the average over many reads. With instrumentation, it takes 2.3�s; the overhead

probably comes from write bu�er overow in the CPU, since a lot of timing data is being

written. Of the 2.3�s, 2.1�s is used to issue the isochron, and 0.2�s to get the value that

was read.

Remote Reads We determine the remote read latency in the same way as local latency,

although there are more events to track. On the issuing node, we read the timer six

times: before starting to issue the isochron, after issuing it, at the beginning and end of

the isochron marker handler, at the beginning of the returned read handler, and once the

datum is available to the application. On the remote node, we read the timer �ve times:

34 Correctness and Performance

Host 1

Myrinet

LANai 2

Host 2

LANai 1

isochron
issue

isochron

handler

isotach
message
handler

EOP
marker
handler

returned
read
handler

token

marker

54 us

Figure 4.1: Timing analysis of a remote read.

at the start and end of the isotach message (SREF) handler, at the start and end of the

EOP marker handler, and after the READ has executed completely. The total latency for

a remote read is 54�s.

Figure 4.1 depicts the delays as host 1 issues a read to an isotach variable present on host

2. Horizontal bars (drawn to scale) are timelines for the various participants, and vertical

bars represent timing measurements. Black areas represent times that the processor or

network is known to be busy and in the critical path; gray areas show where an element is

busy, but is not in the critical path. It is important to know that the \grey areas" exist,

since they may limit the amount of pipelining between the host CPU, LANai, and network

that can take place when the system is under load. Interestingly, the timing code did not

measurably increase the latency of remote reads; this is probably because there is enough

idle processor time for the Pentium Pro write bu�er to stay empty enough that it can hide

write latency associated with storing timing data.

As a �rst approximation, we break the read latency into three components: the time

4.2. Performance 35

it takes to issue the isochron, the time spent waiting for the response, and the time spent

processing the response. This distinction is useful because work can be performed during the

time spent waiting for the response (except when the isochron marker is being processed);

the other times are pure overhead. It takes 5.9�s to issue an isochron containing a single

remote read; the response is received 46�s later, and takes 1.7�s to process. The numbers

given here are averages; variance was typically not more than 10%, except when noted.

Of the 46�s between completion of issuing the isochron and receipt of the response,

18�s is spent at the remote node processing the read. Of this time, the �rst 8.3�s are

used by the isotach message handler, which places the incoming SREF into a pulse bucket.

After the message handler has exited, the SMM must wait for an EOP marker before it can

execute the SREF; this is received 4.5�s later, on average. This number is highly variable

because the token arrives independently of the isotach message. The number varied between

3.5�s and 9.8�s; this seems reasonable given the average token turnaround time of about

14�s (see the discussion of token timing in section 4.2.3). The EOP marker handler runs in

0.42�s, and then the SREF execution routine runs for 5.1�s; this includes the time spent

in FM code sending the value of the read to the issuing node.

27�s are still unaccounted for. This is the network latency, which we will assume

is split evenly between the two trips (because the timers on the test machines are not

synchronized). In other words, the network interfaces and network impart about a 14�s

delay in each direction. Dividing the latency equally between the two messages is not quite

fair because there is isotach overhead in one direction and not the other (remember that

returned reads are sent as native FM messages), but the inaccuracy is not severe because

the isotach overhead is only a few tens of instructions. Including the 8-cycle LANai DMA

setup time, sending or receiving an isotach messages over the Myrinet takes 0.75�s (an

isotach message is 80 bytes long). Therefore, we can conclude that the total time taken by

the LANai to send or receive a message is about 6.4�s, or 192 LANai clock cycles. 1

36 Correctness and Performance

writes/isochron 1 2 4 8 16 32

Exp. 1: �s/all-remote isochron 14.8 20.9 33.4 62.9 121 238

Exp. 2: �s/mixed isochron 13.7 20.4 30.6 54.3 104 204

Table 4.1: Isochron issue times.

4.2.2 Isochron Throughput

Although latency is important, a latency test fails to demonstrate one of the main strengths

of an isotach system: the ability to pipeline isochrons within the network. To test through-

put, we simulate a workload somewhat arbitrarily by distributing shared memory references

uniformly over a number of pages. For simplicity, we only perform writes, and only node 0

issues isochrons; nodes 1 and 2 sit in a polling loop waiting for remote operations to arrive.

The numbers shown are the average over many operations; pipelining e�ects and lack of

synchronized clocks between machines make a detailed timing analysis di�cult. The source

code for the throughput program is listed in appendix A.2.

In the �rst experiment, we distribute writes uniformly over three pages whose copysets,

respectively, are f1g, f2g, and f1; 2g. These are all possible copysets for three nodes if no

page is resident at node 0, the issuing node. This experiment is designed to measure only

the time taken to issue isochrons. Each write generates an average of 1.3 SREFs, all of

which are remote.

In the second, more realistic experiment, there are seven 2 isotach pages representing

all possible copysets for three nodes. In this experiment, every isotach write results in an

average of 1.7 SREFs being generated; 0.6 of them local, and 1.1 of them remote (distributed

over the two remote nodes). Note that some of the time attributed to issuing isochrons is

used executing local SREFs; this is acceptable because we are trying to characterize isotach

throughput under a realistic workload.

To measure throughput, we determine the time to issue a single isochron, averaged over

many isochrons. The results of the experiments appear in table 4.1. They show that there

1The LANai runs at PCI bus speed; 30Mhz on a 180Mhz Pentium Pro.
2There are 23 � 1 combinations because we do not allow pages with an empty copyset.

4.2. Performance 37

writes/isochron 1 2 4 8 16 32

�s/token 17 18 20 21 25 28

Table 4.2: Token interarrival times.

is a small per-isochron overhead, and then issue time is proportional to the number of

operations performed. The second experiment shows higher throughput even though more

SREFs are sent per operation, which illustrates the bene�ts of performing local operations.

We would expect a real application, whose pages have been placed such that most shared

memory references are local, to show better performance than either of these experiments.

4.2.3 Rate of Progress of Logical Time

Recall that the rate at which logical time increases is important to the performance of an

isotach network because we bu�er received messages until their logical execution time is

reached. Also recall that two tokens circulate between each SIU and its TM (and between

TMs).

When the system is free of non-token tra�c, the average time between token arrivals

at an SIU is 14�s. This number is obviously dominated by MCP overhead|the Myrinet

traversal time for a token 8 bytes long is on the order of 50 ns.

Under load, the token interarrival time increases. We report in table 4.2 the average time

between token arrivals when all three nodes in the system are running a network-intensive

program: the second throughput experiment from the last section. Note that all nodes are

issuing isochrons as rapidly as possible, not just node 0.

Because tokens cannot be sent while isochrons are being sent, logical time slows down

as the size of isochrons increases. The increase is not severe because care was taken to

minimize the time during which logical time is frozen while an isochron is being sent.

38 Correctness and Performance

5

Summary and Future Plans

We have shown that an isotach network can be e�ciently implemented in software, using

COTS hardware. Our accomplishments are:

� implementing the isotach system

� verifying that the system operates correctly, using a number of test programs

� showing that it performs well

� running a nontrivial application, the parallel rule-based system

� interesting other sites in isotach; they have begun purchasing PC and Myrinet hard-

ware

We want to do many things to improve the isotach system. There are features that will be

in the hardware SIU and TM, that are currently not in the software version. Implementing

these is a high priority. They include:

� Signals | a one-to-many communication mechanism, to be used to initiate a check-

point or rollback, reset the network, or carry application speci�c data.

� Barriers | a traditional barrier synchronization, to be used during the checkpoint

process, and by applications.

39

40 Summary and Future Plans

� Host-to-host mode | expands the token loop to include the SMM; this puts the SMM

inside of logical time, which gives us some extra capabilities.

We want to integrate the hardware TM and SIU when they appear. The TM will be

easy to integrate; the SIU will take more e�ort because it requires major changes to the

SMM and software SIU. The software SIU will not disappear completely, since we still need

an MCP. Rather, we will use something similar to the original FM MCP.

In addition to integrating hardware, there are many improvements to be made to the

isotach software:

� Using GM, a new messaging layer provided by Myricom, rather than FM as our net-

work layer. GM allows multiple processes to use the network interface, and implements

a method of ow control that scales to very large networks.

� Implementing the SMM as a thread, rather than a user library, as discussed in section

3.2.1.

� Providing fault tolerance through checkpointing.

� Implementing distributed shared memory using isotach.

These improvements are largely independent of the hardware components.

A

Example Isotach Programs

A.1 lat.c

/*

* lat - isotach latency test program

*/

#include <stdio.h>

#include <string.h>

#include <malloc.h>

#include <sys/time.h>

#include <sys/types.h>

#include <iso.h>

#include "prof.h"

#define COUNT 50

/*

* do some reads, gathering timing info

*/

void time_reads (int loc, int num)

{

int j;

struct iso_var val;

41

42 Example Isotach Programs

for (snd_stat_num=0; snd_stat_num<num; snd_stat_num++) {

fast_timer (&snd_stats[snd_stat_num].start);

iso_start ();

iso_read32 (loc,&val);

iso_end ();

fast_timer (&snd_stats[snd_stat_num].issued);

j = read_iso_var (&val);

fast_timer (&snd_stats[snd_stat_num].finish);

}

}

/*

* do some reads without timing

*/

void do_reads (int loc, int num)

{

int i, j;

struct iso_var val;

for (i=0; i<num; i++) {

iso_start ();

iso_read32 (loc,&val);

iso_end ();

j = read_iso_var (&val);

if (j != 7777) {

printf ("oops\n");

exit (1);

}

}

}

void handler (int id, void *data, int len)

{

int i;

struct rcv_timer rcv;

for (i=0; i<REPS; i++) {

printf ("%d: hfinish:%lld mstart:%lld mfinish:%lld

done:%lld total:%lld\n", i,

rcv_stats[i].msg_handler_finish -

A.1. lat.c 43

rcv_stats[i].msg_handler_start,

rcv_stats[i].mark_handler_start -

rcv_stats[i].msg_handler_finish,

rcv_stats[i].mark_handler_finish -

rcv_stats[i].mark_handler_start,

rcv_stats[i].send_done -

rcv_stats[i].mark_handler_finish,

rcv_stats[i].send_done -

rcv_stats[i].msg_handler_start

);

}

rcv.msg_handler_start = 0;

rcv.msg_handler_finish = 0;

rcv.mark_handler_start = 0;

rcv.mark_handler_finish = 0;

rcv.send_done = 0;

for (i=0; i<REPS; i++) if (i != 2) { /* kludge */

rcv.msg_handler_start +=

rcv_stats[i].msg_handler_finish -

rcv_stats[i].msg_handler_start;

rcv.msg_handler_finish +=

rcv_stats[i].mark_handler_start -

rcv_stats[i].msg_handler_finish;

rcv.mark_handler_start +=

rcv_stats[i].mark_handler_finish -

rcv_stats[i].mark_handler_start;

rcv.mark_handler_finish +=

rcv_stats[i].send_done -

rcv_stats[i].mark_handler_finish;

rcv.send_done +=

rcv_stats[i].send_done -

rcv_stats[i].msg_handler_start;

}

printf ("average: hfinish:%lld mstart:%lld

mfinish:%lld done:%lld total:%lld\n",

rcv.msg_handler_start/(REPS-1),

rcv.msg_handler_finish/(REPS-1),

44 Example Isotach Programs

rcv.mark_handler_start/(REPS-1),

rcv.mark_handler_finish/(REPS-1),

rcv.send_done/(REPS-1));

printf ("rcv_stat_num = %d\n", rcv_stat_num);

iso_deinit();

}

void main (void)

{

char *buf;

struct timeval start, stop;

double us;

int i;

struct snd_timer snd;

buf = (char *)malloc(128);

bzero (buf, 128);

iso_init();

iso_set_handler (22, handler);

printf ("I'm node %d\n", NODEID);

if (NODEID != 1) while (1) iso_poll();

iso_start();

iso_write32(10, 7777);

iso_end();

for (i=0; i<COUNT; i++) {

gettimeofday (&start, NULL);

if (i <= COUNT/2) {

printf ("no timing ");

do_reads (10, REPS);

} else {

printf ("timing ");

A.1. lat.c 45

time_reads (10, REPS);

}

gettimeofday (&stop, NULL);

subtracttime (&stop, &start);

us = (double)stop.tv_sec *1e6 + (double)stop.tv_usec;

printf ("executed %d remote reads in %f usecs; %f us/read\n",

REPS, us, us/REPS);

}

for (i=0; i<REPS; i++) {

printf ("%d iss:%lld hstart:%lld hfinish:%lld

finish:%lld total:%lld schr:%lld fchr:%lld\n", i,

snd_stats[i].issued - snd_stats[i].start,

snd_stats[i].handler_start - snd_stats[i].issued,

snd_stats[i].handler_finish - snd_stats[i].handler_start,

snd_stats[i].finish - snd_stats[i].handler_finish,

snd_stats[i].finish - snd_stats[i].start,

snd_stats[i].chr_start - snd_stats[i].start,

snd_stats[i].chr_finish - snd_stats[i].chr_start

);

}

snd.start = 0;

snd.issued = 0;

snd.handler_start = 0;

snd.handler_finish = 0;

snd.finish = 0;

snd.chr_start = 0;

snd.chr_finish = 0;

for (i=0; i<REPS; i++) {

snd.start +=

snd_stats[i].issued -

snd_stats[i].start;

snd.issued +=

snd_stats[i].handler_start -

snd_stats[i].issued;

46 Example Isotach Programs

snd.handler_start +=

snd_stats[i].handler_finish -

snd_stats[i].handler_start;

snd.handler_finish +=

snd_stats[i].finish -

snd_stats[i].handler_finish;

snd.finish +=

snd_stats[i].finish -

snd_stats[i].start;

snd.chr_start +=

snd_stats[i].chr_start -

snd_stats[i].start;

snd.chr_finish +=

snd_stats[i].chr_finish -

snd_stats[i].chr_start;

}

printf ("\naverage: iss:%lld hstart:%lld hfinish:%lld

finish:%lld total:%lld schr:%lld fchr:%lld\n",

snd.start/REPS,

snd.issued/REPS,

snd.handler_start/REPS,

snd.handler_finish/REPS,

snd.finish/REPS,

snd.chr_start/REPS,

snd.chr_finish/REPS);

printf ("snd_stat_num = %d\n", snd_stat_num);

iso_start();

iso_send_msg (0, 22, &start, 1);

iso_end();

}

A.2 thru.c

/*

* thru - isotach throughput test program

*/

A.2. thru.c 47

#include <stdio.h>

#include <string.h>

#include <malloc.h>

#include <stdlib.h>

#include <time.h>

#include <unistd.h>

#include <sys/time.h>

#include <sys/types.h>

#include <iso.h>

#include "prof.h"

#define NUM 10000

/*

* number of pages to touch

*/

#define NUMPAGES 7

/*

* jumps are page sized

*/

#define JUMPSIZE 1024

/*

* isochron size

*/

#define SIZE 16

void do_write (void)

{

int i;

static int k = 0;

static int j = 0;

iso_start ();

for (i=0; i<SIZE; i++) {

iso_write32 (k*JUMPSIZE, j++);

k++;

48 Example Isotach Programs

k = k%NUMPAGES;

}

iso_end ();

}

void main (void)

{

int i,j;

double us;

struct timeval start, stop;

iso_init ();

for (j=0; j<500; j++) {

gettimeofday (&start, NULL);

for (i=0; i<NUM; i++) {

do_write();

}

gettimeofday (&stop, NULL);

subtracttime (&stop, &start);

us = (double)stop.tv_sec *1e6 + (double)stop.tv_usec;

printf ("%d isochrons issued in %fus, %f us per isochron\n",

NUM, us, us/NUM);

}

printf ("\n\nall done\n");

fflush (stdout);

while (1) iso_poll ();

iso_deinit();

}

A.3 philo.c

/*

A.3. philo.c 49

* philo - isotach dining philosophers

*/

#include <stdio.h>

#include <string.h>

#include <malloc.h>

#include <stdlib.h>

#include <time.h>

#include <unistd.h>

#include <sys/time.h>

#include <sys/types.h>

#include <iso.h>

#define REPS 1000

/*

* slow things down for demo purposes

*/

void delay(int c)

{

int x = 0, i;

int d = (lrand48()%15000) + 15000;

if (c == 0) d = d/2;

for (i=0; i<d; i++) {

usleep (10000);

iso_poll ();

if (c) if (x++%1000 == 0) {

printf (".");

fflush (stdout);

}

}

printf ("\n");

}

int left, right;

void main (void)

50 Example Isotach Programs

{

struct iso_var *forks;

int i, val1, val2;

srand48 (time (NULL));

iso_init ();

forks = (struct iso_var *) malloc (sizeof(struct iso_var)*NUMNODES);

printf ("I'm %d, there are %d philosophers\n", NODEID, NUMNODES);

left = NODEID;

right = (NODEID+1)%NUMNODES;

if (NODEID == 0) {

iso_start();

iso_write32 (left+1024, NODEID*1000);

iso_write32 (right+1024, NODEID*1000+1);

iso_end();

}

#ifdef VERBOSE_PH

delay (0);

#endif

fflush (stdout);

fflush (stderr);

for (i=0; i<REPS; i++) {

#ifdef VERBOSE_PH

printf ("issuing pickup isochron\n");

fflush (stdout);

#endif

iso_start ();

iso_read32 (left+1024, &forks[left]);

iso_read32 (right+1024, &forks[right]);

iso_sched (left+1024);

iso_sched (right+1024);

iso_end ();

A.3. philo.c 51

#ifdef VERBOSE_PH

printf ("waiting on forks\n");

fflush (stdout);

#endif

val1 = read_iso_var (&forks[left]);

val2 = read_iso_var (&forks[right]);

#ifdef VERBOSE_PH

printf ("got forks val1 = %d val2 = %d\n", val1, val2);

printf ("EATING");

fflush (stdout);

#endif

#ifdef VERBOSE_PH

delay (1);

#endif

#ifdef VERBOSE_PH

printf ("issuing release isochron\n");

fflush (stdout);

#endif

iso_start ();

iso_assign (left+1024, val1+10);

iso_assign (right+1024, val2+10);

iso_end ();

#ifdef VERBOSE_PH

printf ("forks released\n");

printf ("THINKING");

#endif

fflush (stdout);

#ifdef VERBOSE_PH

delay (0);

#endif

}

printf ("\n\nall done\n");

fflush (stdout);

iso_deinit ();

52 Example Isotach Programs

}

B

The Isotach API

An online copy of this document is available at:

http://grover.cs.virginia.edu/~jdr8d/prm/

B.1 Introduction

This document describes the API for version 1.0 of the isotach system for Myrinet.

B.1.1 Conventions

The following conventions are followed in this document:

� File names are printed in bold

� Function names are printed in bold

� Constants are printed in bold and in CAPS

� Globals are printed in bold

� Arguments to functions are printed in italics

� Structure �elds are printed in italics

� Example code is printed in courier

53

54 The Isotach API

B.2 Isotach con�guration �les

B.2.1 fmcon�g

The fmcon�g �le describes the topology of the Myrinet network to the Fast Messages

layer that the isotach system uses. See section B.7 for the original FM documentation. The

isotach fmcon�g di�ers slightly from the one described there.

Every switch must have a token manager associated with it. Currently, token managers

are implemented by a dedicated MCP, and therefore run on a workstation on the network.

To indicate that a node is a token manager, append :t to the name of the node in the

con�g �le.

For example, if two nodes token1 and token2 were added to the example fmcon�g, it

would look like this:

0 token1:t 1 green-hornet.cs.uiuc.edu blue-whale.cs.uiuc.edu

1 - token2:t pink-panther.cs.uiuc.edu 0

B.2.2 shmem map

The shmem map �le tells the isotach layer the copyset of each memory page. It consists

of blank lines, comment lines beginning with a \#" character, and lines of the form:

page[-page]:node[,node]*;

That is, a page or page range followed by a node or list of nodes. Page size is deter-

mined by the PAGE SIZE macro in iso.h. MAX USER PAGES indicates the maximum page

number. If, during execution, an isotach program references a page which doesn't appear

in shmem map, a runtime error will be generated.

B.3 Isotach library routines

The following are procedure calls available to the isotach programmer and compiler. Each

procedure call is de�ned in terms of local and shared memory and a brief description is

given.

B.3.1 iso init()

USE: iso init()

TYPE: Function

FILE: iso.h

B.3. Isotach library routines 55

ARGUMENTS: none

RETURN TYPE: void - the program is aborted with an error message if anything goes

wrong.

PURPOSE: iso init() initializes the isotach network and loads the static copy set. It

acts as a barrier, and therefore doesn't return until all nodes and token managers are

ready to proceed.

CAVEATS: Must be called before any other isotach function.

B.3.2 iso deinit()

USE: iso deinit()

TYPE: Function

FILE: iso.h

ARGUMENTS: none

RETURN TYPE: void

PURPOSE: iso deinit() announces to the rest of the network that the calling node will

not issue any more isotach operations. It acts as a barrier, since the calling node may

still need to service requests from other nodes that aren't �nished.

CAVEATS: Bad form not to use it.

B.3.3 iso start()

USE: iso start()

TYPE: Function

FILE: iso.h

ARGUMENTS: none

RETURN TYPE: void

PURPOSE: iso start marks the start of an isochron.

56 The Isotach API

B.3.4 iso end()

USE: iso end()

TYPE: Function

FILE: iso.h

ARGUMENTS: none

RETURN TYPE: void

PURPOSE: iso end marks the end of an isochron.

B.3.5 iso read32()

USE: iso read32(shaddr, laddr)

TYPE: Function

FILE: iso.h

ARGUMENTS: shmem addr t shaddr, struct iso var32 *laddr

RETURN TYPE: void

PURPOSE: iso read32() schedules a read access to one word of shared memory and

speci�es the address of a local variable to put the value in. Issuing a read is non-

blocking - the process blocks when it tries to access the value of a read which has not

returned yet.

CAVEATS: Must be called inside of an iso start()...iso end() block.

B.3.6 iso read64()

USE: iso read64(shaddr, laddr)

TYPE: Function

FILE: iso.h

ARGUMENTS: shmem addr t shaddr, struct iso var64 *laddr

RETURN TYPE: void

B.3. Isotach library routines 57

PURPOSE: iso read64() schedules a read access to a double word of shared memory

and speci�es the address of a local variable to put the value in. Issuing a read is

nonblocking - the process blocks when it tries to access the value of a read which has

not returned yet.

CAVEATS:

� Not implemented in version 1.0.

� Must be called inside of an iso start()...iso end() block.

� 64 bit reads must be to even shared addresses.

B.3.7 read iso var32()

USE: read iso var32(var)

TYPE: Function

FILE: iso.h

ARGUMENTS: struct iso var32 *var

RETURN TYPE: long int

PURPOSE: read iso var32 returns the value from a local copy of a 32 bit isotach vari-

able. It blocks the reading process if the value hasn't been returned yet.

B.3.8 read iso var64()

USE: read iso var64(var)

TYPE: Function

FILE: iso.h

ARGUMENTS: struct iso var64 *var

RETURN TYPE: long long int

PURPOSE: read iso var64 returns the value from a local copy of a 64 bit isotach vari-

able. It blocks the reading process if the value hasn't been returned yet.

58 The Isotach API

B.3.9 iso write32()

USE: iso write32(shaddr, val)

TYPE: Function

FILE: iso.h

ARGUMENTS: shmem addr t shaddr, long int val

RETURN TYPE: void

PURPOSE: iso write32() writes a value to a shared memory address. It is equivalent

to calling sched() and then assign32(). Writes are nonblocking.

CAVEATS: Must be called inside of an iso start()...iso end() block.

B.3.10 iso write64()

USE: iso write64(shaddr, val)

TYPE: Function

FILE: iso.h

ARGUMENTS: shmem addr t shaddr, long long int val

RETURN TYPE: void

PURPOSE: iso write64() writes a value to a shared memory address. It is equivalent

to calling sched() and then assign64(). Writes are nonblocking.

CAVEATS:

� Not implemented in version 1.0.

� Must be called inside of an iso start()...iso end() block.

� 64 bit writes must be to even shared addresses.

B.3.11 iso sched()

USE: iso sched(shaddr)

TYPE: Function

FILE: iso.h

B.3. Isotach library routines 59

ARGUMENTS: shmem addr t shaddr

RETURN TYPE: void

PURPOSE: iso sched() schedules an assign to a shared memory location.

CAVEATS:

� Each node may have only one outstanding sched for a given shared memory

location. An outstanding sched is one for which the corresponding assign has

not yet been executed.

� Must be called inside of an iso start()...iso end() block.

B.3.12 iso assign32()

USE: iso assign32(shaddr, val)

TYPE: Function

FILE: iso.h

ARGUMENTS: shmem addr t shaddr, long int val

RETURN TYPE: void

PURPOSE: iso assign32() substantiates a scheduled shared memory access.

CAVEATS:

� Every call to iso assign32() must be preceeded by an iso sched() to the same

variable.

� Must be called inside of an iso start()...iso end() block.

B.3.13 iso assign64()

USE: iso assign64(shaddr, val)

TYPE: Function

FILE: iso.h

ARGUMENTS: shmem addr t shaddr, long long int val

RETURN TYPE: void

PURPOSE: iso assign64() substantiates a scheduled shared memory access.

60 The Isotach API

CAVEATS:

� Not implemented in version 1.0.

� Must be called inside of an iso start()...iso end() block.

� 64 bit writes must be to even shared addresses.

� Every call to iso assign64() must be preceeded by an iso sched() to the same

variable.

B.3.14 iso poll()

USE: iso poll(void)

TYPE: Function

FILE: iso.h

ARGUMENTS: none

RETURN TYPE: void

PURPOSE: iso poll() processes any messages that have arrived from the network since

the last poll; this means that an isotach process is not responsive unless it is polling

frequently. Note that issuing isochrons implicitly polls the network, so polling need

only be performed during lengthy computations that require no isochrons to be issued.

CAVEATS:

� Must not be called in an iso start()...iso end() block.

B.3.15 iso send msg()

USE: iso send msg(target, handler, data, size)

TYPE: Function

FILE: iso.h

ARGUMENTS: int target, int handler, void *data, int size

RETURN TYPE: void

PURPOSE: iso send msg() sends a message isochronously. target is the NODEID of

the receiving node, and handler is the index of the handler function to be called at

that node. data is a pointer to the data to be sent, and size is the size of the message

in bytes.

B.4. Isotach constants and system variables 61

CAVEATS:

� Must be called in an iso start()...iso end() block.

B.3.16 iso set handler()

USE: iso set handler(num, handler)

TYPE: Function

FILE: iso.h

ARGUMENTS: int handler, iso handler *handler

RETURN TYPE: iso handler *

PURPOSE: iso set handler() sets handler num to be function handler. It returns the

value that the handler was previously set to (or NULL otherwise). To clear a handler,

call iso set handler() with NULL as the handler.

B.4 Isotach constants and system variables

The following are isotach-speci�c system variables.

B.4.1 NODEID

USE: NODEID

TYPE: externally de�ned global signed long int

FILE: iso.h

PURPOSE: NODEID is the logical process id of the referencing process. IDs are contigu-

ous, and range from 0 to NUMNODES-1.

CAVEATS: Unde�ned until iso init() has returned.

B.4.2 NUMNODES

USE: NUMNODES

TYPE: externally de�ned global signed long int

FILE: iso.h

62 The Isotach API

PURPOSE: NUMNODES holds the number of processes involved in the shared memory

computation

CAVEATS: Unde�ned until iso init() has returned.

B.4.3 MAX ISO MSG SIZE

USE: MAX ISO MSG SIZE

TYPE: glocal constant

FILE: iso.h

PURPOSE: MAX ISO MSG SIZE is the largest number of bytes that can be sent or

received using iso send msg().

B.4.4 MAX ISO HANDLERS

USE: MAX ISO HANDLERS

TYPE: global constant

FILE: iso.h

PURPOSE: MAX ISO HANDLERS is the largest number of handlers usable by an iso-

tach program. That is, handlers may be numbered 0 through MAX ISO HANDLERS-

1.

B.5 Isochronous Messages

When a message is delivered to a node, a handler is called. All handlers are initially invalid;

a message arriving for an invalid handler causes an isotach program to terminate with an

error message.

Handlers are of type void (*handler)(int sender, void *data, int length) where sender

is the NODEID of the sending process, data points to the received data, and length is the

number of bytes received.

When the handler exits, the data area is returned to the system { this means that any

data that must outlast the handler has to be copied into a new location. Handlers are atomic

with respect to the rest of the isotach system, and may not call any isotach functions.

B.6. Example isotach programs 63

B.6 Example isotach programs

B.6.1 Skeleton isotach program

put code here

B.6.2 Dining philosophers

put code here

B.6.3 LU decomposition

put code here

B.7 The FM 1.1 con�guration �le

fmconfig - Fast Messages network configuration file

The network configuration file describes the topology of the Myrinet

network. The file is read as part of the Fast Messages

FM_initialize() call. The default name of the network configuration

file is ``fmconfig'', but this can be overridden by setting the

environment variable FMCONFIGFILE or by using FM_set_parameter().

The configuration file contains one line for each switch in the

network. The first field on a line is a switch number, which is

assigned by the user to uniquely identify that switch. Following the

switch number is a field for each port of the switch that specifies

what that port is connected to: either another switch, a workstation,

or nothing. Switches are specified by their switch number,

workstations by their name, and dangling ports by a ``-''.

EXAMPLE: Consider the following network, which contains three machines

(blue-whale.cs.uiuc.edu, green- hornet.cs.uiuc.edu, and

pink-panther.cs.uiuc.edu) and two 4-port Myrinet switches:

64 The Isotach API

+------+-----+ +------+-----+

+--------------+ | 0 | | 0 |

| | | | | |

| blue-whale +-----+3 switch#0 1+-----+3 switch#1 1+

| | | | | |

+--------------+ | 2 | | 2 |

+------+-----+ +------+-----+

| |

| |

| |

+-------+------+ +-------+------+

| | | |

| green-hornet | | pink-panther |

| | | |

+--------------+ +--------------+

The corresponding network configuration file might look like this:

0 - 1 green-hornet.cs.uiuc.edu blue-whale.cs.uiuc.edu

1 - - pink-panther.cs.uiuc.edu 0

NOTES:

Machines must be specified by their full name as returned

by hostname(1).

The maximum network diameter is currently limited to 4.

Lines in the network configuration file that start with ``#'' are

considered comments and are ignored.

FM 1.1 assumes that the network configuration is static throughout

program execution. There is no way to dynami- cally add or delete

nodes.

Currently, for deadlock reasons, the network may contain

no cycles. This restriction will be lifted in future

B.7. The FM 1.1 con�guration �le 65

releases of FM.

There are two types of Myrinet switches: absolute- addressed and

relative-addressed. FM 1.1 assumes that all switches in the network

use the same addressing scheme (relative, by default).

FM 1.1 does not require that all switches have the same number of

ports.

CREDITS: The Illinois Fast Messages interface was designed and

implemented by the Concurrent Systems Architecture Group at the

University of Illinois at Urbana-Champaign.

Principal investigator

Andrew A. Chien

Team members

Scott Pakin

Vijay Karamcheti

Mario Lauria

Steve Hoover

Olga Natkovich

Questions and comments should be directed to us at:

fast-messages@red-herring.cs.uiuc.edu

66 The Isotach API

Bibliography

[1] Henri Bal, Rutger Hofman, and Kees Verstoep. A Comparison of Three High Speed

Networks for Parallel Cluster Computing. Workshop on Communication and Ar-

chitectural Support for Network-based Parallel Computing (CANPC'97), pages 184{

197, February 1997. Available from ftp://ftp.cs.vu.nl/pub/amoeba/orca papers/

canpc97.ps.Z.

[2] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik, Charles L.

Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet { A Gigabit-per-Second Local-

Area Network. IEEE Micro, 15(1):29{36, February 1995. Available from http://

www.myri.com/research/publications/Hot.ps.

[3] Eric A. Brewer, Frederic T. Chong, Lok T. Liu, John Kubiatowicz, and Shamik D.

Sharma. Remote Queues: Exposing Network Queues for Atomicity and Optimiza-

tion. ACM Symposium on Parallel Algorithms and Architectures, 1995. Available from

http://www.cs.berkeley.edu/~brewer/papers.html/spaa.ps.

[4] Paul F. Reynolds Jr., Craig Williams, and Raymond R. Wagner Jr. Isotach Networks.

IEEE Transactions on Parallel and Distributed Systems, 8(4), April 1997. Available

from ftp://ftp.cs.virginia.edu/CS-95-09.ps.Z.

[5] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.

Communications of the ACM, 21(7):558{565, July 1978.

[6] Koen Langendoen, John Romein, Raoul Bhoedjang, and Henri Bal. Integrating Polling,

Interrupts, and Thread Management. The 6th Symposium on the Frontiers of Mas-

67

68 Bibliography

sively Parallel Computation (Frontiers '96), pages 13{22, October 1996. Available from

ftp://ftp.cs.vu.nl/pub/amoeba/orca papers/frontiers96.ps.Z.

[7] The Linux Documentation Project. Available from http://sunsite.unc.edu/mdw/.

[8] Alan M. Mainwaring, Brent N. Chun, Saul S. Schleimer, and Daniel S. Wilker-

son. System Area Network Mapping. In 9th Annual ACM Symposium on Paral-

lel Architectures Algorithms and Architectures, May 1997. Available from http://

HTTP.CS.Berkeley.EDU/~alanm/Papers/mapper.ps.

[9] Myricom. Myrinet Documentation. Available from http://www.myri.com/scs/

documentation/.

[10] Myricom. The Myrinet API. Available from http://www.myri.com/scs/

documentation/mug/development/api.html.

[11] Scott Pakin, Vijay Karamcheti, and Andrew A. Chien. Fast Messages (FM): E�cient,

Portable Communication for Workstation Clusters and Massively-Parallel Processors.

IEEE Concurrency, 1997. Available from http://www-csag.cs.uiuc.edu/papers/

fm-pdt.ps.

[12] Scott Pakin, Mario Lauria, and Andrew Chien. High Performance Messaging on Work-

stations: Illinois Fast Messages (FM) for Myrinet. Supercomputing, December 1995.

Available from http://www-csag.cs.uiuc.edu/papers/myrinet-fm-sc95.ps.

[13] Anthony Skjellum, Gregory Henley, Nathan Doss, and Thomas McMahon. A Guide

to Writing Myrinet Control Programs for LANai 3.x. Available from http://

WWW.ERC.MsState.Edu/labs/icdcrl/learn mcp/.

[14] Rashmi Srinivasa. Parallel Rule-based Systems on Isotach Networks. Master's thesis,

University of Virginia, 1996.

[15] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser.

Active Messages: a Mechanism for Integrated Communication and Computation. In

Proceedings of the International Symposium on Computer Architecture, 1992.

Bibliography 69

[16] Craig C. Williams. Concurrency Control in Asynchronous Computations. PhD thesis,

University of Virginia, January 1993. Available from ftp://ftp.cs.virginia.edu/

pub/dissertations/9301.ps.Z.

