Eliminating Stack Overflow by Abstract
Interpretation

JOHN REGEHR, ALASTAIR REID, and KIRK WEBB
University of Utah

An important correctness criterion for software running on embedded microcontrollers is stack
safety: a guarantee that the call stack does not overflow. Our first contribution is a method for
statically guaranteeing stack safety of interrupt-driven embedded software using an approach
based on context-sensitive dataflow analysis of object code. We have implemented a prototype
stack analysis tool that targets software for Atmel AVR microcontrollers and tested it on embedded
applications compiled from up to 30,000 lines of C. We experimentally validate the accuracy of the
tool, which runs in under 10 sec on the largest programs that we tested. The second contribution of
this paper is the development of two novel ways to reduce stack memory requirements of embedded
software.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]:
Real-time and Embedded Systems; D.2.4 [Software/Program Verification]: Formal Methods;
Reliability; Validation; D.3.3 [Language Constructs and Features]: Concurrent Programming
Structures; F.3.2 [Semantics of Programming Languages]: Program Analysis; D.3.4 [Proces-
sors]: Memory Management; D.3.3 [Language Constructs and Features]: Dynamic Storage
Management

General Terms: Languages, Reliability, Verification

Additional Key Words and Phrases: Microcontroller, call stack, interrupt-driven, abstract interpre-
tation, dataflow analysis, context sensitive, sensor network

1. INTRODUCTION

Inexpensive microcontrollers are used in a wide variety of embedded applica-
tions such as vehicle control, consumer electronics, medical automation, and
sensor networks. Static analysis of software running on these processors is im-
portant for two main reasons. First, embedded systems are often used in safety
critical applications and can be hard to upgrade once deployed. Since unde-
tected bugs can be very costly, it is useful to attempt to find software defects
early. Second, severe constraints on cost, size, and power make it undesirable to
overprovision resources as a hedge against unforeseen demand. Rather, worst-
case resource requirements should be determined statically and accurately,

Authors’ address: University of Utah, Salt Lake City, UT 84112.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.

© 2005 ACM 1539-9087/05/1100-0751 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005, Pages 751-778.

752 . J. Regehr et al.

even for resources like memory that are convenient to allocate in a dynamic
style.

In this paper, we describe the results of an experiment in applying static
analysis and transformation techniques to embedded software in order to bound
and reduce its stack memory requirements. We check software for global stack
safety: the property that it will not run out of stack memory at run time. Stack
safety, which is not guaranteed by traditional type-safe languages like Java,
is particularly important for embedded software because stack overflows cause
memory corruption that can easily crash a system or otherwise lead to incor-
rect operation. The transparent dynamic stack expansion that is performed by
general-purpose operating systems is infeasible on small embedded systems
due to their small physical memories and lack of virtual memory hardware.
For example, 8-bit microcontrollers typically have between a few tens of bytes
and a few tens of kilobytes of RAM. Bounds on stack depth can also be usefully
incorporated into programs, for example, to assign appropriate stack sizes to
threads or to provide a heap allocator with as much storage as possible without
compromising stack safety.

The focus of our work is practical: the primary goal is to develop tech-
niques that can be implemented in tools that are useful for people develop-
ing embedded software. In several cases, we had to abandon sound, but pes-
simistic, analysis techniques in favor of unsound techniques that produce bet-
ter results while placing added validation burden on developers. We attempt
to provide a frank discussion of the tradeoffs between sound and unsound
techniques.

During the course of this project, we developed a prototype tool that analyzes
an executable embedded program in two passes. First, it performs context-
sensitive dataflow analysis in order to identify unexecutable branches and to
estimate the set of possible preemption relations between interrupt handlers.
Second, it puts together worst-case stack depth results for individual interrupt
handlers to compute a global worst-case stack depth. Much of our work has fo-
cused on generating tight bounds for interrupt-driven embedded software. Our
tool successfully estimates the maximum stack depth of most of the programs
shipped with TinyOS [Hill et al. 2000], an operating system for sensor network
nodes based on Atmel’s AVR architecture.

1.1 Stack Safety by Testing

Static analysis is a relatively new approach to achieving stack safety; its re-
lationship with the more established testing-based approach is illustrated in
Figure 1. An application note for Texas Instruments digital signal processors
(DSPs) [Alter 2003] provides a good summary of what can be accomplished
through testing:

A stack overflow in an embedded DSP application generally produces
a catastrophic software crash due to data corruption, lost return ad-
dresses, or both. The traditional approach to avoiding stack over-
flow is to perform offline testing during software development. Typ-
ically, a stack will be comfortably oversized, and ...the application

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Eliminating Stack Overflow by Abstract Interpretation . 753

Without stack bounding With static stack bounding
4KB 4KB
stack stack
L Ne— worst observed depth i
N
| .. true worst upper bound
heap ;"",'f case depth? on stack depth heap
- true worst case
depth must lie
data, BSS within this range data, BSS
0KB 0KB

Fig. 1. Typical RAM layout for an embedded program with and without stack bounding. Without
a bound, developers must rely on guesswork to determine the amount of storage to allocate to the
stack.

software will then be run over some period of time (e.g., hours, days, or
sometimes even weeks). ... While this offline method of stack sizing
is invaluable as a first pass approach, it does not eliminate the pos-
sibility of a stack overflow occurring at runtime. Programmers may
therefore use a larger stack than they might actually need, which
can waste valuable on-chip RAM resources.

The main problem with testing-based approaches to software validation is
that typically some executable paths through the system are missed. Worst-
case stack depth of interrupt-driven code is particularly difficult to discover
through testing because it depends on what code is executing when each in-
terrupt is triggered, and on whether further interrupts fire before the first
returns. For example, consider a hypothetical embedded system where the
maximum stack depth occurs when the following events occur at almost the
same time: (1) the main program summarizes data once a second spending
100 us at maximum stack depth; (2) a timer interrupt fires 100 times a second,
while the handler spends 100 us at maximum stack depth; and (3) a packet
arrives on a network interface up to 10 times a second and the network
interrupt handler spends 100 us at maximum stack depth. If these events
occur independently of each other, the worst case will occur roughly once
every 32 years. This means that the worst case will probably not be dis-
covered during testing, but that if just 10,000 instances of the system are
deployed, we would expect the maximum stack depth to be reached every
day.

A final drawback of the testing-based approach to determining stack depth
is that it treats the system as a black box, providing developers with little or
no feedback about how to best optimize memory usage.

1.2 Tool Support for Bounding and Reducing Stack Size

Our goal was to develop techniques that could be embodied in a tool that
would be useful for embedded developers, eliminating or greatly reducing the
amount of testing required to show stack safety. We wanted the tool to have the

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

754 . J. Regehr et al.

following properties:

¢ Conservative: the tool should never underestimate the true worst-case stack
depth.

e Precise: the stack depth bound should be as small as possible without being
inaccurate.

e Fast: the tool should be usable interactively, as opposed to being run
overnight.

e Usable: the tool should insulate the developer from details of the underlying
static analysis for example, by providing good error messages when it fails.

¢ Informative: the tool should alert developers to potential unsoundnesses in
the analysis and it should be able to provide useful information about a
system, such as, the stack usage of each function, the path through the system
that produces the worst-case stack depth, etc. This information can help
developers identify good candidates for manual storage optimizations.

Our stack analysis tool is a work in progress, but we believe that it has been
reasonably successful at meeting all of our goals. Perhaps the most interesting
and surprising thing that we learned during the course of this research is that
many embedded systems have a very static underlying structure of interrupt
preemption relations and that this structure can be recovered using static anal-
ysis. In fact, for many of the embedded systems that we looked at, our stack
tool can identify a static interrupt mask for more than 99% of instructions in
all analysis contexts.

Using our method for statically bounding stack depth as a starting point, we
have developed two novel ways to reduce the stack memory requirement of an
embedded system. The first optimization is completely automatic; it evaluates
the effect of a large number of potential program transformations in a feedback
loop, applying only transformations that reduce the worst-case depth of the
stack. Static analysis makes this kind of optimization feasible by rapidly pro-
viding accurate information about a program. The second optimization is not
entirely automatic—it requires guidance from developers to avoid unsafe trans-
formations. It works by eliminating unnecessary preemption relations between
interrupt handlers, often leading to reduced stack memory requirements.

Our work is preceded by a whole-program analysis for bounding the stack
depth of Z86 binaries by Brylow et al. [2001]. While they focused on relatively
small programs written by hand in assembly language, we focus on programs
that are up to 30 times larger and that are compiled from C to a RISC archi-
tecture. The added difficulties in analyzing larger, compiled programs required
us to develop a more powerful dataflow analysis based on context-sensitive ab-
stract interpretation of machine code and also to treat the dataflow analysis
and stack-depth analysis separately.

The rest of this paper is organized as follows. Section 2 motivates our ap-
proach to bounding stack depth and introduces a key abstraction: the interrupt
preemption graph (IPG). In Section 3 we describe the dataflow analysis that
supports construction of the IPG, and Section 4 presents the analysis that com-
putes stack depth using an IPG as input. Section 5 evaluates our prototype stack
tool and describes various ways in which we validated its output. In Section 6,

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Eliminating Stack Overflow by Abstract Interpretation . 755

we describe two novel ways to reduce worst-case stack memory requirements.
Finally, we compare our research to previous efforts in Section 7 and conclude
in Section 8.

2. APPROACH

Typically, embedded system designers statically allocate resources whenever
possible. This makes systems more predictable and reliable by providing a pri-
ori bounds on resource consumption. However, an almost universal exception
to this rule is that memory is dynamically allocated on the call stack. Stacks
provide a useful model of storage, with constant-time allocation and dealloca-
tion and without fragmentation. Furthermore, the notion of a stack is designed
into microcontrollers at a fundamental level. For example, hardware support
for interrupts typically pushes some or all of the processor state onto the stack
before calling a user-defined interrupt handler and pops the machine state upon
termination of the handler.

Our prototype stack analysis tool targets executable programs for the Atmel
AVR, a popular family of microcontrollers. We chose to analyze object code,
rather than source code, for a number of reasons:

¢ There is no need to predict compiler behavior. Many compiler decisions, such
as those regarding function inlining and register allocation, have a strong
effect on stack depth.

¢ Inlined assembly language is common in embedded systems, making source-
code analysis difficult: it requires knowledge of the high-level language se-
mantics, the assembly language semantics, and also the (typically poorly
documented) interface between the two.

¢ The source code for libraries and real-time operating systems is commonly
not available.

* Since object code analysis is independent of the compiler, developers are free
to change compilers or compiler versions. In addition, the analysis is not frag-
ile with respect to nonstandard language extensions that embedded compil-
ers use to provide developers with fine-grained control over processor-specific
features.

¢ Adding a postcompilation analysis step to the development process presents
developers with a clean usage model: since we examine the (usually singular)
end-product rather than multiple input files, there is no need to modify the
makefiles or hook into the development environment.

Analyzing the stack memory requirements of sequential code is straight-
forward, with a few important exceptions that we return to later. The more
difficult challenge in embedded systems is accurately bounding stack usage of
interrupt-driven code. By using dedicated hardware to detect events, interrupts
reduce the amount of polling that needs to be performed in software, enabling
important performance optimizations for resource-poor embedded processors.
For example, many processors have the ability to sleep while waiting for an in-
terrupt to arrive, reducing power consumption by a factor of 1000 or more [Hill
et al. 2000].

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

756 . J. Regehr et al.

Aninterrupt can fire any time it is enabled and the processor has just finished
executing an instruction. The criteria for enabling an interrupt vary across
processor architectures, but typically there is a master interrupt enable bit that
disables all interrupts when cleared, in addition to a number of enable bits that
control individual interrupts. An interrupt is enabled when its enable bit and
the master interrupt enable bit are both set.

Interrupts introduce concurrency into an embedded system: we say that in-
terrupt handler X preempts interrupt handler Y, if X begins to run before Y
completes. Interrupts are never blocked in the sense that threads are—they
run to completion except when preempted. Trivially, every interrupt preempts
the processor’s main (noninterrupt) context. Temporary state used by an inter-
rupt handler is pushed onto the call stack and, therefore, the maximum stack
depth for a system is strongly dependent on interrupt behavior.

Consider an embedded system containing n interrupt handlers, where con-
current execution of interrupts is prohibited. This is trivially implementable by
ensuring that all interrupt-mode code runs with the master interrupt enable
bit cleared. In this case, a safe bound on stack depth can be computed as follows:

stack bound = depth(main) + max depth(interrupt;) (1)

i=1.n

However, interrupt handlers are often run with interrupts enabled to ensure
that other interrupt handlers are able to meet real-time deadlines. If a system
permits, at most, one outstanding instance of each interrupt handler, the worst-
case stack depth of a system can be computed using this formula:

stack bound = depth(main) + Z depth(interrupt;) (2)

i=1..n

It is common for an embedded system to run some interrupt handlers with
interrupts disabled and run some with interrupts enabled. This means that
Eq. (1) is usually not applicable and Eq. (2) is overly conservative: it accounts
for preemptions that can never happen, leading to a pessimistic estimate of
stack memory requirements.

To obtain a safe, tight stack bound for realistic embedded systems, we devel-
oped a two-part analysis. The first is a context-sensitive dataflow analysis that
identifies unexecutable branches, computes the state of the interrupt mask at
each program point, and computes the worst-case stack memory requirements
of sequential code: individual interrupt handlers; the main context. The sec-
ond part of the analysis—unlike the first—accounts for potential preemptions
between interrupts handlers. The results of the dataflow analysis are used
to compute an interrupt preemption graph (IPG): a weighted, directed graph
where each edge corresponds to a potential preemption by an interrupt han-
dler; edge weights correspond to stack memory requirements. For example,
Figure 2a shows an IPG corresponding to Eq. (1) and Figure 2b corresponds to
Eq. (2). The global stack memory requirement for a system can be computed by
searching for the longest path through the IPG.

The problem of computing the exact worst-case stack depth of a system is
undecidable, as are most other static analysis problems. However, it can be
approximated.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Eliminating Stack Overflow by Abstract Interpretation . 757

(a) Corresponds to Equation 1 (b) Corresponds to Equation 2

Fig. 2. Example interrupt preemption graphs.

in r24, 0x3f ; r24 <- CPU status register

cli ; disable interrupts

adc r24, r24 ; carry bit <- prev interrupt status
eor r24, r24 ; r24 <- 0

adc r24, r24 ; r24 <- carry bit

mov ril8, r24 ; rl8 <- r24

. critical section ...

and r18, ri8 ; test r18 for zero

breq .42 ; if zero, skip next instruction
sei ; enable interrupts

ret ; return from function

Fig. 3. This fragment of assembly language for Atmel AVR microcontrollers motivates our ap-
proach to program analysis and illustrates a common idiom in embedded software: disable in-
terrupts, execute a critical section and then reenable interrupts only if they had previously been
enabled.

3. DATAFLOW ANALYSIS

This section describes the first phase of our stack-depth analysis: a context-
sensitive dataflow analysis of object code. Of course, dataflow analysis is a
broadly useful technology that has many applications beyond stack depth anal-
ysis. In the future we plan to decouple our dataflow analyzer from the stack-
depth analyzer in order to make it separately usable.

The first challenge in bounding stack depth is to measure the contributions
to the stack of each interrupt handler and of the main program. Since indirect
function calls and recursion are uncommon in embedded systems [Engblom
1999], a callgraph for each entry point into the program can be constructed using
standard analysis techniques. Given a callgraph, it is usually straightforward
to compute its stack requirement.

Figure 3 presents a fragment of machine code that motivates our approach to
program analysis. Its purpose is to disable interrupts, execute a critical section

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

758 . J. Regehr et al.

that must run atomically with respect to interrupt handlers, and then reenable
interrupts only if they had previously been enabled. Code analogous to this can
be found in almost any embedded system. Analysis of this fragment is successful
if the state of the master interrupt enable bit is known at the end of the code
fragment whenever its state is known at the start. It is important not to lose
track of the state of the interrupt mask because this prevents construction of a
precise interrupt preemption graph.

There are a number of challenges in analyzing such code. First, the effects
of arithmetic and logical operations must be modeled with sufficient accuracy
to track data movement through general-purpose and I/O registers. In addi-
tion, partially unknown data must be modeled. For example, analysis of the
code fragment should succeed even when only a single bit of the CPU status
register—the master interrupt control bit—is initially known. Second, dead
edges in the control-flow graph must be detected and avoided. For example,
when the example code fragment is called in a context where interrupts are
disabled, it is important that the analysis conclude that the sei instruction is
not executed, since this would pollute the estimate of the interrupt mask at
subsequent addresses.

3.1 Abstracting the Machine State

Abstract interpretation [Cousot and Cousot 1977] provides a framework for
program analyses such as our dataflow analysis. Two important design deci-
sions for an abstract interpreter are: What part of the machine state should be
modeled and what should be the model for each element of the machine state?

For most programs that we have analyzed, stack depth can be tightly
bounded by modeling only the program counter, general-purpose registers, and
several I/O registers. The Atmel AVR is an 8-bit architecture with 32 general-
purpose registers and a variable number of I/O registers; the ATmegal28 chips
that are the basis of the mica2 sensor network nodes that we examine in
Section 5 have 224 1/0 registers. From the I/O space, we model the registers that
contain interrupt masks, the processor status register, and the stack pointer.
Our analyzer does not model main memory or most I/O registers, such as those
that implement timers, analog-to-digital conversion, and serial communication.
Several programs in our test suite can benefit from modeling values stored on
the stack and we have added an experimental feature to our analyzer support-
ing this. We discuss this feature further in Section 3.5.

We chose to model each element of machine state at the bit level to capture the
effect of bitwise operations on the interrupt mask and condition code register.
(We had initially attempted to model the machine at word granularity, but this
turned out to lose too much information through conservative approximation.)
Each bit of machine state is modeled using the lattice depicted in Figure 4a.
The lattice contains the values 0 and 1 as well as a bottom element, L, that
corresponds to a bit that cannot be proved to have a concrete value. Unknown
values are introduced into the analysis in three main ways. First, external
input to a program, such as a value returned from a sensor, is truly unknown
at analysis time; these values must be represented as vectors of L. Second,

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Eliminating Stack Overflow by Abstract Interpretation . 759

N/ ~A/

(a) One bit (b) Two bits

Fig. 4. Bitwise lattices.

merge and or xor

[1 o 1 |1 o 1L [1 o L |1 o L
1 1 1 1 1 1 0o L 1 1 1 1 1 0 1 1
oL o0 L 0 0O 0 O of(1 o L 0 1 0o L
L4 1L 1 L]L o L L]1 1L 1L L4+ L 1
(a) Combining abstract (b) Logical operations on abstract bits

bits at merge points

Fig. 5. Operations on bitwise values.

since we do not model the complete machine state, when data is read from
an unmodeled part of the system, the result is represented as vectors of L.
Third, when control flow paths are merged, for example, after analyzing both
branches of an if-then-else construct, the analysis must make a conservative
approximation of the value of each bit in the result using the merge function
illustrated in Figure 5a.

The lattice for a machine word is the composition of multiple single-bit lat-
tices, as shown in Figure 4b. The first use of the bitwise domain for analyzing
software that we are aware of is by Razdan and Smith [1994].

3.2 Machine-Level Operations in the Bitwise Domain

Figure 5b shows abstractions of some common logical operators. Abstract oper-
ators should always return a result that is as precise as possible. For example,
when all bits of the input to an instruction have the value 0 or 1, the execu-
tion of the instruction should have the same result that it would have on a
real processor. In this respect our abstract interpreter implements most of the
functionality of a standard CPU simulator.

For example, when interpreting the and instruction with {1,1,0,0, 1, 1, 0, 0}
as one argument and {1, 1,1, 1,1,1,1,1} as the other argument, the result
register will contain the value {1, 1,0,0,1,1,0,0}. Arithmetic operators are
treated similarly, but require more care because bits in the result typically
depend on multiple bits in the input. Furthermore, the abstract interpretation
must take into account the effect of instructions on processor condition codes,
since subsequent branching decisions are made using these values.

The example in Figure 3 illustrates two commonly used special cases that
must be accounted for in the abstract interpretation. First, the add-with-carry
instruction adc, when both of its arguments are the same register, acts as

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

760 . J. Regehr et al.

rotate-left-through-carry. In other words, it shifts each bit in its input one po-
sition to the left, with the leftmost bit going into the CPU’s carry flag and the
previous carry flag going into the rightmost bit of the register. Second, the ex-
clusive or instruction eor, when both of its arguments are the same register,
acts like a clear instruction. After its execution, the register is known to contain
all zero bits regardless of its previous contents.

We initially implemented an abstract version of each instruction by hand,
this was time consuming and the resulting code was often imprecise and some-
times buggy. We tackled all three problems in subsequent work: the Hoist
toolchain [Regehr and Reid 2004] permits us to automatically construct maxi-
mally precise abstract operations for the ALU operations in the AVR instruction
set. An abstract operation is maximally precise if, for every input, it produces
the most precise (greatest in the lattice sense) result. We accomplished this by
exhaustively computing the most precise results for all abstract input values,
summarizing the result in a binary decision diagram (BDD), and converting
the BDD to efficient C code that could be linked into our analysis tool. A side
benefit of automating this task was that it became easy to uniformly handle
special cases, such as those where both arguments came from the same register.

3.3 Managing Abstract Processor States

An important design decision for an abstract interpreter is when to create a
copy of the abstract machine state at a particular program point, as opposed to
merging two abstract states. If states are merged too infrequently, the analysis
will consume too many resources. On the other hand, if states are merged too
often, the analysis will return excessively imprecise results, because merges
lose information.

There are two common criteria for merging states: context-(in)sensitivity
and path-(in)sensitivity. An analysis is context-insensitive if it merges states
of all invocations of a given function. Conversely, it is context-sensitive if each
invocation of the same function is analyzed separately. An analysis is path-
insensitive if it merges states at join-points in the control-flow graph (e.g., at
the end of an if-then-else statement or at the head of a loop). Conversely, it is
path-sensitive if each path through a function is analyzed separately.

Our initial analyzer was path- and context-insensitive. It ran quickly but did
not return acceptably precise results. For example, for many embedded codes
that we analyzed, it was unable to find a concrete interrupt mask for more than
50% of instructions, leading to the construction of highly pessimistic interrupt
preemption graphs. Our current tool is context sensitive. This is important,
because, in many systems, code like that shown in Figure 3 is called with inter-
rupts disabled by some parts of the system and is called with interrupts enabled
by other parts of the system. The context-sensitive version of our tool is able to
identify a constant interrupt mask for most instructions in most systems that
we looked at.

In the worst case, a context sensitive analysis requires space and time ex-
ponential in the depth of the callgraph for a system. In practice we have not
found this to be a problem: the largest programs that we have analyzed cause

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Eliminating Stack Overflow by Abstract Interpretation . 761

the analyzer to allocate about 215 MB. If memory requirements become a prob-
lem for the analysis, a relatively simple solution would be to merge program
states that are identical or that are similar enough that a conservative merging
will result in minimal loss of precision.

3.4 Analysis Algorithm

The abstract interpreter begins by initializing a worklist with all entry points
into the program; entry points are found by examining the vector of interrupt
handlers that is stored at the bottom of a program image, which includes the
reset vector: the address of a startup routine that eventually jumps to main().
While the worklist is not empty, the analyzer removes an item and processes
it. Each item corresponds to interpreting a single instruction. If interpreting
an instruction changes the state of the processor at that program point, items
are added to the worklist corresponding to each live control flow edge leaving
the instruction. Termination is assured because the bitwise lattice has finite
height and because the abstract operations are monotone—they always push
the machine state toward the bottom of the lattice.

3.5 Assumptions, Limitations, and Challenges

An ideal static analysis tool would be sound, always returning a conservative
approximation of the state of the machine at each program point. We found
that there is a strong conflict between creating a sound tool and creating a
useful tool. This section describes some soundness issues and other problems
that we encountered while creating the stack depth analyzer; it also shows our
solutions.

3.5.1 Indirect Stores. The AVR architecture maps the general purpose and
I/0 registers into memory space. A sound analysis would be forced to drop all
knowledge of any register value every time it encountered an indirect store
whose target was not provably outside of the register file. In practice this
tool would be useless: it could not return tight stack bounds because real pro-
grams contain a large number of indirect stores with indeterminate targets. An
industrial-strength stack tool would probably benefit from good alias analysis.
However, alias analysis of object code [Debray et al. 1998; Balakrishnan and
Reps 2004] is a difficult problem that is beyond the scope of our current work.
We, therefore, assume that indirect stores do not modify registers.

Another problem caused by indirect stores is the potential for a program
to smash its own stack. For example, if a stray memory write (e.g., from an
array overrun or pointer error) overwrites a return address on the call stack,
then the program will return to a location unforeseen by the analysis. Our
analysis assumes that return addresses are never overwritten. Our stack tool
can be configured to emit a warning when it encounters an indirect store with
indeterminate target, but, in practice, these warnings are not helpful to the
user because there are so many of them.

3.5.2 Self-Modifying Code. The behavior of self-modifying code is very
hard to statically analyze and, in general, even detecting such code reduces

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

762 . J. Regehr et al.

to the halting problem. Fortunately, the AVR has a Harvard architecture and
all self-modifying code uses a special “store program memory” (spm) instruc-
tion. Our analyzer terminates with an error message if it finds an executable
spm instruction; our rationale is that self-modifying code is likely to have stack
behavior that cannot be statically analyzed. Fortunately, use of self-modifying
code is rare and discouraged—it is notoriously difficult to understand and also
precludes reducing the cost of an embedded system by putting the program into
ROM.

3.5.3 Modeling the Stack Pointer. The push and pop instructions are easy
to analyze: they atomically decrement and increment the stack pointer. How-
ever, on the AVR, explicit stack pointer modification is tricky because the 16-bit
stack pointer is stored in a pair of 8-bit I/O registers. To modify the stack pointer
atomically, a program must disable interrupts, change it, and then reenable
interrupts. The problem for a static analyzer is in recognizing that the inter-
mediate values that exist in between the two 8-bit writes are not “true” stack
pointer values, in the sense that the intermediate address is never written to.
Another problem is that it is difficult to distinguish between writes to the stack
pointer that create a new stack (initializing the stack pointer), writes that are
incrementing or decrementing the stack pointer, and writes that are switching
to a new stack. The latter do not occur in the systems that we analyzed, but are
found in embedded systems that run multiple threads. It would be relatively
straightforward to perform a backward dataflow analysis on the values written
into the stack pointer, to see where they come from, but our current forward-
analyzing framework does not support this. The alternative approach that we
have taken to solve both of these problems is to add several macro instructions
to the instruction set recognized by our analysis tool. Each of these instructions
is pattern-matched on a sequence of code generated by the compiler to incre-
ment, decrement, or initialize the stack pointer. Pattern-matching introduces a
dependency on particular C compilers (and on the version used): if the compiler
is changed, a few more macros may have to be added. This technique works in
practice, because the set of idioms that the compiler uses to change the stack
pointer is not large, and because C programmers usually have no reason to
modify the stack pointer in a generic way. If the analyzer finds a store to the
stack pointer that does not match any of its built-in patterns, it returns an
unbounded stack depth. Finally, nonconstant changes to the stack pointer, for
example those that implement the alloca call, can be handled as long as the
value being added to or subtracted from the stack pointer can be identified by
the static analysis.

3.5.4 Indirect Branches. Our analysis must build a conservative approxi-
mation of the program’s control flow graph. Indirect branches cause problems
for program analysis, because it can be difficult to tightly bound the set of po-
tential branch targets. Our approach to dealing with indirect branches is based
on the observation that they are usually used in a structured way and the struc-
ture can be exploited to learn the set of targets. For example, when analyzing
TinyOS [Hill et al. 2000] programs, the argument to the function TOS_post is

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Eliminating Stack Overflow by Abstract Interpretation . 763

usually a literal constant representing the address of a function that will be
called by an event-scheduling loop. The value of the argument is identified
by abstract interpretation, but the connection between posting an event and
making the indirect call must be established by adding (a small amount of)
application-specific code to the analyzer. Automated analysis of this connection
would be difficult, as it involves following data through a circular buffer in
memory.

The stack analysis cannot deal with the form of indirect branch found in
the context switch routine of a preemptive real-time operating system—the set
of potential targets is too large. We do not address the problem of analyzing
multithreaded programs in this paper, but we do not believe that it would be
difficult. Since switching context to a new thread involves a change to a com-
pletely separate stack, writes to the stack pointer that restore a thread’s state
should simply be ignored, leading to separate analysis of threads. This approach
is analogous to the way we currently analyze interrupt handlers separately.

3.5.5 Recursion. Engblom [1999] studied a collection of embedded systems
containing over 300,000 lines of C code; it contained only 14 recursive loops.
Therefore, our approach to dealing with recursion is blunt: we require that de-
velopers explicitly assert a maximum iteration count for each recursive loop in a
system. These assertions, of course, must be externally verified, for example, by
inspection or exhaustive testing of the recursive routine. Within the analysis,
each recursive loop is unrolled to its maximum depth.

3.5.6 Modeling Stack Frames. Since the AVR architecture has plenty of
general-purpose registers, there is little need to model values that are allo-
cated in stack memory. In effect, we exploit the compiler’s register allocation
algorithm to implicitly specify the variables whose values should be modeled
by our analyzer. Even so, a few AVR programs that we analyze could benefit
from tracking values through stack-allocated memory and so we have added an
experimental stack model to our analysis tool to model spilling of registers to
the stack. This model is very simple and exploits the fact that our AVR compiler
always produces matched push and pop instructions; we have never observed it
to use an indirect memory reference to modify a value pushed onto the stack.
The stack model is merged at control-flow merge points by merging individual
stack elements; if two different-sized stacks are found at a merge point, the
stack contents are invalidated. In the general case, this model is unsound: it
relies on compiler conventions and so we require the developer to take special
action to enable it.

3.6 Summary

We use an abstract interpreter to estimate the reachable states at each pointin a
program using a context-sensitive, path-insensitive, forward dataflow analysis
of object code. Each bit is independently modeled using a three-valued logic: a
bit can be 0, 1, or unknown. A bitwise analysis is used, because we are primarily
interested in the interrupt enable/disable bits that are typically modified using
bitwise operators. In order to produce results that are practically useful, we

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

764 . J. Regehr et al.

extended this sound base with some techniques that are empirically valid, but
which are known, in general, to be unsound. These handle issues of indirect
branches, recursion, spilling registers to the stack, and indirect stores.

4. STACK DEPTH ANALYSIS

The interrupt-preemption graph (IPG) is a weighted, directed graph, where
each edge corresponds to a potential preemption by an interrupt handler and
edge weights correspond to stack memory requirements. If a system permits,
at most, one outstanding instance of each interrupt handler, the IPG will be
acyclic and we can compute the maximum stack depth by finding the longest
path through it. The property that permits this algorithm to work is that the
stacking behavior of interrupt handlers is much simpler than, and can usually
be treated independently of, the details of control flow and data flow within
individual interrupt handlers.

4.1 Computing and Traversing the Interrupt Preemption Graph

Creating the interrupt preemption graph is straightforward once the dataflow
analysis has successfully completed. The algorithm is as follows. For the main
program and for each interrupt handler, examine all reachable instructions in
order to compute:

* depth(i): The maximum contribution to the stack by interrupt handler i; this
number is always nonnegative.

¢ depth(i, j): The maximum contribution to the stack by interrupt handler i at
program points where interrupt handler j is enabled or negative infinity if
interrupt handler j is never enabled by i.

This is a convenient representation of the IPG.
For an acyclic IPG with n interrupt vectors, the worst-case stack depth (wesd)
starting at any given interrupt handler can be computed as follows:

depth(i)

max;—1 ,(depth(, j) 4+ wesd(j)) 3

wesd(z) = max {

To understand this equation, observe that the worst-case stack depth for
a given interrupt handler may not involve any further preemptions; this is
modeled by the top argument to the outside “max” function. On the other hand,
the worst-case stack depth starting at some interrupt handler may be caused
by a preemption; this is modeled by the bottom argument to the outside “max”
function. The same logic can be applied recursively. Because AVR processors
use vector zero for the the reset vector that leads to main(), and because the
reset vector starts executing on an empty stack, the overall worst-case stack
depth for a system is wesd(0).

Our stack analysis algorithm has worst-case complexity exponential in the
number of interrupt handlers. In principle, there may be embedded systems
where interrupt analysis is quite expensive: some AVR processors support 34
interrupt vectors and some Texas Instruments DSPs in the TMS320 family
support 96 separate interrupts. In practice, however, the analysis runs quickly:

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Eliminating Stack Overflow by Abstract Interpretation . 765

all programs that we looked at declare nine or fewer interrupt handlers. For
a model of interrupt-driven software similar to ours, Chatterjee et al. [2003]
proved that bounding stack depth requires time exponential in the number of
interrupt handlers, in the worst case.

4.2 Assumptions, Limitations, and Challenges

The stack depth analysis presented in this paper, like the dataflow analysis, is
based on a number of assumptions. In this section we explain and justify these
assumptions.

4.2.1 Cyclic Interrupt Preemption Graphs. Stack depth is always bounded
for a system where the IPG is acyclic and individual interrupt handlers have
bounded stack depth. On the other hand, the algorithm suggested by Eq. (3)
does not terminate when there are cycles in the interrupt preemption graph.
A cyclic IPG occurs, for example, when an interrupt handler runs with all in-
terrupts enabled, admitting the possibility that a new instance of the interrupt
will fire before the previous instance terminates. In this case, it superficially
appears that an infinite chain of interrupt preemptions can occur, but this is not
necessarily possible: each instance of the interrupt may terminate before the
next is signaled. Proof of stack safety is much more difficult in the presence of
cyclic preemptions: in effect, the stack bounding problem becomes predicated
on the results of a much more difficult real-time analysis that is beyond the
scope of this project.

Unfortunately, in embedded systems that we have examined, many inter-
rupt handlers run with all interrupts enabled. Rather than returning an in-
finite stack bound for these programs, we provide developers with a way to
turn a cyclic IPG into a DAG by manually asserting that a particular interrupt
handler can preempt itself only up to a certain number of times. In practice,
most systems that have cyclic IPGs should be considered to be poorly designed:
few interrupt handlers are written in a reentrant fashion, so it is usually bet-
ter to design systems where concurrent instances of a single handler are not
permitted. Furthermore, stack depth requirements and the potential for race
conditions will be kept to a minimum if there are no cycles in the interrupt
preemption graph and if preemption of interrupt handlers is only permitted
when necessary to meet real-time deadlines. We explore this idea further in
Section 6.2.

There are a few situations where it is desirable to permit multiple outstand-
ing instances of an interrupt handler. For example, the timer interrupt handler
in the AvrX operating system [Barello 2004] was carefully designed to operate
correctly when it preempts itself; this design makes it less likely that skew in
the system clock will be introduced through missed timer interrupts.

4.2.2 Effect of Interrupts on Machine State. Our stack analysis assumes
that the execution context is properly restored on return from interrupt. In other
words, when an interrupt handler returns, the program counter, stack pointer,
and general-purpose registers must contain the same values that they held just
before the interrupt was signaled. For systems written in C, such as the ones we

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

766 . J. Regehr et al.

examine in Section 5, the machine state is automatically saved in the interrupt
prolog and restored in the interrupt epilog—both are generated by the compiler,
and developers need not make any effort to justify our assumption. For systems
written in assembly, registers must be manually saved and restored. The most
likely conditions under which this assumption is invalid, is for programs that
use nonstandard extensions to C in order to allocate a global variable in a
register or for interrupt handlers written in assembly language to exploit the
provision of separate register banks for interrupt handlers (on processors like
the Z80 and ARM).

Interrupts may modify machine state, such as memory and I/O registers that
are outside of the processor’s execution context. Our analyzer does not model
main memory, but it does need to account for interrupts that alter the interrupt
mask. For example, some interrupt handlers in TinyOS kernels enable the
ADC (analog-to-digital converter) completion interrupt. We deal with this by
detecting handlers that enable interrupts and then treating those interrupts
as if their individual enable bits were permanently set. This could slightly
overestimate the actual worst-case stack depth.

4.3 Using the Stack Tool

We have a prototype tool that implements our stack depth analysis. In its sim-
plest mode of usage, the stack tool returns a single number: an upper bound on
the stack depth for a system. For example:

$./stacktool -w flybywire.elf
total stack requirement from global analysis = 55

To make the tool more useful, we provide a number of extra features, in-
cluding switching between context-sensitive and context-insensitive program
analysis, creating a graphical callgraph for a system, listing branches that can
be proved to be dead in all contexts, finding the shortest path through a pro-
gram that reaches the maximum stack depth, and printing a disassembled
version of the embedded program with annotations indicating interrupt status
and worst-case stack depth at each instruction. These are all useful in help-
ing developers understand and manually reduce stack memory consumption in
their programs.

5. VALIDATION AND EVALUATION

We used several approaches to increase our confidence in the validity of our
analysis techniques and their implementation.

5.1 Validating the Abstract Interpreter

To test the abstract interpreter, we modified the Atemu [2004] simulator for
AVR processors to dump the state of the machine after executing each instruc-
tion. We then created a separate program to ensure that this concrete state
was “within” the conservative approximation of the machine state produced by
abstract interpretation at that address. We also ensured that the simulator did
not execute any instructions that had been marked as dead code by the analyzer.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Eliminating Stack Overflow by Abstract Interpretation . 767

During early development of the analysis, this was helpful in finding bugs and
in providing a much more thorough check on the abstract interpretation than
manual inspection of analysis results—our next-best validation technique. We
have tested the current version of the stack analysis tool by executing millions
of instructions from a number of programs, including several that were written
specifically to stress-test the analysis, without finding any discrepancies.

5.2 Validating Stack Bounds

There are two important metrics for validating the bounds returned by the stack
tool. The first is qualitative: Does the tool ever return an unsafe result? Our
second metric is quantitative: Is the tool capable of returning results that are
close to the true worst-case stack depth for a system? The maximum observed
stack depth, the worst-case stack depth estimate from the stack tool, and the
(noncomputable) true worst-case stack depth are related in this way:

worst-observed < true worst < estimated worst

One might hope that the precision and accuracy of the analysis could be val-
idated straightforwardly by running embedded codes in a simulator, logging
their worst-observed stack depths, and comparing these values to the static
bounds. For several reasons, this approach produces maximum observed stack
depths that are significantly smaller than the estimated worst case and, we
believe, the true worst case. First, the timing issues that we discussed in Sec-
tion 1.1 come into play, making it very hard to observe interrupt handlers pre-
empting each other even when it is clearly possible that they may do so. Second,
even considering only sequential code, it can be very difficult to force an em-
bedded system to execute the code path that produces the worst-case stack
depth. Embedded systems often present a narrower external interface than
do traditional applications, and it is correspondingly harder to force them to
execute certain code paths using test inputs. While the difficulty of thorough
testing is frustrating, it does support our thesis that static program analysis is
particularly important in this domain. In other words, if it were easy to reach
the worst-case stack depth during testing, static analysis would be far less
important.

Since the global worst-case stack bound cannot be effectively validated em-
pirically, we quantitatively evaluated the analysis of individual interrupts by
instrumenting the AVR simulator to record the worst-case stack depth for each
interrupt. For instance, consider the following example, using the TinyOS ker-
nel CntToLedsAndRfm. This excerpt from the output of a tool that analyzes
the output of the simulator shows the worst-observed stack depths for several
interrupt handlers on one of the simulated nodes:

observed worst-case depths:
vector 0 = 27
vector 15 = 19
vector 17 29
vector 21 30

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

768 . J. Regehr et al.

The corresponding output from the stack analysis tool is as follows:

vector O RESET = 29, at dfc

vector 1 INTO = 2, at 4

vector 15 TIMERO_COMP = 19, at 1386
vector 17 SPI_STC = 29, at 1314
vector 18 USARTO_RX = 21, at 1d38
vector 20 USARTO_TX = 23, at 2082
vector 21 ADC = 30, at 1314

Comparing the empirical and analytical numbers, we can see that each in-
terrupt that fired during the simulation run reached its worst-case stack depth,
while the main context (vector zero) was two bytes short of its worst case. Two
interrupts, 18 and 20, did not fire during the simulation and, in fact, the Atemu
simulator does not yet support the serial port hardware that would cause these
interrupts to be signaled. These results are typical: sequential pieces of code
are often observed to closely approach or reach their worst-case depth, while
the highly timing-dependent global worst case is seldom approached. We never
observed an interrupt handler or an entire application to use more stack depth
than its analytic bound; this justifies some confidence in the design and imple-
mentation of our analyzer.

5.3 Evaluating the Global Analysis

We evaluated the precision of our analysis tool using 75 embedded applications
that fit into three categories. The first is a collection of application programs
that are distributed with TinyOS version 0.6.1. TinyOS [Hill et al. 2000] is
a small operating system for networked sensor nodes. Version 0.6.1 is obso-
lete; we include it for diversity—it was the last version written in C before the
release of TinyOS 1.0, which was rewritten in nesC [Gay et al. 2003]. nesC
is a programming language similar to C that is specifically designed to sup-
port component-based embedded software. The nesC language is compiled by
translating into C. The second category of applications we analyze are those
that ship with the most recent snapshot of TinyOS: 1.1.5. Finally, we have a
few miscellaneous applications written for AVR microcontrollers: a control pro-
gram for a self-balancing scooter and two versions of a simple control program
for an autonomous helicopter developed by the Autopilot Project [2004]. All
programs were compiled from C using gce version 3.0.2 or 3.3.0, and all target
various members of the Atmel AVR family of microcontrollers: the ATmegal6,
which has 1 KB of RAM and 16 KB of flash memory, and the ATmegal03
and ATmegal28, both of which have 4KB of RAM and 128 KB of flash
memory.

Of the 75 applications, there are four that defeat our analysis tool, all due
to use of indirect jumps. The stack analysis results from the remaining 71
kernels are too large to display in a figure. Thus, we have chosen, at random,
15 TinyOS 0.6.1 applications and 15 TinyOS 1.1.5 applications and displayed
them in Figure 6, along with the scooter and Autopilot results. Analysis of
the results for all 71 applications shows that, on average, the whole program

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Eliminating Stack Overflow by Abstract Interpretation . 769

300 - © Summation of interrupts
1 m Whole program analysis

Fc -

= 1

3 200 -

(=] -

/s 1

=

N

j="

2

2]

@ 100 —

g]

N -

w IJ “
222 CIEEBZEZYEECEEE SOSPSZERENTEEEY
=B =% 3=3 =2 =2 5} =00
=28 SEEPEISURE N, . 2EERiEFESgzEzTR

@ s =] = et e <OE .8 51 o
£'5 | 'S 2o e = = 3
z2 g YE & JJ3£°) B5IcRETZZ720E ©
&= s 2 2515 § SogEe ==+ 52

. O o 2 S @ = 3= DO
M S 251 S [T i 1 Q2 wnsg

isc s 2 2 z2 o°3 g5 g

< 7] 5 o W =3
4 & A 5 2
Q 55
= =
£ Tiny0S 0.6.1 TinyOS 1.1.5 2

Fig. 6. Comparing stack bounds for summation of interrupts and whole-program analysis.

analysis returns a stack bound that is 19% lower than the bound returned by
the naive summation of individual interrupt depths.

The whole program analysis failed to identify a concrete value for the master
interrupt enable bit for only 2.2% of instructions, on average, across our test
programs. The interrupt masks for nearly all of these instructions can be iden-
tified by turning on our experimental model of values stored in stack memory.

Since increased precision in the analysis translates directly into memory
savings for embedded developers, we believe that the added complexity of the
context-sensitive whole-program analysis is justified. In most cases where
the more powerful analysis did not decrease the stack bound—for example,
the “flybywirel” application—there was simply nothing that the tool could do.
These applications run all interrupt handlers with interrupts enabled, preclud-
ing tight bounds on stack depth. Finally, only 13 of the 71 test kernels require
more than 1s to analyze on a 3.0 GHz Pentium 4, with the worst-observed run
time of the analyzer on our inputs being a little under 9 s.

6. REDUCING STACK DEPTH

Previous sections described and evaluated our technique for bounding stack
depth. In this section, we go a step further by exploring ways to reduce max-
imum stack memory requirements. Reducing stack depth is useful because it
frees memory that can be used for other purposes, or potentially permits a
product to be based on a cheaper CPU with less on-chip RAM.

Recall that the bound on stack depth is computed by finding the longest path
through a DAG. There are two obvious ways to reduce the length of this path.
First, the edge weights can be reduced without changing the shape of the graph.
Second, the graph can be reshaped to contain fewer nodes and edges. We exploit

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

770 . J. Regehr et al.

optimized
> program
image

source
program

5 stack—depth __|
estimator

k program)

transformer

— > compiler

Fig. 7. Overview of stack depth reduction by inlining.

each of these strategies: edge weights can be reduced by generating code that
makes more efficient use of stack memory and nodes can be removed from the
interrupt preemption graph by eliminating unnecessary preemption relations.
The first optimization is entirely automatic, while the second requires input
from a developer who understands how the interrupt handlers in a particular
system interact.

6.1 Driving Inlining Using Stack Bounds

Given a way to quickly and accurately bound the stack depth of a program, it
becomes possible for a compiler or similar tool to rapidly evaluate the effect
of a large number of program transformations on the stack requirements of a
system. We can then choose to apply only the transformations that improve
stack memory usage.

Figure 7 illustrates our approach to automatic stack depth reduction. Al-
though this technique is generic and would admit a variety of program transfor-
mations, so far the only transformation we have implemented is global function
inlining. Inlining is a common optimization that replaces a function call with
a copy of the function body. The immediate effect of function inlining on stack
usage is to avoid the need to push a return address and function arguments
onto the stack. More significantly, by cloning the body of a function, inlining
permits the compiler to specialize the inlined code for its calling context. This
may simplify code in such a way that fewer temporary variables are required,
which may further reduce stack usage. Inlining also allows better register al-
location since the compiler considers the caller and the callee together instead
of separately.

In previous work [Reid et al. 20001, we developed a tool that performs inlining
on C programs, even across multiple compilation units. To support the work
reported here, we modified our inliner to accept an explicit list of callgraph
edges to inline.

In general, inlining needs to be used sparingly. If a function is inlined many
times, the size of the compiled binary can greatly increase. Furthermore, ag-
gressive inlining can actually increase stack memory requirements by increas-
ing the apparent live ranges of variables, causing the register allocator to spill
variables onto the stack.

To evaluate a set of inlining decisions, we compute its cost using a user-
specified function of stack depth and code size. For example, one obvious cost
function minimizes stack depth without regard to code size. Another useful
cost function is willing to trade one byte of stack memory for 32 bytes of code

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Eliminating Stack Overflow by Abstract Interpretation . 771

20000

maximum inlining
17500 o

3004 = noinlining
15000 = win
-

nesC
best inlining

T

12500

T

2004

10000

T

T

1004

no inlining
o
/ nesC
[}

L different tradeoffs in jointly
5000 Mtk " .
minimizing stack size and code size

code size (bytes)
Stack Depth Bound (bytes)

T
L

2500

Blink|

0 1 1 1 1 1 1 1 1 1]
0 25 50 75 100 125 150 175 200 225 250
upper bound on stack size (bytes) =

RfmToLeds|
SenseToLeds

(a) Different tradeoffs for RfmToLeds (b) Results for some TinyOS 1.1.5 kernels

Fig. 8. Comparing default compilation methods with stack reduction through inlining.

memory, since the processors we currently use have 32 times more code memory
than data memory.

Systems that we have analyzed contain between 110 and 824 callgraph edges
that could be inlined, leading in the worst case to 2524 possible inlining decisions.
Since this space cannot be searched exhaustively, we use the following heuristic
search:

1. Begin with an empty set of inlining decisions. Iterate through the list of
callgraph edges, adding each edge to the set of inlinings only when this
improves the cost metric. Repeat until the entire list can be scanned without
adding any edges to the set.

2. Begin with a set of inlining decisions that contains all callgraph edges. Iter-
ate through the list of callgraph edges, removing each edge from the set when
this improves the cost metric. Repeat until the entire list can be scanned
without removing any edges from the set.

3. Create a set of inlining decisions that contains every edge where the solu-
tions from steps one and two agree and contains some of the edges where
they disagree. Repeat until a sufficiently good solution is found or the time
allocated to the search expires.

We arrived at this hybrid strategy after empirically observing that minimizing
code size is often best accomplished by starting with no functions inlined, while
minimizing stack depth is often best accomplished by starting with all functions
inlined.

Figure 8a shows the results of applying the stack-depth/code-size reduction
procedure to the TinyOS kernel RfmTolLeds. There are three data points cor-
responding, respectively, to the system compiled without any function inlining,
to the system compiled with as much inlining as possible (subject to limita-
tions on inlining recursive functions and indirect calls), and to the system com-
piled by the nesC compiler [Gay et al. 2003], which performs fairly aggressive
global function inlining on its own. It is interesting to note that while nesC’s
inlining heuristics are very good at reducing code size, neither of the extreme

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

772 . J. Regehr et al.

policies—maximal or zero inlining—results in a good tradeoff between stack
usage and code size. The remaining data points were collected by running our
stack reduction algorithm with a variety of cost functions, ranging from those
that gave high priority to reducing stack depth to those that gave high priority to
reducing code size. These results are typical: we applied stack depth reduction to
a number of TinyOS kernels; the results are shown in Figure 8b. Our method
reduces worst-case stack usage by up to 61% when compared to compilation
without inlining and by up to 36% compared to kernels compiled using nesC.

The stack reduction program itself uses negligible CPU time, but it runs
many trial compilations. The overall running time depends strongly on the size
and structure of the program being transformed; for the example kernel used to
generate Figure 8a, generating each data point took about 80 min. This means
that unlike stack bounding, stack reduction through inlining is not presently
usable in an interactive fashion, although it would be suitable for overnight
runs.

Our search heuristic could be sped up considerably by first applying standard
inlining heuristics, such as inlining all functions with small bodies and all
functions that are called only once. We opted not to do this because we have seen
instances where these heuristics were wrong, in the sense that the cost function
was made worse. Even so, we believe that it would be worth investigating faster
heuristics that provide most of the benefit of the slow heuristic described in this
section.

We found goal-driven inlining to be surprisingly effective at reducing stack
memory usage. Why should this one optimization make such a large differ-
ence? First, inlining appears to serve as a “meta optimization”: it facilitates,
inhibits, and controls the scope of many other optimizations. Second, TinyOS is
a component-based system that contains many more function calls than a func-
tionally equivalent monolithic embedded system would. Systems with fewer
function calls would not be as amenable to this technique, although more so-
phisticated partial-inlining schemes would be likely to work. Finally, the default
compilation modes leave much room for improvement: gec is a highly portable
compiler that was not designed to support resource-constrained embedded pro-
cessors. It would be interesting to investigate the question of whether it is
possible to use advanced compilation techniques to generate code that makes
very efficient use of stack memory without performing trial compilations.

6.2 Eliminating Unnecessary Preemption

In a well-designed embedded system, every edge in the interrupt preemption
graph serves a specific purpose. Edges from the main context to interrupt han-
dlers (i.e., edges like those in Figure 2a) must be present for interrupts to
work at all, while edges from interrupt handlers to other interrupts are used
to ensure that real-time deadlines are not missed. In other words, it might be
necessary for an interrupt with tight response-time requirements to preempt
a long-running interrupt handler.

Our experience is that many embedded developers create systems with too
many interrupt preemption edges. In addition to using extra stack memory,

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Eliminating Stack Overflow by Abstract Interpretation

. 773

(a) Original

(b) Restricted

Fig. 9. Interrupt preemption graphs for the RfmToLeds kernel from TinyOS 1.1.5.
Original Restricted

Edges | Stack bound Edges | Stack bound Stack bound
Kernel name in IPG (bytes) | in IPG (bytes) | improvement
Blink 1 31 1 31 0%
RfmToLeds 47 128 7 92 28%
CntToLedsAndRfm 47 128 7 94 27%
HighFrequencySampling 79 161 11 127 21%
SecureTOSBase 129 267 7 220 18%

Fig. 10. Reducing stack depth by eliminating preemption relations.

unnecessary preemption incurs overhead in terms of cache pollution and added
synchronization code and it also creates many more opportunities to implement
race conditions.

In this section we propose and evaluate an empirical method for finding edges
in the interrupt preemption graph that are candidates for removal. First, an
embedded system is statically analyzed to compute a conservative estimate
of its interrupt preemption graph. Second, the system is run in a simulator
that has been instrumented to build a dynamic interrupt preemption graph
based on actual preemptions that occur during simulation. Third, the interrupt
preemption edges that are in the static IPG, but not in the dynamic IPG, are
considered to be candidates for removal. An edge can be removed by modifying
interrupt prolog and epilog code to mask off the appropriate interrupt enable
bit. A developer who understands the details of interactions between interrupt
handlers must carefully select the edges to be removed from the IPG, as this
transformation can break a system if applied blindly.

Figure 9a shows the conservative IPG for the TinyOS kernel RfmToLeds.
Figure 9b shows a much smaller IPG that corresponds both to the observed
behavior of the unmodified RfmToLeds and also to the conservative IPG for the
modified version that we created. Based on our understanding of RfmToLeds,
omitting the IPG edges absent in the smaller IPG should lead to correct be-
havior. We tested the modified RfmToLeds kernel on a real TinyOS node and
found that it works. The worst-case stack depths of the two kernels are 128 and
92 bytes, respectively—a 28% improvement. Furthermore, the stack bound for
the original kernel was only valid under the assumption that interrupt han-
dlers never preempt themselves; the stack bound for the modified system re-
quires no such assumption. We applied this stack-reduction strategy to several
other TinyOS kernels, ranging from very simple (Blink) to quite sophisticated
(SecureTOSBase); the results of this study are shown in Figure 10.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

774 . J. Regehr et al.

. compiler-generated prolog ...

bool intl5 = test_and_clear_15 (); // record previous state of
bool int18 = test_and_clear_18 (); // enable bits for interrupts
bool int20 = test_and_clear_20 (); // 15, 18, 20, and 21, then
bool int21 = test_and_clear_21 (); // disable them

__asm volatile ("sei"); // set master interrupt bit

. body of interrupt handler ...

__asm volatile ("cli"); // clear master interrupt bit
restore_15 (int15); // restore enable bits for
restore_18 (inti18); // interrupts 15, 18, 20, 21
restore_20 (int20); // to their previous states

restore_21 (int21);

. compiler-generated epilog ...

Fig. 11. Code added to interrupt handlers 15 and 21 in the TinyOS RfmToLeds kernel to prune
most of the edges leaving them in the interrupt preemption graph.

To implement the transformation that eliminates edges from the IPG, struc-
tured changes need to be made to the code implementing some interrupt han-
dlers. Figure 11 shows the code that is added to interrupt vectors 15 and 21
in the RfmToLeds kernel to eliminate all outgoing IPG edges except those
to vector 17. This code augments the compiler-generated prolog and epilog
code: the prolog must clear some individual interrupt enable bits after sav-
ing their states, while the epilog must restore these bits to their previous
states.

Though effective, our approach makes assumptions that may be unsafe, since
it is possible that we might miss a rarely occurring combination of events that
must be handled correctly in order to meet all of a system’s implicit real-time
deadlines. A more principled way to restrict interrupt preemption without vi-
olating real-time deadlines would be to use a real-time scheduling technique,
such as preemption threshold analysis [Saksena and Wang 2000]. However,
real-time analyses require inputs such as the deadline, minimum interarrival
time, and worst-case execution time for each interrupt handler. This informa-
tion is difficult to discover; we do not have it for the TinyOS software nor do we
know of anyone who does.

7. RELATED WORK

Our dataflow analysis is largely a combination of standard techniques. Analysis
of object code using a ternary logic appears to have first been done by Razdan
and Smith [1994] and Java virtual machines perform an intraprocedural stack
depth analysis [Lindholm and Yellin 1997]. Our contribution here lies in deter-
mining which combination of techniques obtains good results for our particular
problem.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Eliminating Stack Overflow by Abstract Interpretation . 775

The previous research most closely related to our work is the stack depth
analysis by Brylow et al. [2001]. Their analysis was designed to handle pro-
grams written by hand that are on the order of 1000 lines of assembly lan-
guage; the programs we analyze, on the other hand, are compiled and are up
to 30 times larger. Their contribution was to model interrupt-driven embedded
systems, but their method could only handle immediate values loaded into the
interrupt mask register—an ineffective technique when applied to software,
such as TinyOS, where all data, including interrupt masks, moves through
registers. Our work goes well beyond theirs through its use of an aggressive ab-
stract interpretation of ALU operations, conditional branches, etc., to track the
status of the interrupt mask. Also, Brylow et al. performed dataflow analysis
and whole-program stack-depth analysis in a single pass, limiting the scalabil-
ity of their approach. Our two-pass analysis is much more efficient, although
it sacrifices some precision when analyzing systems where interrupt handlers
enable other interrupts.

Palsberg and Ma [2002] provide a calculus for reasoning about interrupt-
driven systems and a type system for checking stack boundedness. Like us,
they provide a degree of context sensitivity (in their type system, this is en-
coded using intersection types). Unlike us, they model just the interrupt mask
register, which would prevent them from accurately modeling our motivating
example in Figure 3. The other major difference is that their focus is on the
calculus and its formal properties and so they restrict their attention to small
examples (10-15 instructions) that can be studied in detail. They also restrict
themselves to a greatly simplified language that lacks pointers and function
calls.

Chatterjee et al. [2003] analyze the time and space complexity of computing
stack bounds for interrupt-driven programs. They consider a range of possible
forms of interrupt handlers and show how the QSAT problem can be encoded
in the interrupt preemption graph, yielding the dispiriting result that merely
showing that a stack size bound exists is PSPACE-hard. This appears not to be
an unlikely theoretical worst case: the complexity of our stack depth algorithm
from Section 4 is exponential in the number of interrupt handlers, even for
programs that do not encode QSAT problems in their interrupt structure.

AbsInt makes a commercial product called StackAnalyzer [Heckmann and
Ferdinand 2002]. There is much overlap between our techniques and those
underlying StackAnalyzer: they both rely on abstract interpretation of object
code. At a higher level there is less overlap; StackAnalyzer supports multiple
architectures, while our tool does not. It also includes a graphical interface
for visualizing results, whereas our results are in text. On the other hand,
the most important feature of our tool is that it supports integrated analysis
of multiple interrupt handlers through estimation of the interrupt preemption
graph; StackAnalyzer does not provide any explicit support for interrupt-driven
systems.

Function inlining has traditionally been viewed as a performance optimiza-
tion [Ayers et al. 1997] at the cost of a potentially large increase in code size.
More recent work [Leupers and Marwedel 1999] has examined the use of inlin-
ing as a technique to reduce both code size and runtime. We are not aware of

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

776 . J. Regehr et al.

any previous work that uses function inlining specifically to reduce stack size
or, in fact, of any previous work on automatically reducing the stack memory
requirements of sequential code.

The relationship between the amount of preemption permitted by a system
and its stack memory requirements has been known to exist for some time.
For example, stack-based resource allocation [Baker 1990] is a protocol that
permits logically concurrent activities to share a single stack, saving memory.
More recently, Saksena and Wang’s work on preemption threshold schedul-
ing [2000] has permitted much more flexible tradeoffs between preemptive and
nonpreemptive scheduling, providing fine-grained control over response time
and stack memory usage. Finally, Gai et al. [2001] made use of preemption
threshold scheduling to save memory on an embedded multiprocessor. All of
these results have applied to thread-level scheduling; as far as we know there
is no previous work on restricting interrupt preemption relations in order to
reduce stack requirements.

8. CONCLUSION

The potential for stack overflow in embedded systems is hard to detect by test-
ing. We have developed a practical static analysis that can show that an em-
bedded system will not overflow its stack and demonstrated that the analysis
provides accurate results. Experiments show that modeling the enabling and
disabling of interrupt handlers using context-sensitive abstract interpretation
produces estimates that are an average of 19% lower than estimates produced
using the simpler approach of summing the individual stack requirements of in-
terrupt handlers and the main function. We have also demonstrated two novel
methods for reducing stack memory requirements. The first uses our analysis
to drive a search for function inlining decisions that reduce stack depth. Exper-
iments on a number of component-based embedded applications show that this
approach reduces stack memory requirements by up to 36% when compared
to aggressive global inlining without the aid of stack depth analysis. The sec-
ond method is an empirical approach to eliminating unnecessary preemption
relations from the interrupt preemption graph; we have shown that it reduces
stack depth by up to 28%.

We feel that our experience has uncovered several interesting facts about
embedded software for small processors. First, interrupt masks have a very
static structure: for the vast majority of instructions, the interrupt mask has
a known value across all possible executions, if the instruction’s calling con-
text is taken into account. Furthermore, a context-sensitive dataflow analysis
based on a bitwise abstract interpretation of object code, is capable of efficiently
discovering this static structure. Second, apparently innocuous features of an
architecture or compiler can make analysis gratuitously difficult, as in the
case of the nonatomic stack pointer manipulations discussed in Section 3.5,
or gratuitously easy, as in the case of the Harvard architecture that makes
self-modifying code into a non-issue. Finally, efficient extraction of useful re-
sults from static analysis of object code across a broad range of inputs is dif-
ficult. The design of the analyzer is more of an art than a science and many

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Eliminating Stack Overflow by Abstract Interpretation . 777

engineering compromises are required. In this paper, we have attempted to give
a sense of the various tradeoffs we made and false paths we encountered, in
order that subsequent developers of advanced tools for embedded systems can
benefit from our experience.

Source code for the stack analyzer is available under http://www.cs.utah.
edu/"regehr/stacktool/, and our global inliner can be downloaded from http:
//www.cs.utah.edu/flux/knit/cmi.html.

ACKNOWLEDGMENTS

The authors would like to thank Dennis Brylow, Eric Eide, Matthew Flatt,
Wilson Hsieh, Jay Lepreau, and Michael Nahas for providing helpful feedback
on drafts of this paper. This material is based upon work supported by the
National Science Foundation under Grant No. 0209185.

REFERENCES

ArrER, D. 2003. Online stack overflow detection on the TMS320C28x DSP. Texas Instruments
Application Note SPRA820. http://www-s.ti.com/sc/psheets/spra820/spra820.pdf.

AtEmu. 2004. Atemu: A sensor network emulator/simulator/debugger. Center for Satellite
and Hybrid Communication Networks, University of Maryland. http://www.cshcn.umd.edu/
research/atemu/.

AutopiLot ProJEcT. 2004. http://autopilot.sourceforge.net.

AvEers, A., GorTLIEB, R., AND ScHOOLER, R. 1997. Aggressive inlining. In Proc. of the Conf on
Programming Language Design and Implementation (PLDI), Las Vegas, NV. 134-145.

Baker, T. P. 1990. A stack-based resource allocation policy for realtime processes. In Proc. of the
11th IEEE Real-Time Systems Symp. (RTSS), Lake Buena Vista, FL. 191-200.

BavakrisaNAN, G. aND REps, T. 2004. Analyzing memory accesses in x86 executables. In Proc. of
the Intl. Conf. on Compiler Construction (CC), Barcelona, Spain.

Barerro, L. 2004. The AvrX real time kernel. http://barello.net/avrx.

BryrLow, D., DamcaARrD, N., AND PALSBERG, . 2001. Static checking of interrupt-driven software. In
Proc. of the 23rd Intl. Conf. on Software Engineering (ICSE), Toronto, Canada. 47-56.

CHATTERJEE, K., Ma, D., MAJUMDAR, R., ZHao, T., HENZINGER, T. A., AND PALSBERG, J. 2003. Stack size
analysis for interrupt-driven programs. In Proc. of the 10th Static Analysis Symp., San Diego,
CA. 109-126.

Cousor, P. anp Cousot, R. 1977. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proc. of the 4th Symp. on Principles
of Programming Languages (POPL), Los Angeles, CA. 238-252.

DEBRay, S., MutH, R., AND WEIPPERT, M. 1998. Alias analysis of executable code. In Proc. of the
25th Symp. on Principles of Programming Languages (POPL), San Diego, CA. 12-24.

EncBLOM, J. 1999. Static properties of commercial embedded real-time programs, and their im-
plication for worst-case execution time analysis. In Proc. of the 5th IEEE Real-Time Technology
and Applications Symp. (RTAS), Vancouver, Canada.

Gat, P, Lipart, G., AND D1 Natare, M. 2001. Minimizing memory utilization of real-time task sets
in single and multi-processor systems-on-a-chip. In Proc. of the 22nd IEEE Real-Time Systems
Symp. (RTSS), London, UK.

Gay, D., Levis, P., voN BEHREN, R., WELSH, M., BREWER, E., AND CULLER, D. 2003. The nesC lan-
guage: A holistic approach to networked embedded systems. In Proc. of the Conf. on Programming
Language Design and Implementation (PLDI), San Diego, CA. 1-11.

Heckmany, R. anp FerpivanD, C. 2002. Stack usage analysis and software visualization for em-
bedded processors. In Proc. of the Embedded Intelligence Congress, Nuremberg, Germany.

Hiwr, J., Szewczyk, R., Woo, A., HoLLAR, S., CULLER, D., anD Pister, K. 2000. System architecture
directions for networked sensors. In Proc. of the 9th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Cambridge, MA. 93-104.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

778 . J. Regehr et al.

LEupPERS, R. AND MARWEDEL, P. 1999. Function inlining under code size constraints for embedded
processors. In Proc. of the Intl. Conf. on Computer-Aided Design, San Jose, CA. 253-256.

LmvoroLM, T. anp YELLIN, F. 1997. The Java Virtual Machine Specification. The Java Series.
Addison-Wesley, Reading, MA.

PaLsSBERG, J. AND Ma, D. 2002. A typed interrupt calculus. In Proc. of the 7th Intl. Symp. on Formal
Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT), Oldenburg, Germany. 291-310.

Razpan, R. anp Smite, M. D. 1994. A high-performance microarchitecture with hardware-
programmable functional units. In Proc. of the 27th Intl. Symp. on Microarchitecture (MICRO),
San Jose, CA. 172-180.

REGEHR, J. AND REID, A. 2004. HOIST: A system for automatically deriving static analyzers for
embedded systems. In Proc. of the 11th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

Rem, A., Frart, M., STOLLER, L., LEPREAU, J., AND EE, E. 2000. Knit: Component composition for
systems software. In Proc. of the 4th Symp. on Operating Systems Design and Implementation.
Springer Verlag, San Diego, CA. 347-360.

SAKSENA, M. aND WaNng, Y. 2000. Scalable real-time system design using preemption thresholds.
In Proc. of the 21st IEEE Real-Time Systems Symp. (RTSS), Orlando, FL.

Received May 2004; revised January 2005; accepted January 2005

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

