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Localizing in Unstructured 
Environments: Dealing with the Errors 

Karen T. Sutherland and William 

Abstract- A robot navigating in an unstructured outdoor 
environment must determine its own location in spite of problems 
due to environmental conditions, sensor limitations and map 
inaccuracies. Exact measurements are seldom known, and the 
combination of approximate measures can lead to large errors in 
self-localization. The conventional approach to this problem has 
been to deal with the errors either during processing or after they 
occur. We maintain that it is possible to limit the errors before 
they occur. We analyze how measurement errors affect errors in 
localization and propose that a simple algorithm can be used to 
exploit the geometric properties of landmarks in the environment 
in order to decrease errors in localization. Our goal is to choose 
landmarks that will provide the best localization regardless of 
measurement error, determine the best areas in which to identify 
new landmarks to be used for further localization and choose 
paths that will provide the least chance of “straying.” We show 
the result of implementing this concept in experiments run in 
simulation with USGS 30 m DEM data for a robot statically 
locating, following a path and identifying new landmarks. 

I. INTRODUCTION 
ETERMINING locations in the environment is a major D task for an autonomous mobile robot navigating with a 

map. It must match the locations of specific objects on the 
map to sensed objects in the view, add the locations of new 
unmapped objects to that map and continually update its own 
location as it moves. An outdoor, unstructured environment 
presents unique challenges to a robot navigator, not the least 
of which involve these location determination tasks: 

Errors in distance traveled can be significant and un- 
predictable, compounding as the robot moves. Whether 
the robot is wheeled [23] or legged [6], terrain surface 
conditions exacerbate these errors for land vehicles, 
Kosaka and Kak, in their very thorough treatment of 
indoor navigation techniques [7], state that occasional 
wheel slippage inconsistent with the mathematical model 
was the believed cause of failure in their hallway ex- 
periments. In an unstructured environment, this type of 
error occurs frequently. 
The sensors commonly used in indoor navigation do not 
have a large enough range to be very useful outdoors. 
The accuracy of a compass or barometric altimeter 
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[23] is often affected by conditions such as magnetic 
fields or atmospheric pressures in the environment to 
the extent that these devices are not reliable. Thus, 
absolute bearings, registered to a map, may not be 
available. In that case, triangulation, a common method 
for determining locations that requires absolute bear- 
ings to two or more landmarks, cannot be used. The 
Navstar Global Positioning System (GPS) has often been 
promoted as an error free solution to the problem of self- 
localization. However, problems also exist with the use 
of GPS. The signals of the GPS satellites are corrupted 
by data noise, multipath errors, clock errors, atmospheric 
delays and instrument delays [29]. Averaging techniques 
such as the Extended Kalman filter are used to add 
differential corrections to the GPS measurements and 
improve accuracy [ 151. When using the Kalman filter in 
this type of application, the dynamic and observation 
models that are assumed are often incorrect due to 
causes such as cycle slips, leading to significant errors 
or possible nonconvergence in the filter results [12]. 
Atmospheric conditions also affect GPS. The signal 
strength is a function of the thickness of the air mass 
that the signal passes through [I]. Experiments have 
been conducted [26] during periods of snowfall and 
when ice clouds were present in the atmosphere. The 
phase delays caused by the ice clouds and snow were 
calculated. These errors vary according to such difficult 
to measure parameters as ice crystal size, density and 
orientation or the “wetness” of the snow. Ice clouds and 
snowfalls can lie between the signalling satellite and the 
receiver when weather conditions around the receiver 
are good and landmarks are in clear view. The visible 
horizon when GPS is used for navigation on land is 
approximately 25’ rather than the 5’ assumed when a 
vehicle is at sea. This can be even worse in an urban or 
mountainous setting [13]. Duerr [3] showed that a GPS 
receiver located in a valley can have a significant loss 
of accuracy for long periods of time. 
The objects that must be matched in an unstructured 
environment typically possess features that may be de- 
ceptively masked in the view. A common example of 
this is a mountain peak hidden by a subpeak. The errors 
caused by irregular terrain features such as this cannot 
be predicted or modeled. 
Errors due to the inherent limits of the sensors them- 
selves, such as discretization in images when a camera 
is the sensing device, are affected by the distance of 
the object from the camera and the focal length of the 
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lens. The wide-angle lens, often used in passive vision 
systems to acquire as large a view of the environment 
as possible, not only introduces distortion but, due to 
the large distance that each pixel represents, adds to 
discretization error. In addition, conditions such as fog 
surrounding a land navigator can cause image blurring 
and back-scattered noise much like particles suspended 
in the water around an undersea system [18]. This will 
adversely affect sensor accuracy. 

5) Maps contain errors. As an example, the location of 
the highest point of a significant peak is 200 meters 
off on one of the United States Geological Survey 
(USGS) Digital Elevation Maps (DEM’s) in our test data 
[24]. Navigation researchers working in small structured 
environments have a great deal of control over the maps 
they use. That is not the case for those working in large 
unstructured environments. 

Traditionally, errors in localization have been dealt with either 
during processing or after the fact. Errors are modeled and/or 
estimated. Some type of filter or maximum likelihood function 
is implemented to find a good location estimate from the 
combined noisy measurements. Most of these methods assume 
a specific error distribution and/or initial solution estimate. 
As an example, the often used Extended Kalman filter (EKF) 
assumes white Gaussian noise. Although the Kalman filter is 
guaranteed to converge, the EKF is not. It can easily fall into a 
local minimum if a good estimate of the solution is not avail- 
able in advance [17]. Due to the problems mentioned above, 
the initial solution estimates in an unstructured environment 
can be very poor. Even when convergence is possible, the 
number of measurements a filter requires to converge is often 
large due to the amount of error in those measurements. This 
factor is important when images must be taken and processed 
in real time. 

A combination of all of these problems leads to error being a 
significant discriminant between navigating in structured and 
unstructured environments. If robot motion could be better 
modeled, if a variety of accurate sensors were available, if 
the environment surrounding the navigator was conducive to 
signal transmission and if the objects sensed were bar codes 
rather than flora covered terrain, outdoor navigation would be 
much easier. Unfortunately, that is not the case. 

Our approach to navigating in an unstructured world has 
been to critically analyze the types of errors that will occur 
and, utilizing only those tools and techniques that are available 
in such environments, to exploit the geometric properties 
involved in the localization process so that steps can be 
taken to decrease the possibility of error before it occurs. The 
goal is to choose the landmarks that will provide the best 
localization regardless of measurement error, determine the 
best areas in which to identify new landmarks to be used for 
further localization and choose the paths that will provide the 
least chance of “straying.” The result is less error and greater 
success for whichever filter is used to handle the error that 
does exist. 

In the next section, we outline the problem that this work 
addresses, and review previous work dealing with both naviga- 
tion in outdoor environments and the geometric properties that 

we use. In Section 111, we analyze the localization error with 
which our robot is faced. Section IV describes the methods 
that we have used to choose landmarks for localization and 
robot movement and shows the results of implementing these 
methods in navigation simulations using USGS 30 m DEM 
data. Section V summarizes our results. 

11. OVERVIEW OF LOCALIZATION METHODOLOGY 

In this paper, we are considering the problem of a robot 
determining its own location on a map using the method of 
relative bearing, which requires angular measures to three or 
more landmarks in the environment. We consider the terrain 
map features and avoid paths that would, for example, take the 
robot over a mountain peak. However, we have not addressed 
the local problem of actual physical traversability of a given 
path since this often requires more knowledge than a terrain 
map contains. Our focus has been on decreasing error in 
localization rather than on path or “route” planning. 

In the previous section, we discussed which tools and 
measurements could not be dependably used. What do we 
have to work with? 

1) We have a map and a camera. We presume that a terrain 
map of the environment is available and that the robot is 
somewhere on this map. For simplicity, the only sensing 
device we are assuming available is a CCD camera. 
This is not to say that other sensing methods could 
not (or should not) be used. Using a combination of 
several sensors may be the best approach, as long as 
the environment is conducive to their use. Whatever the 
sensing method, the result is a noisy measurement with 
which we must deal. 

2 )  We have the landmarks. We are assuming that point 
landmarks have been identified in the view, matched 
to the map, and that their left to right order is known. 
One example of a point landmark is a mountain peak. 
Another example is a light beacon. Early work by 
Kuipers [9] showed that models of spatial memory based 
on sets of visible landmarks were useful in navigation. 
Although his TOUR model navigated in an outdoor 
structured setting, much of the later work in unstructured 
environments was based on his seminal ideas. 

Levitt and Lawton [ 1 I], demonstrated that navigation 
can be performed in spite of poor or missing quantitative 
data. They define landmarks as distinctive visual events, 
meaning that a landmark must define a unique direction 
in three-dimensional space and be visually re-acquirable. 
(Landmarks stand out and don’t move.) Their concept 
of using landmark pair boundaries (LPB’s), formed by 
joining all pairs of known landmarks by straight lines 
to divide the terrain into orientation regions, allowed a 
robot that had identified and ordered visible landmarks 
to navigate qualitatively (i.e., without a single global 
coordinate system). As shown in Fig. 1, if the landmarks 
have been identified and the order of the landmarks in 
the view is known, the robot knows which orientation 
region it is in. This is due to the fact that a complete or- 
dering of landmarks uniquely determines the orientation 
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region. Likewise, if it moves so that the landmark order 
changes, it knows that it has crossed one or more LPB's. 
It can thus move from one orientation region to the next 
as it proceeds toward a goal. This works particularly well 
when many landmarks have been identified, producing 
numerous relatively small orientation regions. 

It is also a concept used by both human and insect 
navigators. Pick et al. [16] in their experiments with 
self-localization in human subjects found that, although 
people were very poor at judging actual measurements, 
not one subject self-located on the wrong side of an LPB. 
Likewise, Collett et al. [2] have shown that the desert 
ant, Cutuglyphis spp., which does not lay pheromone 
trails, but navigates using landmarks, leams only which 
landmarks to pass and whether to pass on the left or on 
the right of each landmark. It is simply moving from 
one orientation region to another. 

3) We have the visual angles. We define the visual angle 
from a navigator to two point features as the angle 
formed by the rays from the navigator to each feature. 
A perfect estimate of the visual angle measure between 
two points in three-dimensional space constrains the 
viewpoint to a surface of revolution somewhat resem- 
bling a torus [ l l ] .  When the points can be ordered 
with respect to the viewpoint position and up is known, 
the viewpoint is restricted to half the surface. When a 
two-dimensional approximation of the environment is 
assumed, the viewpoint is restricted to the perimeter of 
a slice of the torus. Likewise, knowing the order of the 
landmarks with respect to the viewpoint constrains the 
viewpoint to one arc of that perimeter. Fig. 2 gives an 
example of this constraint. 

4) We have the geometry. The geometric relationships be- 
tween the landmarks and the visual angle measures from 
the viewpoint to those landmarks can be combined to aid 
in robot localization and navigation. As shown in Fig. 3, 
knowing the landmark ordering and the exact visual 
angle measure from the viewpoint to three landmarks 
in two-dimensional space constrains the viewpoint to 
the intersection of two circular arcs. This intersection 
is a single point unless all three landmarks and the 
viewpoint lie on the same circle. Thorough analyses of 
error-free localization in a two-dimensional environment 
can be found in [SI, [ l l ] ,  [19], [20]. Fig. 4 shows 
the comparable intersection of the two half torus-like 
figures for a three-dimensional environment. In this case, 
adding a third landmark does not uniquely determine the 
viewpoint, but constrains it to the curve of intersection 
shown on the right of the figure. Since it is highly 
unlikely that the terrain would intersect this curve in 
more than one point (a requirement for the location 
of a navigator traveling on terrain to be ambiguous), 
it can be assumed that knowing the visual angle to 
three landmarks will, in most cases, provide exact lo- 
calization for a terrain-bound robot [21]. However, a 
vehicle not restricted to movement on the terrain may 
be unable to localize exactly with the use of only three 
landmarks. 

Fig. 1. Lines joining the landmarks divide space into orientation regions 
such as the shaded area in the foreground. Knowledge of the landmark order 
determines in which orientation region the robot lies. 

(a) (b) 

Fig. 2. Knowing the visual angle between two landmarks A and B in a 
three-dimensional environment restricts the viewpoint V to the surface of a 
torus-like figure as on the left. If a two-dimensional approximation of the 
environment is assumed, the viewpoint lies on the perimeter of a slice of the 
torus, as shown on the right. When the landmarks can be. ordered with respect 
to the viewpoint position, the viewpoint is constrained to half the torus (if up 
is known) or to one of the circular arcs. 

111. THE AREA OF UNCERTAINTY 

If the visual angle measure is not exact but within a 
given range, the angle measures to three landmarks constrain 
the location to an area on the terrain or volume in three- 
dimensional space. We define the area of uncertainty to be 
the area in which the navigator may self-locate for a given 
error bound in the visual angle measure. 

When a two-dimensional approximation of the environment 
is assumed, any given error bound in visual angle estimate 
will constrain the viewpoint to a thickened ring, as shown 
in Fig. 5(a). The thickness of the ring is determined by the 
amount of error [8], [ll]. When three landmarks are used, any 
given error bound in estimate constrains the viewpoint to the 
intersection of two such rings [lo], [ l l l ,  [201.' 

In Fig. 5(b), the visual angles from the viewpoint V to AB 
and BC are both 45". The dark lines surround the area of 
uncertainty that represents an error bound of f13.5" or f 
30% in both visual angles. Although the landmarks will not 
always be in a straight line, the visual angles will not always 

from each other can be computed, but it does not affect area size. 
' A  third ring passing through the two landmarks lying at greatest distance 
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/ 

(a) (b) 

Fig. 3. Knowledge of the visual angles from the viewpoint V to three 
landmarks A, B and C in two-dimensional space uniquely determines the 
viewpoint, as shown on the left, unless all landmarks and the viewpoint lie 
on a single circle, as shown on the right. 

r I 

(a) (b) 
Fig. 4. Knowledge of the visual angles from the viewpoint to three land- 
marks in three-dimensional space constrains the viewpoint to the curve of 
intersection of the toroids on the left. This curve is projected to a unique 
point on a two-dimensional plane as on the right. 

be identical and the navigator will not always make the same 
error in estimate of each angle, the resulting area of uncertainty 
will always equal the intersection of these two rings. 

For a robot traveling on terrain, the landmarks may differ 
in elevation from each other as well as from the navigator. 
This difference will affect the size and shape of the area of 
uncertainty. Fig. 5(c) shows an example of the difference that 
elevated landmarks can make in the area of uncertainty. The 
visual angles from the viewpoint V to AB and BC are both 
45". The smaller area on the plane is the area of uncertainty 
for planar angles of 45" and an error bound of f l O "  or 
f22% if the landmark points were at the same elevation as 
the viewpoint. The larger area is the actual area of uncertainty 
for this configuration given the same error bound .in visual 
angle measure. 

In addition to the amount of error and the landmark height, 
the landmark configuration alone can cause a significant 
change in the size and shape of the area of uncertainty. 
Fig. 6 shows four different configurations. The visual angles 
from the viewpoint to each landmark triple are identical in 
all four situations, as are the bounds on the measurement 
error. Yet, the areas differ greatly in both size and shape. 
If the robot had a choice of configurations to use for 
localization, the configuration in Fig. 6(b) should clearly be 
chosen. This difference is caused by the angle and location 
of the intersection of the two thickened rings. When all three 

Fig. 5 .  In a two-dimensional approximation of the environment, the error in 
the visual angle estimate to two points constrains the viewpoint V to (a) a 
thickened ring. When three points are used, the viewpoint is constrained to (b) 
the intersection of two such rings. When traveling on terrain, (c), landmark 
elevation affects the size of this intersection. 

landmarks and the viewpoint lie on the same circle, the rings 
are coincident, leading to the worst possible localization. 

The question arises as to whether or not better localization 
could be attained with more than the minimal three landmarks. 
Levitt and Lawton [ 1 11 showed experimentally that, in general, 
localization is sensitive to the number of landmarks used. 
However, they assumed that a large number of landmarks 
were available. Their results compare localization using up 
to 20 landmarks. Twenty landmarks provide 1140 different 
ordered triples. Indiscriminately adding more landmarks may 
eventually produce good localization, but the process of adding 
a landmark does not guarantee improvement. Fig. 7 shows 
two examples of situations where the benefit of adding more 
landmarks is questionable. 

In the figure on the left, the innermost area corresponds 
to the most widely spaced landmarks, A', B and C', while 
the larger area results from localizing using the inner three 
landmarks, A, B and C. The error bounds were f 30%of visual 
angle measure for both configurations. A multiplicative error 
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the two, it is clear that some configurations will not improve 
localization. 

To summarize, both the size and the shape of the area 
of uncertainty are affected by error amounts and landmark 
positions, lateral as well as vertical, relative to each other and 
to the viewpoint. 

In addition to the differences in the area of uncertainty size 
and shape, the distribution of viewpoint estimates is not totally 
determined by the distribution of the error in angle measure. 
This is most easily seen by considering the distribution of 
viewpoint estimates within the area of uncertainty when the 

on the left of Fig. 8, the area is divided into sections, each 
representing a combination of errors in the estimations of the 
visual angles a, from the viewpoint to landmarks A and B, 
/3, from the viewpoint to landmarks B and C, and y, from the 
viewpoint to landmarks A and C such that y = a + ,#. 

Table I shows which conditions hold in each section. For any 
landmark configuration, these sections are not of equal size, 
resulting in a non-uniform distribution of viewpoint estimates 
across the area of uncertainty. The relative size of each section 
is dependent on the landmark configuration as well as the 
bounds on the visual angle errors. However, the probability of 
a given estimate lying within a section is dependent only on 
the error bounds. If /3 ranges from P - t p  to p+cp and a ranges 
from a - E ,  to a + E ,  where all ~i > 0, a joint probability 
distribution diagram, as shown on the right of Fig. 8, can be 
used to show how the probability of an estimated viewpoint 
lying within each of the numbered sections does not depend 

figure. If er; is the error in angle i, the top half of the square 
represents er, > 0, the right half of the square represents 

on the size of the sections in the figure. The numbers in 
the diagram to the numbers Of the sections in the 

A 

C 

(a) 

A 

? :  
0 error in angle measure is uniformly distributed. As shown 

(3 

a 
(b) 

A 

C 
a 

(c) 
a :  

(dj 

Fig. 6. The area of uncertainty will vary with landmark configuration: a) 
landmarks in a straight line b j  center landmark pushed forward c j  center 
landmark pushed backward d) observer off the line of symmetry of the 
configuration. All visual angles and error bounds are the same. 

was used in order to show that the difference in area size is 
significant even for the most favorable error model. Because 
the most widely spaced landmarks, with corresponding larger 
visual angles, provided the best localization, an additive error 
model would make the difference even greater. The visual 
angles to A and B and to A' and B are 30' and 56.3', re- 
spectively. Thus, 30% of each produces additive error bounds 
of 9" and 16.9". If we used a f 9 "  error bound, the smaller 
area, produced by A', B and C', would decrease. If we used 
a f16.9" error bound, the larger area, produced by A, B and 
C, would increase. 

In the figure on the right, the area surrounded by 6 arcs 
corresponds to using landmarks A, B and C with the viewpoint 
inside the configuration. The area surrounded by 4 arcs cor- 
responds to using landmarks A, B', and C. The error bounds 
were f12'  of visual angle measure for both configurations. 
For this example, we used an additive error model. A mul- 
tiplicative error would put the AB'C area completely inside 
the ABC area. Even with using a conservative additive bound, 
combining estimates for the two configurations could easily 
lead to worse localization than using only the AB'C area, 
particularly for a navigator attempting to stay on a narrow 
path while heading toward landmark B'. Whether the error 
is additive, multiplicative or (most likely) a combination of 

erp > 0, and the diagonal line represents er-, = er, +er@ = 0. 
Note that the diagram has been drawn to match the equal error 
bounds on a and P for this particular figure. When equality 
does not hold, the square becomes a rectangle. Sections 1 and 
4 in the figure are significantly different in size. However, 
the corresponding areas in the diagram are of equal size. 
The probabilities can be easily computed as in the following 
examples: 

Prob(a, /3, yoverestimate) = 

or: 

E p * &  - 1 _ _  - - 
Areal 

TotalArea ~ * E P  * E ,  4 

1 - 2 - _  
TotalArea 4 * ~ p  * E ,  8 

- - Area5 
Prob(P, yunder, aover) = 

This analysis was corroborated by a number of trials, 
assuming a uniform error distribution in visual angle measure 
for several different configurations.2 The result shown in Fig. 9 
is for the same landmark configuration and error bounds 
used in Fig. 8. The true viewpoint is at the large black 
point. In the 10000 iterations for each trial, the highest 
multiplicity of a single estimated viewpoint location was four. 
As predicted, sections 1 and 4, although quite different in 

2The error amounts for all experiments were generated using an implemen- 
tation of the Wichmann-Hill algorithm [28]. 
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6 

f 

E 
(a) (b) 

Fig. 7. 
A', B and C', produce the smallest area. In the example on the right, the area surrounded by 4 arcs resulted from using landmarks A, B', and C. 

It is not necessarily the case that the more landmarks used for localization, the better. In the example on the left, the most widely spaced landmarks, 

' a  

0 

-' a 

Fig. 8. Uncertainty due to error in the visual angle measure: On the left, arcs 
of the circles divide the area of uncertainty into six sections. The landmarks 
are at A, B, and C. The viewpoint is at V. a is the visual angle from the 
viewpoint to A and B. P is the visual angle from the viewpoint to B and C. 
On the right is a diagram of the joint probability distribution. The numbers in 
the diagram correspond to the numbers in the figure on the left. 

TABLE I 
WHICH VISUAL ANGLES ARE UNDER- OR 

OVERESTIMATED IN EACH OF THE SIX -AS OF FIG. 8 

Area Overestimate Underestimate 

*Angle a is the angle from A to B with vertex V. Angle 0 is the angle from 
B to C with vertex V. Angle y is the angle from A to C with vertex V. 

size, each contained approximately one quarter of the points, 
leading to the less dense distribution in the left section of 
Fig. 9. 

Fig. 9. Assuming uniform distribution of error in visual angle measure, 
distribution of points within the areas of uncertainty is affected by the shape 
of that area. Each small point represents 1 of 10 OOO iterations. The actual 
viewpoint is at the large black point. The example shown is for the area of 
uncertainty diagrammed in Fig. 8. 

Although there is no central tendency in the two- 
dimensional distribution around the true viewpoint, one could 
assume that the viewpoint is at the origin with the x-axis 
horizontal through the middle of the area, as shown in Fig. 9. 
Consider the distribution of points along either the x or y axes, 
as shown in Fig. 10(a) and 10(b). There is a definite central 
tendency in point distribution relative to either axis. However, 
if the robot is heading at a 45' angle counterclockwise from 
the above assumed positive z-axis, the distribution of its 
location, as shown in Fig. lO(c), is close to uniform across 
the path. Thus, whether or not there is any central tendency 
in a one-dimensional sense depends on the direction of the 
one-dimensional slice. 

If a normal distribution of error in the visual angle measure 
is assumed, the distribution around the true viewpoint will 
exhibit a central tendency combined with the same skewing 
shown for the uniform distribution. In any case, if the amounts 
of under and overestimate in the angle measure are equal, the 
area in which an overestimate lies is smaller than is that for 
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100- 

8 0 .  

60. 

4 0 .  

20: 

Or 

or trajectory, the traversability of the path and localizability. 
It is the localizability (estimate of position and orientation) 
with which we are concemed. Using the method of relative 
bearing and assuming that we have a given number of visible 
landmarks that can be used to localize, our goal is to obtain 
the best localization possible at the least cost. 

A part of that cost will be due to the method with which 
sightings are taken and processed. Although the development 
of active vision systems has progressed significantly in the last 

100. 

80. 

6 0 -  

4 0 -  

2 0 .  

0 .  

Distribution along skewed axis 
(C) 

Fig. 10. The distribution of points along the z-axis, the y-axis and along an 
axis rotated 4.5’ counterclockwise from the z-axis. 

on a robot that changes orientation in order to take more views 
has the same problem, compounded by robot motion adding 
to positioning error. Our example in Section I11 showed that 
using landmarks surrounding the viewpoint to localize does not 
necessarily give better localization. For all of these reasons, 
we have chosen to deal with landmarks that are visible within 
a 90” angle to each side of the robot’s heading. 

1 

a corresponding underestimate, leading to the conclusion that 
it may be better to overestimate. 

Throughout this analysis, we have assumed a uniform 
error distribution in the visual angle measure. This does 
not necessarily mean that we believe error to be uniformly 
distributed. A case could be made for running experiments 
in these environments and developing an error model such 
as those described by Mintz et al. [5], [14] for indoor use. 
However, many of the errors we must handle are due to 
environmental conditions. Weather, humidity levels, undersea 
thermal vents, fog, etc. will all affect the error. An error model 
developed under one set of conditions may not be appropriate 
when those conditions change. By assuming a large bound on 
a uniformly distributed error, we believe that whatever error 
occurs is likely to be a subset of that which we assumed. 

Iv .  STRATEGIES FOR LOCALIZATION 
Navigation, as defined by Gallistel [4], is the “process of 

determining and maintaining a course or trajectory from one 
place to another.” This process can be viewed in terms of a 
cost function that includes such factors as the length of the path 

As shown in Section 111, the intersection of two areas of 
uncertainty is not always smaller than each of them. When 
processing sensor feedback in real time and having to possibly 
search for and identify new landmarks, the assumption of 
the more landmarks the better is not necessarily true. The 
navigator does not know what the intersection of the areas is. 
If it uses more than one landmark triple, it can only average its 
results. In preliminary work [21], we estimated the viewpoint 
in two different heading directions and averaged the results. 
We later found that localization with only one measure taken 
from a “good” landmark configuration was, in most cases, 
better than the average of the two. 

We then ran a sequence of experiments comparing the re- 
sults of using multiple ordered triples from a set of landmarks 
and taking only one measurement using a good triple. All 
experiments were run in simulation using topographic map 
data. The outcome of a typical run is in Table 11. Triples 
of landmarks were picked from a group of five. A random 
error with uniform distribution within the given bounds was 
added to the angle measure for 100 iterations. The table shows 
the number of iterations (as a percent) in which the given 
combination of triples produced an estimated viewpoint closest 
to the actual one. This does not, of course, account for the cost 
of processing the additional sensor readings. In this particular 
run, the good triple of landmarks was also included in the 
2 Triple and 5 Triple sequences. When the triples in these 
sequences were not very good for localization, the results were 
even more biased toward using the good triple alone. Fig. 11 
shows the view and the map with the landmarks marked that 
were used for the run summarized in Table II.3 The navigator 
is located at the star in the foreground. The landmarks creating 
the “good” triple are marked by triangles. 

It is important to keep in mind the fact that, although in 
a probabilistic formulation adding more data should produce 

3The figure shows a contour map of an area southeast of Salt Lake City, 
UT, generated from USGS 30 m DEM data. 
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TABLE JJ 
PERCENTAGE OF 100 ITERATIONS m R  WHICH GIVEN 

COMSINATION OF LANDMARK TRIPLES PRODUCED AN 
ESTIMATED VIEWPOINT CLOSEST TO THE ACTUAL VIEWWINT 

Angle error “Good“ triple 2 triples* 5 triples 10 triples 
~ 

10% 71% 20% 1% 8% 
20% 12% 22% 2% 4% 
30% 67% 21% 1% 11% 

*In all cases, the 2 Triple and 5 Triple columns included the “Good” Triple. 

Fig. 1 1 .  The five marked mountain peaks in the view correspond to points 
on the map. The navigator is at the star in the foreground. The good triple 
is marked by triangles. 

better results, unless there is a large amount of data to be 
added, which is most often not the case, one poor estimate 
can easily skew results. With the single assumption being that 
the error in the visual angle measure is bounded by a given 
amount, the only available knowledge is that the estimated 
viewpoint lies within some area of uncertainty, the size and 
shape of which is unknown. If, as on the left of Fig. 7, one area 
was nested inside another and viewpoints were estimated using 
both triples, an estimated viewpoint using the configuration 
that produced the smaller area would have to be somehow 
combined with the viewpoint estimated using the configuration 
that produced the larger area. Assuming a uniform distribution 
in the error in the visual angle measure, the estimate lying 
somewhere within the outer area is most likely outside the 
inner area and will negatively affect the accuracy of any 
estimated viewpoint within that inner area. 

These results convinced us that exploiting the geometric 
properties of a few identified landmarks rather than assuming 
that numerous landmarks had been identified would help 
minimize our cost, particularly since the number of significant 
landmarks in outdoor environments is usually quite small and 
identifying landmarks in large-scale space is a difficult and 
time consuming task [25]. 

B.  What Makes a Configuration “Good?” 
If the navigator does take only one measurement using 

a “good” configuration of landmarks, how does it pick that 

configuration without knowing its own location? We claim that 
knowledge of the landmark map location and the landmark 
viewing order, together with knowing that the viewpoint is 
located somewhere on the map, is sufficient for choosing good 
configurations. As was stated in Section 11, when the robot 
passes from one orientation region to another, the landmark 
order changes. Since the computation of the area of uncertainty 
is dependent on the landmark order, the area will always 
be bounded by the orientation region formed by those three 
landmarks used for localization. Our algorithm begins by 
picking the triple of landmarks that produces the smallest 
orientation region on the map. (See Fig. 1.) An estimate, V ,  
of the viewpoint is made using this triple. 

Incorporating the following constraints, based on the error 
analysis of Section 111, we have developed a “goodness” 
function to weight configurations. 

1) If all triples produce the same orientation region (e.g., all 
landmarks lie on a straight line), the most widely spaced 
landmarks should be chosen. The effect that this spread 
has on the size of the area of uncertainty is illustrated 
in Fig. 7. 

2) It follows from the previous point that the spread of 
the outer two landmarks relative to their distance to the 
viewpoint affects area size in all cases, not only when 
the landmark configuration is a straight line. 

3) The closer a configuration is to a single circle (i.e., all 
landmarks plus the viewpoint on one circle), the greater 
the error in localization. An ongoing rule of thumb is to 
avoid anything near a single circle configuration. 

4) The relative distance of the center landmark to the 
viewpoint compared to the distance of a line passing 
through the outer two landmarks to the viewpoint will 
affect the area size. The closer the center landmark is to 
the viewpoint, the better the localization. 

5) Localization improves as the center landmark moves 
further back (away from the viewpoint) from the cir- 
cle passing through the viewpoint and the outer two 
landmarks. 

6 )  If the robot is moving rather than locating statically, the 
direction in which it chooses landmarks for localizing 
can affect the distance that it “strays” laterally from 
its path. The effect of the direction in which a one 
dimensional slice of the two-dimensional distribution is 
taken was shown in Figs. 9 and 10. 

This heuristic function uses the locations of landmarks A, 
B, C and the estimated viewpoint V .  If the robot is moving 
and wishes to minimize lateral distance from the path, the next 
point on the path, P, is also used. The larger the function value, 
the better the configuration. Although V is not necessarily the 
true viewpoint, our experiments have shown that this function 
discriminates in such a way that a good configuration to be 
used for localization can be determined using this estimate. Let 
A = ( A X ,  Ay, Az) ,  B = (Bz ,  Bg, Bz) ,  C = (Cz, Cy, Cz) ,  
V = (Vz, Vy, V z ) ,  P = ( P z , P y , P z )  be the projections 
of the landmark points, the estimated viewpoint V and the 
next path point P on a horizontal plane. Let I be the point 
of intersection of the line through V and B with the circle 
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h =  (IC 

Fig. 12. 
urations. 

Simple geometric relations can be used to rank landmark config- 

+1)-1 

(d(V, P)2 + d(V, B)2 - d(P, B)2)2 

2 * d(V, P)2 * d(V, B)2 - ll 
w = a l  

The function consists of three parts: 
1) The h function weighs the elevation of the landmarks 

compared to the elevation at point V .  It is nonnegative 
and attains its maximum of 1 when the average elevation 
of the landmarks is equal to the elevation at V .  An 
example was given in Section I11 showing how land- 
marks at elevations higher than the viewpoint produce 
an area of uncertainty larger than that produced if they 
were all at close to the same elevation. As the difference 
between the average elevation of the landmarks and the 
elevation of the viewpoint increases, the value of the h 
function decreases. So that it does not go to zero too 
quickly, the value of the constant k must be determined 
by the units in which the elevations are measured and 
the maximum difference in elevations in the area. The 
latter information is available from the map. Due to the 
fact that our elevation data was in meters, k was set to 
.005 in the experiments we describe here. 

2) The f function, nonnegative and piecewise continuous, 
has the major effect on the goodness measure. It is based 
on the size of the area of uncertainty for the projected 
points. The continuity of the function was maintained 
so that small changes in positions would not produce 
jumps in function value. Note that, for any landmark 
triple and viewpoint position, a diagram such as that 
shown in Fig. 12 can be drawn. A circle passes through 

the outer two landmarks, A and C, and the estimated 
viewpoint, V. A line joins the outer two landmarks. A 
second line passes through the estimated viewpoint and 
the center landmark. The center landmark, B, can be 
located anywhere along that line. We labeled the point 
where that line intersects the AC line as L and the point 
where it intersects the circle as I. 

We split the line joining V and B into three sections, 
each corresponding to a piece of the piecewise defined 
functionf. The first definition holds if B is on or outside 
the circle. The second definition holds if B is inside the 
circle and either on the AC line or further from V than 
that line. The third definition holds if B lies on the same 
side of the AC line as V. 

Holding to the third constraint to avoid anything close 
to a single circle configuration, the factor d(V: B )  - 
d(V, I )  produces 0 for the value off when B is on the 
circle. This factor also appears (reversed) in the second 
piece of the f function. Thus, as B approaches I from 
either direction, the value off goes to 0. This factor was 
not necessary in the third piece of the function since B 
cannot be on the circle if it is on that section of the line. 

Holding to the second constraint that the wider the 
spread of the outer two landmarks relative to their 
distance from the estimated viewpoint, the smaller the 
area of uncertainty, the factor - was included in 
the first two pieces off. This factor was modified for 
the third piece of the function with d(V, B )  replacing 
d(V, L )  in the denominator. Thus, f would not only 
increase in value as the outer two landmarks moved 
further away, but also increase as B moved closer to 
V. This satisfies the fourth constraint. 

If B lies on the AC line, f = m. The function 
then increases in value as the distance between the outer 
two landmarks increases relative to the distance from the 
landmark line to V. This satisfies the first constraint. 

The fifth constraint is satisfied by the same factor, 
d(V, B )  - d(V, I ) ,  which goes to zero as B approaches 
the circle. As B moves away from the circle and the area 
of uncertainty decreases in size, this factor will increase. 
However, as shown in Fig. 6,  B must move further back 
from the circle to have an area of uncertainty similar in 
size to that obtained when it moves a given distance from 
the circle toward V. Although the relationship is not 
linear, we have found that for the range of configurations 
that occurred in our trials, the factor 3 does a good job 
of equally rating two configurations that produce similar- 
sized areas of uncertainty where one has B positioned 
toward V and the other has B outside of the circle. 

3) The w function, which addresses the sixth constraint, 
is used by a moving navigator wishing to minimize 
the lateral distance from the path. It is nonnegative, 
continuous, attains its maximum of a when the angle 
from V to the heading and the center landmark is either 
0" or 90" and equals zero when the angle from V to the 
heading and the center landmark is 45". To obtain this 
function, we used the cosine of twice the angle from V 
to the heading and the center landmark. Since, for any 
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Fig. 13. 
est orientation region on the map. 

The algorithm begins by picking landmarks that produce the small- 

angle 8 ,  cos 28 ranges from 1 to -1 as 8 ranges from 
0" to 90" and takes the value 0 when 8 = 45", lcos281 
attains a maximum of 1 at 0" and 90" and a minimum 
of 0 at 45" 

By a trigonometric identity: 

lc0~281 = 1 2 * ~ 0 ~ ~ 8 - 1 1  

By the Law of Cosines, this equals: 

(d(V, P)2 + d(V, B)2 - d(P, B)2)2 I 2 * d(V, P)2 * d ( V ,  B y  - ll 
We set a = 1 for our moving navigator experiments. 
This function is sensitive to the one-dimensional distri- 
bution across the area of uncertainty described in Section 
111. 

Fig. 13 shows the same map and landmarks as shown in 
Fig. 11 with the identified set of landmarks marked by large 
dots and three of the ten LPB's drawn on the map. The 
landmark labels run across the top of the map directly above 
the corresponding landmarks. A navigator located at the star 
in the foreground of the map views the landmarks in the order 
A, B, C, D, E. A navigator located at the star near the top 
views the landmarks in order D, E, C, B, A. 

The algorithm is implemented in the following way: 
Step I: The navigator in the foreground will choose land- 

marks A, B, and C (in that order) to determine the estimated 
viewpoint V. The navigator, knowing landmark order, knows 
its own orientation region and therefore knows that these three 
landmarks, when used alone, produce the smallest orientation 
region. (Note that the smallest region for the navigator at the 
top of the map is the one also formed by those landmarks, but 
in the order C, B, A.) 

Step 11: The navigator then estimates the viewpoint V 
using these landmarks. This estimated viewpoint is used in the 
goodness function. Table I11 shows the results. The navigator 
will estimate its location using configuration BCE. This is the 
"good" configuration that was used for the run summarized 
in Table 11. 

Our heuristic function is not guaranteed to always provide 
the best localization. However, it is easy to implement, intu- 

TABLE I11 

IN  FIG. 13 WILL ESTIMATE ITS LOCATION USING CONFIGURATION BCE 
BASED ON THESE RESULTS, THE NAVIGATOR IN THE FOREGROUND OF THE MAP 

Configuration Rating Configuration Rating 

ABC .61 ADE .46 
ABD .4 BCD 1.13 
ABE .58 BCE 1.41 
ACD 1.13 BDE .42 
ACE 1.29 CDE .14 

Fig. 14. Scatterplots of 100 viewpoint estimates for the viewpoint shown in 
the foreground of Fig. 13. The plot on the left is the result of localizing using 
a good landmark configuration. The plot on the right is the result of choosing 
configurations at random. The map boundaries were 4278908, 4482180N by 
452160E3, 4498320N UTM coordinates. The maps are shown with east toward 
the top. 

itive in its method of rating, computationally inexpensive and, 
in general, does a good job. We compared the performance of 
our algorithm with indiscriminate choice of landmarks to be 
used for localization both for a robot statically locating and 
self-locating while moving on a path. We assumed at all times 
that the robot was terrain-bound. All landmarks used were 
actual mountain peaks with locations and elevations taken 
from USGS 30 m DEM data. 

C .  Static Localization 
The set of identified landmarks for the static localization 

experiments was five, providing ten different combinations 
of ordered landmarks. The identified landmarks for each 
experiment were chosen based on location relative to the 
viewpoint. All landmarks could theoretically be seen from 
the viewpoint location. Multiple runs of 100 iterations each 
were made at different locations and with different groups of 
five landmarks. A random error with a uniform distribution 
bounded by f20% of visual angle measure was added to all 
angle measures. Fig. 14 shows scatterplots for the run that 
was done using the configuration shown in Fig. 13 with the 
actual viewpoint at the star in the foreground. The plot on 
the left is the result of using a good landmark configuration 
to localize. The plot on the right is the result of choosing 
configurations randomly. Table IV shows mean distance and 
standard deviation in meters from the actual viewpoint for a 
sampling of runs done on one map, including that plotted in 
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TABLE IV 
RESULTS OF A SAMPLING OF LOCALIZATION 
RUNS USING THE MAP SHOWN IN FIG. 14* 

Good choice Random choice 

Mean Standard Mean Standard 
Location distance deviation distance deviation 

430560E,4494240N 1264.89 513.12 3237.74 2726.13 
438840E,4486290N 402.73 202.35 688.74 478.83 
430620E.4488210N 1142.44 670.81 3136.97 2520.50 
445830E.4487340N 1368.04 1136.07 2876.42 3288.25 
443460E,4496760N 987.45 358.96 1185.76 819.96 

*Each run was of 100 iterations. The map boundaries were 427890E, 
4482180N by 452160E. 4498320N UTM coordinates. 

Fig. 14. The wise choice of landmarks consistently performed 
better than a random choice. 

D. Localization for a Moving Robot 

In our experiments with simulated runs of a moving robot, 
we assumed that the navigator knew the map locations of 
points that defined the path as well as the landmarks and the 
landmark order with respect to the initial navigator location. 
Results for one example are shown in Fig. 15 and in the 
sequence of frames in Fig. 16. Each frame in this example 
represents an area approximately 18 by 12 kilometers with the 
lower left corner corresponding to UTM coordinates 427020E, 
4497780N, southeast of Salt Lake City, UT. North is to the 
left of each frame, and east is toward the top. As in the static 
localization experiments, all landmarks were visible from the 
given path. The eight landmarks used for these trials provided 
56 different combinations of ordered landmark triples. 

The two navigators begin by using their knowledge of 
landmark order to determine the smallest orientation region in 
which they are located. They use the landmarks that form that 
region to estimate their initial location. Those three landmarks 
are shown as triangles in Fig. 15. The estimated location (the 
same for both navigators) is shown by the empty square. The 
desired path is shown by a dotted line. The goal is marked 
by a star. The sequence of frames in Fig. 16 shows each step 
as the navigators progress toward the goal. A configuration of 
three landmarks to use for localization (triangles) is chosen. 
The viewpoint (empty square) is estimated and a move is made 
toward the next path point (line ending in a solid square). The 
sequence on the left shows a wise choice of landmarks. The 
landmarks are chosen randomly in the sequence on the right. 

The landmarks used by the navigator on the right in the 
first frame are not as widely spaced as those used on the 
left. In addition, the center landmark lies behind (with respect 
to the navigator) the line joining the outer two landmarks 
whereas the center landmark on the left lies in front of that 
line. These conditions result in a larger area of uncertainty for 
the configuration on the right and somewhat poor localization. 
This error is made up for in the second frame, but a large error 
in estimation occurs in the last frame. The reason for this is 
that the actual navigator location (from which the estimate 
was made) and the three landmarks chosen are very close to 
being on a single circle. The visual angles themselves in the 
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Fig. 15. The eight points at the top of the figure represent the eight landmarks 
used for localization. Both navigators start at the solid square on the lower 
left. The viewpoint is estimated (empty square) using the three landmarks 
(triangles) that produce the smallest orientation region. The desired path is 
shown as a dotted line. The goal is marked by a star. 

corresponding third frames are quite similar: 28’ and 45’ on 
the left and 42’ and 28” on the right! 

The three pairs of frames in Fig. 17 show navigator po- 
sitions for 50 trials, assuming uniform distribution of error 
within f20% in visual angle measure and no error in move- 
ment, error within f30% in visual angle measure and no error 
in movement, and error within f 2 0 %  in both visual angle and 
direction and distance of move.5 The clustering around the 
path points is quite marked on the left, the result of using our 
algorithm to choose landmark configurations. 

Table V gives the results for all three cases after 100 trials 
each. All distances have been rounded to the nearest meter. 
“Mean Extra Distance Traveled” is the average number of 
meters f total path length that each navigator traveled. Due 
to the fact that paths in unstructured environments are seldom 
straight, the total distance traveled does not necessarily reflect 
how well the navigator stayed on the desired path. For that 
reason, we also recorded the distance of each path segment 
of the desired path to that of the actual path taken. The 
perpendicular distance of the midpoint of the desired path 
segment to the actual path segment taken was computed for 
each segment. The average of all these distances is given in 
the table as “Mean Distance to Path.” This gives an indication 
of the lateral distance of each navigator to the desired path. 
“Mean Distance to Goal” is the average distance to the goal. 
The navigator that used our algorithm traveled less, remained 
closer to the path and ended closer to the goal than the second 
navigator. It is important in this type of environment that, 
when better localization at the goal is needed, the navigator 
is close enough to that goal to exploit local constraints. The 
navigator who chose landmarks wisely should be able to use 
local constraints in all three sets of trials. It is questionable 
if the second navigator, averaging a minimum of two miles 
away from the goal, will be able to take advantage of such 
constraints. 

4The landmark elevation affects the visual angle measure. That is why the 
sums of the angles are not equal even though the outer landmarks are the 
same. 

A point was picked from a uniform distribution within a circle of radius 
20%$ of the path segment length around the desired path point. 
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Fig. 16. The sequence on the left shows the path taken by the navigator using our algorithm. The sequence on the right shows the path taken when the 
landmarks used for localization are chosen randomly. The landmarks used for localization are shown as triangles. The desired path is a dotted line. The path 
taken is a solid line. The viewpoint is estimated at the empty square, and the navigator moves to the next path point (end of the solid line furthest to right). 

It is interesting to note that for this particular example, 
the w function had no effect on which landmark triples were 
chosen by the wise navigator. When so few possible choices 
of landmark triples exist, it is often the case that there are no 
triples that are equally good for point localization but differ 
significantly in minimizing the lateral distance from the path. 

E .  Adding New Landmarks 
Whether placing beacons to be used for localization or iden- 

tifying new natural landmarks, we can significantly reduce our 
cost if we choose locations that will give us good localization. 
We again tum to the example of the desert ant. Cataglyphis 
economizes on what it leams about its surroundings. It leams 

only significant landmarks and no more than are necessary to 
stay on course. It does not learn the complete topography of 
a large area [2 ] .  We have used the results of our analysis in 
Section I11 to choose areas on the terrain map in which to 
look for landmarks. 

Consider two navigators following the path shown in 
Fig. 18.6 Their landmarks are mountain peaks. As they move 
along the path, some landmarks are no longer visible and 
new ones are identified. They start at the square shown at the 
bottom of each frame. Their goal is to reach the star at the 
top. They have identified the seven landmarks marked in the 

6They are using the same map as in Fig. 13 and are moving through the 
canyon that runs up the center of the map. 
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Fig. 17. After fifty trials, clustering on the left shows improved localization when the landmarks are chosen wisely. The error bounds were f 2 0 %  in the 
visual angle measure for the top pair of frames, 530% in the visual angle measure for the second pair of frames, and f 2 0 %  in both the visual angle 
measure and the direction and distance of the move for the third set of frames. 

TABLE V 
RESULTS AITER 100 TRIALS 

Wise landmark choice Random landmark choice 
520% angle f30% 5 2 0 %  angle *20% angle f30% angle &20% angle 

Error bounds 0 move 0 move 520% move 0 move 0 move 5 2 0 %  move 

Mean extra distance traveled 344 2883 474 4273 18657 4576 
Mean distance to path 45 2 513 387 1106 1227 86 1 
Mean distance to goal 71 1 1166 769 3239 4781 3290 

*The total path length was 11352 m. All distances have been rounded to the nearest meter. 

top two frames, chosen the landmarks marked by triangles to 
estimate location and moved along the solid line to the next 
dark box. The navigator on the left made a wise choice of 

landmarks with which to localize, and stayed closer to the path 
as a result. At this point, they take another image. The two 
landmarks on the far right are no longer seen in the image, 
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Fig. 18. An example of two navigators traveling toward a goal. They begin 
by picking three landmarks with which to localize, shown by the triangles in 
the top set of frames, and move along the dark line to the second dark box. 
They then take a new image. The navigator on the left looks for an additional 
landmark in a “good” place, and finds the one marked by the center triangle 
on the left of the second set of frames. The navigator on the right identifies 
all new landmarks and randomly picks a triple. The result of their next move 
is shown in the second set of frames. 

and new landmarks appear. The navigator on the left looks 
for a landmark in the same direction as the next path point. 
It identifies and uses the one marked by the center triangle 
on the left side in the second set of frames, knowing that it 
should get good two-dimensional localization with a landmark 
pushed so far back from the ones it has already identified and 
good lateral localization with a landmark lying in the same 
direction as the next point on the path. The navigator on the 
right identifies all the peaks it sees in the image before it 
picks a triple and moves. Due to the fact that in our simulated 
runs, that navigator picks a random triple, it happens to pick a 
triple from the pool of landmarks it had already identified. It 
could have not identified any new landmarks before it moved. 
Whatever the scenario, it was in a position where none of 
the known landmarks was very good for localization and it 
did not do anything to improve the situation. As can be seen 
in the second set of frames of Fig. 18, the navigator on the 
left traveled less distance, remained closer to the path and 
ended closer to the next path point. It also spent minimal time 
identifying new landmarks because it knew where the best 
place was to look for them. 

V. SUMMARY 

Errors, their magnitude and unpredictability are one of the 
major factors that make outdoor navigation so much harder 
than indoor navigation. It is difficult and time consuming to 
obtain sensory data in such an environment. The data that is 
obtained should provide as much correct information as pos- 
sible. Measurement errors cannot be avoided. They are often 
large and nonstandard in distribution. Filters and averaging 
techniques commonly used indoors quickly reach the limits 
of their robustness when applied to localization problems in 
this type of environment. It is crucial to limit the effect of the 
measurement errors as much as possible. In this paper, we have 
described the types of errors faced by a robot attempting to 
localize in an unstructured environment. Avoiding dependence 
on instruments with questionable accuracy in that environment, 
we have proposed a method of localizing, analyzed the errors 
that occur in that localization, and described steps that can 
be taken to help minimize those errors before they do occur. 
We have made a point for making the best use of the 
data one has and have shown that such a process may be 
better from a viewpoint of cost effectiveness than simply 
accumulating more data. We claim that a simple algorithm 
can be implemented to exploit the geometric properties of 
landmarks in the environment in order to decrease error and 
have shown the result of testing this concept in experiments 
run in simulation with real USGS 30 m DEM data for a 
robot statically locating, following a path and identifying new 
landmarks. 

Our current work is addressing the following questions: 
1) Can we develop better heuristics than our w function to 

be used in choosing landmarks for path localization that 
will produce a distribution with a small variance when 
the area of uncertainty is projected into one-dimensional 
space perpendicular to the direction of movement, as 
shown in Fig. lo? The results of this attempt to “pursue 
projections” can be found in [22]. 

2) How can a navigator best move either on the terrain or, 
if possible, above it, in order to put itself in a better 
position to self-locate? 

3) How, if faced with only a partial ordering of landmarks 
(e.g., “I know that B is in the center”), can a small 
movement toward one landmark and a remeasuring of 
visual angles be used to determine total ordering? 

We have also tested our method for choosing features for 
localization with a robot navigating in an indoor structured 
environment. Since in most cases there are more features to 
choose from, the results have not suffered from lack of good 
landmark triples. On the other hand, the errors that occurred in 
the confined area in which the robot could wander were quite 
small. It is debatable whether or not the extra time required 
to choose triples was well spent. 

The problem of establishing the set of view to map corre- 
spondences that we assume already exists has been addressed 
in [24]. A constraint satisfaction approach was used such that 
hypotheses of view to map correspondences were discarded 
if they led to incompatible constraints. We have found this 
type of reasoning to be better suited for dealing with incorrect 
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correspondences than treating them as problems in geometric 
uncertainty. 
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